重庆市部分重点中学2010年高三理科数学开学考试试题
- 格式:doc
- 大小:394.50 KB
- 文档页数:7
高2010级学业质量调研抽测试卷(第二次)数 学(理科)第I 卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分)。
1.若复数11i z i+=-,则2010z = A .1- B .0 C .1 D .1005(1)i +2.设{}n a 是等差数列,62a =且530S =,则8S =A .31B .32C .33D .343.已知函数()y f x =在其定义域(,0]-∞内存在反函数,且2(1)2f x x x -=-,则11()2f --的值等于A .2-B .C .D .12- 4.若3cos 4sin 5αα+=,则tan α=A .43B .34C .34±D .43±5.设双曲线22221(0,0)x y a b a b-=>>24y x =的准线重合,则此又曲线的方程为A .2211224x y -=B .222133x y -=C .2214896x y -=D .22136x y -= 6.已知函数()f x 对任意褛实数x 、y 都有()()2(2)f x y f x y x y +=++,且(1)1f =,则函数()f x 的解析式为A .()21f x x =-B .2()2f x x =C .2()21f x x =-D .2()221f x x x =--7.在“倡导绿色重庆,崇尚健康生活”的演讲大会上,原定有6个代表演讲,后因某种原因,决定增加3个代表演讲,但原来6个代表演讲的顺序不变,且新增的3个代表既不在开头也不在结尾演讲,则这次演讲共有( )种不同的演讲顺序。
A .35B .108C .175D .2108.已知球O 的半径为1,A 、B 、C 三点在球面上,A 、B 两点和A 、C 两点的球面距离都是4π,B 、C 两点的球面距离是3π,则二面角B OA C --的大小是 A .4π B .3π C .2π D .23π 9.已知α、β是三次函数3211()2(,)32f x x ax bx a b R =++∈的两个极值点,且(0,1)α∈,(1,2)β∈,则21b a --的取值范围是 A .1(,1)4 B .1(,1)2 C .11(,)24- D .11(,)22-10.设定义域为R 的函数{l g |1|},()0,1x x f x x -≠⎧=⎨=⎩,则关于x 的方程2()()0f x b f x c ++=有7个不同实数解的充要条件是A .0b <且0c >B .0b <且0c =C .0b >且0c <D .0b ≥且0c =第II 卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分)。
绝密★启用前解密时间:2010年6月7日17:00 【考试时间:6月7日15:00—17:00】2010年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)在等比数列}{n a 中,200720108a a =,则公比q 的值为( )A 、2B 、3C 、4D 、8(2)已知向量,满足2||,1||,0===⋅,则=-|2|( ) A 、0B 、22C 、4D 、8(3)=⎪⎭⎫⎝⎛---→2144lim 22x x x ( )A 、1-B 、41-C 、41 D 、1(4)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则y x z +=2的最大值为( )A 、2-B 、4C 、6D 、8(5)函数xx x f 214)(+=的图象( )A 、关于原点对称B 、关于直线x y =对称C 、关于x 轴对称D 、关于y 轴对称(6)已知函数)2||,0)(sin(πϕωϕω<>+=x y的部分图象如题(6)图所示,则( ) A 、6,1πϕω== B 、6,1πϕω-==C 、6,2πϕω==D 、6,2πϕω-==(7)已知822,0,0=++>>xy y x y x ,则y x 2+的最小值是( )A 、3B 、4C 、29 D 、211 (8)直线233+=x y 与圆心为D 的圆))2,0[(,sin 31,cos 33πθθθ∈⎪⎩⎪⎨⎧+=+=y x 交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A 、π67B 、π45 C 、π34D 、π35(9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天. 若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A 、504种B 、960种C 、1008种D 、1108种(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A 、直线B 、椭圆C 、抛物线D 、双曲线二、填空题:本大题共5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上. (11)已知复数,1i z +=则=-z z2____________. (12)设}0|{},3,2,1,0{2=+∈==mx x U x A U ,若}2,1{=A C U ,则实数=m _________.