第3章 气体间隙的击穿强度[课堂课资]
- 格式:ppt
- 大小:7.42 MB
- 文档页数:123
《高电压工程基础》教学大纲课程学时:40学时(讲授36+实践4)适用专业: 电气工程及其自动化先修课程:电路、发电厂电气主系统等教材:《高电压工程基础》(第二版),施围,邱毓昌,张乔根. 机械工业出版社,2014参考书 1. 《电气工程基础》,(第二版)王锡凡主编,西安交通大学出版社,20092. 《高电压绝缘技术》,严璋,中国电力出版社,20023. 《高电压工程》,梁曦东,清华大学出版社,2004一、课程的性质、目的及任务《高电压工程基础》是电气工程及其自动化专业一门重要的专业课程,该课程理论性和实践性并重,着重强调工程应用中的理论知识。
通过对本课程的学习,使学生掌握气体放电的基本理论、液体和固体电介质的电气特性,掌握电气设备绝缘试验的相关知识,以及电力系统过电压产生机理及抑制措施等基本知识,具有从事绝缘、高电压技术等领域的设计、安装、运行、试验,及研究工作的专业知识基础。
二、教学内容及基本要求第1章绪论(1)教学内容1.1 高压输电的必要性;1.2 我国电力工业的发展;1.3电力工业对高电压技术发展的促进作用;1.4 新材料和新技术在高电压技术中的应用;1.5 高电压技术在其他领域的应用。
(2)基本要求掌握我国输电线路电压等级的划分;掌握高压输电产生的背景及高压输电的必要性;掌握分裂导线的结构及优点;了解高电压技术在其他领域的应用;了解高电压技术中的新技术;了解我国电力工业的发展。
- 1 -第2章气体放电的基本物理过程(1)教学内容2.1 带电质点的产生与消失;2.2 放电的电子崩阶段;2.3 自持放电条件;2.4 不均匀电场中气体放电的特点。
(2)基本要求掌握气体中带电粒子的产生与消失;掌握气体的自持放电现象和流注放电理论、气隙的击穿特性及提高气体间隙抗电强度的方法;pd值较大和pd值较小时放电现象的异同,以及各自的自持放电条件;理解输电线上的电晕放电以及绝缘子表面的气体放电。
第3章气体间隙的击穿强度(1)教学内容3.1 稳态电压下的击穿;3. 2 雷电冲击电压下的击穿;3.3 操作冲击电压下的击穿;3.4大气密度和湿度对击穿的影响;3.5 SF6气体间隙中的击穿;3.6 提高气隙击穿电压的措施。
第三章气隙的电气强度第三章气隙的电气强度本章节的教学内容要求:冲击电压下的气息击穿:标准波形,放电时间,伏秒特性及其实际意义,50%冲击击穿电压,放电的分散性。
大气条件的影响及换算方法,提高气体间隙击穿的措施沿面放电:均匀与不均匀电场中沿面放电的基本过程和影响因素分析,提高沿面放电电压的方法。
§3-1气隙的击穿时间静态击穿电压:长时间作用在气隙上能使得气隙击穿的最低电压。
如果所加电压的瞬时值是变化的,或者所加电压的延续时间很短,则该气隙的击穿电压就不同于静态击穿电压(一般高于)静态击穿电压。
所以,应该说,对于某一气隙,当不同波形的电压作用时,将有相应不同的击穿时间和击穿电压。
一.静态击穿电压U0使气隙击穿的最小电压二.击穿时间tb从加压的瞬时起到气隙完全击穿为止的总时间由三部分组成1.t0 (升压时间):电压从零升到静态击穿电压U0所需的时间2.ts (统计时延):从电压达到U0 的瞬时起到气隙中形成第一个有效电子为止的时间。
3.tf (放电形成(发展)时延)从产生第一个有效电子的瞬时到气隙完全被击穿为止的时间这里所讲的有效电子是指该电子能发展一系列的电离过程,最后导致间隙完全击穿的那个电子。
气隙中出现的自由电子并不一定能成为有效的电子(有效电子--能发展一系列的游离过uU程,最后导致间隙完全击穿的那个电子)。
这是因为下列原因:有效电子:形成负离子扩散到间隙外游离中途衰亡4.tl (放电时延):tl =ts +tftl 的特点:根据电场的不同,tl具有分散性和随机性(1)在短间隙、均匀场中tf〈〈ts→tl =ts即:均匀电场的放电时延tl 主要是产生有效电子的时间,ts的长短具有统计性质,可取其平均值,称为平均统计时延。
影响ts的因素:电极材料、外施电压、短波光照射、电场情况(2)在长间隙不均匀场中,由于电场的不均匀性容易产生有效电子,使tf 〉〉ts →tl =tf即:不均匀长间隙电场中,先导放电的发展占放电时延的主要部分影响tf 的因素:间隙长度、电场均匀度、外加电压§3-2气隙的伏秒特性和击穿电压的概率分布一.标准试验电压波形对于不同性质、不同波形的电压,气隙的击穿电压是不同的。
第三章 气隙的电气强度本章节的教学内容要求:冲击电压下的气息击穿:标准波形,放电时间,伏秒特性及其实际意义,50%冲击击穿电压,放电的分散性。
大气条件的影响及换算方法,提高气体间隙击穿的措施沿面放电:均匀与不均匀电场中沿面放电的基本过程和影响因素分析,提高沿面放电电压的方法。
§3-1气隙的击穿时间静态击穿电压:长时间作用在气隙上能使得气隙击穿的最低电压。
如果所加电压的瞬时值是变化的,或者所加电压的延续时间很短,则该气隙的击穿电压就不同于静态击穿电压(一般高于)静态击穿电压。
所以,应该说,对于某一气隙,当不同波形的电压作用时,将有相应不同的击穿时间和击穿电压。
一.静态击穿电压U0使气隙击穿的最小电压二.击穿时间tb从加压的瞬时起到气隙完全击穿为止的总时间由三部分组成1.t0 (升压时间):电压从零升到静态击穿电压U0所需的时间2.ts (统计时延):从电压达到U0 的瞬时起到气隙中形成第一个有效电子为止的时间。
3.tf (放电形成(发展)时延)从产生第一个有效电子的瞬时到气隙完全被击穿为止的时间这里所讲的有效电子是指该电子能发展一系列的电离过程,最后导致间隙完全击穿的那个电子。
气隙中出现的自由电子并不一定能成为有效的电子(有效电子--能发展一系列的游离过程,最后导致间隙完全击穿的那个电子)。
这是因为下列原因:有效电子:形成负离子扩散到间隙外游离中途衰亡UuU4.tl (放电时延):tl =ts +tftl 的特点:根据电场的不同,tl 具有分散性和随机性(1)在短间隙、均匀场中tf 〈〈ts → tl =ts即:均匀电场的放电时延tl 主要是产生有效电子的时间,ts 的长短具有统计性质,可取其平均值,称为平均统计时延。
影响ts 的因素:电极材料、外施电压、短波光照射、电场情况(2)在长间隙不均匀场中,由于电场的不均匀性容易产生有效电子,使tf 〉〉ts → tl =tf即:不均匀长间隙电场中,先导放电的发展占放电时延的主要部分影响tf 的因素:间隙长度、电场均匀度、外加电压§3-2气隙的伏秒特性和击穿电压的概率分布一.标准试验电压波形对于不同性质、不同波形的电压,气隙的击穿电压是不同的。