(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2516,则该队员每次罚球的命中率为_____________.(14)已知以F 为焦点的抛物线x y 42=上的两点B A 、满足3=,则弦AB 的中点到准线的距离为___________. (15)已知函数)(x f 满足:),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==,则=)2010(f __________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.) 设函数R x xx x f ∈++=,2cos 2)32cos()(2π. (Ⅰ)求)(x f 的值域;(Ⅱ)记A B C ∆的内角C B 、、A 的对边长分别为c b a 、、,若3,1,1)(===c b B f ,求a 的值.(17)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求: (Ⅰ)甲、乙两单位的演出序号至少有一个为奇数的概率; (Ⅱ)甲、乙两单位之间的演出单位个数ξ的分布列与期望.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 已知函数)1ln(1)(+++-=x ax x x f ,其中实数1-≠a . (Ⅰ)若2=a ,求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)若)(x f 在1=x 处取得极值,试讨论)(x f 的单调性.(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 底面ABCD ,6==AB PA ,点E 是棱PB 的中点.(Ⅰ)求直线AD 与平面PBC 的距离; (Ⅱ)若3=AD ,求二面角D EC A --(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 已知以原点O 为中心,)0,5(F 为右焦点的双曲线C 的离心率25=e . (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(20)图,已知过点),(11y x M 的直线44:111=+y y x x l 与过点),(22y x N (其中12x x ≠)的直线44:222=+y y x x l 线分别交于H G 、两点,求OGH ∆的面积.(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 在数列}{n a 中,))(12(,1111*++∈++==N n n c ca a a n n n ,其中实数0≠c .(Ⅰ)求}{n a 的通项公式;(Ⅱ)若对一切*∈N k 有122->k k a a ,求c 的取值范围.绝密★启用前2010年普通高等学校招生全国统一考试(重庆卷)数学试题(理工农医类)答案一.选择题:每小题5分,满分 50分. (1)A (2)B (3)C (4)C (5)D(6)D(7)B(8)C(9)C(10)D二.填空题:每小题5分,满分25分. (11)i 2-(12)3-(13)53 (14)38 (15)21 三.解答题:满分75分. (16)(本题13分)解:(Ⅰ)1cos 32sinsin 32cos cos )(++-=x x x x f ππ1cos sin 23cos 21++--=x x x1sin 23cos 21+-=x x1)65sin(++=πx ,因此)(x f 的值域为]2,0[.(Ⅱ)由1)(=B f 得11)65sin(=++πB ,即0)65sin(=+πB ,又因π<<B 0, 故6π=B .解法一:由余弦定理B ac c a b cos 2222-+=,得0232=+-a a ,解得1=a 或2.解法二:由正弦定理C c B b sin sin =,得3,23sin π==C C 或32π. 当3π=C 时,2π=A ,从而222=+=c b a ;当32π=C 时,6π=A ,又6π=B ,从而1==b a .故a 的值为1或2.(17)(本题13分) 解:只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.(Ⅰ)设A 表示“甲、乙的演出序号至少一个为奇数”,则A 表示“甲、乙的序号为偶数”,由等可能性事件的概率计算公式得545111)(1)(2623=-=-=-=C C A P A P .(Ⅱ)ξ的所有可能值为0,1,2,3,4,且513)2(,1544)1(,315)0(262662=========C P C P C P ξξξ,1511)4(,1522)3(2626======C P C P ξξ.从而知ξ有分布列所以,34151415235121541310=⨯+⨯+⨯+⨯+⨯=ξE .(18)(本题13分)解:(Ⅰ)11)(111)()1()(22/++++=+++--+=x a x a x a x x a x x f .当1=a 时,47101)20(12)0(2/=++++=f ,而21)0(-=f ,因此曲线)(x f y =在点))0(,0(f 处的切线方程为)0(47)21(-=--x y 即0247=--y x .(Ⅱ)1-≠a ,由(Ⅰ)知2111111)1(1)(2/++=++++=a a a x f ,即02111=++a ,解得3-=a .此时)1ln(31)(++--=x x x x f ,其定义域为),3()3,1(+∞- ,且)1()3()7)(1(11)3(2)(22/+---=++--=x x x x x x x f ,由0)(/=x f 得7,121==x x .当 11<<-x 或7>x 时,0)(/>x f ;当71<<x 且3≠x 时,0)(/<x f .由以上讨论知,)(x f 在区间),7[],1,1(+∞-函数.(19)(本题12分) 解法一:(Ⅰ)如答(19)图1 ,在矩形ABCD 中,//AD 平面 故直线AD 与平面PBC 的距离为点A 到平面PBC因⊥PA 底面ABCD ,故,由AB PA =知PAB ∆形,又点E 是棱PB 中点,故PB AE ⊥.又在矩形中,AB BC ⊥,而AB 是PB 在底面ABCD 三垂线定理得PB BC ⊥,从而⊥BC 平面PAB ,故AE BC ⊥.从而⊥AE 平面PBC ,故AE 之长即为直线AD与平面PBC 的距离.(Ⅱ)过点D 作CE DF ⊥,交CE 于F ,过点F 作CE FG ⊥,交AC 于G ,则DFG∠为所求的二面角的平面角.由(Ⅰ)知⊥BC 平面PAB ,又BC AD //,得⊥AD 平面PAB ,故AE AD ⊥,从而622=+=AD AE DE .在CBE Rt ∆中,622=+=BC BE CE .由6=CD ,所以CDE ∆为等边三角形,故F 为CE 的中点,且2233sin=⋅=πCD DF . 因为⊥AE 平面PBC ,故CE AE ⊥,又CE FG ⊥,知AE FG 21//,从而23=FG ,且G 点为AC 的中点.连接DG ,则在ADC Rt ∆中,23212122=+==CD AD AC DG .所以362cos 222=⋅⋅-+=FG DF DG FG DF DFG .解法二:(Ⅰ)如答(19)图2,以A 为坐标原点,射线AB 、AD 轴正半轴,建立空间直角坐标系xyz A -.设)0,,0(a D ,则)0,,6(),0,0,6(a C B ,26,0,26(),6,0,0(E P . 因此)6,0,6(),0,,0(),26,0,26(-===PC a BC AE 则0,0=⋅=⋅PC AE BC AE ,所以⊥AE 平面PBC. 又由BC AD //知//AD 平面PBC ,故直线AD 与平面 PBC 的距离为点A 到平面PBC 的距离,即为3||=.(Ⅱ)因为3||=,则)0,3,6(),0,3,0(C D .设平面AEC 的法向量),,(1111z y x n =,则0,011=⋅=⋅n n .又)26,0,26(),0,3,6(==,故⎪⎩⎪⎨⎧=+=+,02626,0361111z x y x 所以1111,2x z x y -=-=. 可取21-=z ,则)2,2,2(-=. 设平面DEC 的法向量),,(2222z y x n =,则0,022=⋅=⋅n n . 又26,3,26(),0,0,6(-==,故 所以2222,0y z x ==. 可取12=y ,则)2,1,0(2=n .故36,cos 212121=>=<n n .所以二面角D EC A --的平面角的余弦值为36. (20)(本题12分)解:(Ⅰ)设C 的标准方程为)0,0(122>>=-b a y x ,则由题意25,5===a c e c , 因此1,222=-==a c b a ,C 的标准方程为1422=-y x.C 的渐近线方程为x y 21±=,即02=-y x 和02=+y x .(Ⅱ)解法一:如答(20)图,由题意点),(E E y x E 在直线44:111=+y y x x l 和44:222=+y y x x l 上,因此有4411=+E E y y x x ,4422=+E E y y x x ,故点M 、N 均在直线44=+y y x x E E 上,因此直线MN 的方程为44=+y y x x E E . 设G 、H 分别是直线MN 与渐近线02=-y x 及02=+y x 的交点,由方程组⎩⎨⎧=-=+02,44y x y y x x E E 及⎩⎨⎧=+=+,02,44y x y y x x E E解得EE H E E G y x y y x y 22,22--=+=.设MN 与x 轴的交点为Q ,则在直线44=+y y x x E E 中,令0=y 得EQ x x 4=(易知)0≠E x . 注意到4422=-E E y x ,得2|4|||2||4|2121|||4||||2122=-⋅=-++⋅=-⋅⋅=∆E E E E E E E E E H G OGH y x x x y x y x x y y OQ S.解法二:设),(E E y x E ,由方程组⎩⎨⎧=+=+,44,442211y y x x y y x x 解得122121122112,)(4y x y x x x y y x y x y y x EE --=--=, 因12x x ≠,则直线MN 的斜率EE y xx x y y k 41212-=--=.故直线MN 的方程为)(411x x y x y y EE--=-, 注意到4411=+E E y y x x ,因此直线MN 的方程为44=+y y x x E E . 下同解法一. (21)(本题12分) (Ⅰ)解法一:由c c c c c ca a a +-=+=⋅+==2222121)12(33,1,23233323)13(85c c c c c ca a +-=+=⋅+=, 34234434)14(157c c c c c ca a +-=+=⋅+=,猜测*-∈+-=N n c c n a n n n ,)1(12.下用数学归纳法证明. 当1=n 时,等式成立;假设当k n =时,等式成立,即12)1(-+-=k k k c c k a ,则当1+=k n 时,)12(])1[()12(1121`1+++-=++=+-++k c c c k c k c ca a k k k k k kk k k k c c k c c k k +-+=++=++1212]1)1[()2(,综上, 12)1(-+-=n n n c c n a 对任何*∈N n 都成立.解法二:由原式得)12(11++=++n ca c a n nn n .令nn n c a b =,则)12(,111++==+n b b c b n n ,因此对2≥n 有112211)()()(b b b b b b b b n n n n n +-++-+-=---cn n 13)32()12(+++-+-= cn 112+-=,因此12)1(-+-=n n n c c n a ,2≥n .又当1=n 时上式成立.因此*-∈+-=N n c c n a n n n ,)1(12.(Ⅱ)解法一:由122->k k a a ,得 221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c,所以01)144()14(222>-----c k k c k .解此不等式得:对一切*∈N k ,有k c c >或/k c c <,其中)14(2)14(4)144()144(22222--+--+--=k k k k k k c k ,)14(2)14(4)144()144(22222/--+-----=k k k k k k c k .易知1lim =∞→k k c ,又由144)14(4)14()14(4)144(2222222+=+-+-<-+--k k k k k k ,知12848)14(214)144(22222<--=-++--<k k k k k k k c k ,因此由k c c >对一切*∈N k 成立得1≥c .又0)14(4)144()144(22222/<-+--+---=k k k k k c k ,易知/k c 单调递增,故/1/c c k ≥对一切*∈N k 成立,因此由/k c c <对一切*∈N k 成立得6131/1+-=<c c .从而c 的取值范围为),1[)6131,(+∞+--∞ . 解法二:由122->k k a a ,得221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c,所以014)(4222>-+-+-c c ck k c c 对*∈N k 恒成立.记14)(4)(222-+-+-=c c cx x c c x f ,下分三种情况讨论.(ⅰ)当02=-c c 即0=c 或1=c 时,代入验证可知只有1=c 满足要求.(ⅱ)当02<-c c 时,抛物线)(x f y =开口向下,因此当正整数k 充分大时,0)(<x f不符合题意,此时无解.(ⅲ)当02>-c c 即0<c 或1>c 时,抛物线)(x f y =开口向上,其对称轴)1(21c x -=必在直线1=x 的左边. 因此,)(x f 在),1[+∞上是增函数.所以要使0)(>k f 对*∈N k 恒成立,只需0)1(>f 即可.由013)1(2>-+=c c f 解得6131--<c 或6131+->c .结合0<c 或1>c 得6131+-<c 或1>c . 综合以上三种情况,c 的取值范围为),1[)6131,(+∞+--∞ .。
秘密★启用前重庆一中高2010级高三上期第四次月考数学试题卷(理科)2009.12数学试题共3页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.(每小题5分,共50分)1.已知集合,集合,则=( )A. B. C. D.2.若,且,则锐角=( )A. B. C. D.3.下列命题中正确的是( )A.若实数满,则B.若实数满足,则C.若,则D.若,则4.等差数列满足:,则=( )A. B.0 C.1 D.25.已知,则“”是“”的( )条件.A. 充要B. 既不充分也不必要C. 必要不充分D. 充分不必要6.△ABC中, ,则∠C=( )A. B. C.或 D.或7.已知,与的夹角为,如下图所示,若, ,且为的中点,则=( )A. B.C. D.8.已知.且当时, ,则的解集是( )A. B. C. D.9.定义域为R的函数对任意都有,且其导函数满足,则当时,有( )A. B.C. D.10.若实数满足,则的最大值是( )A. B. C. D.二.填空题.(每小题5分,共25分)11.若,则= .12.分有向线段所成的比为,则分有向线段所成的比为.13.手表的表面在一平面上,整点1,2,…,12这12个数字等间隔地分布在半径为的圆周上,从整点到整点的向量记作,则=.14.设函数,且,则.15.设的内角满足成等比数列,则的取值范围是.三.解答题.(共75分)16. (13分)已知向量(其中).设,且的最小正周期为.(1)求;(2)若,求的值域.17. (13分)△ABC中,分别是角A,B,C的对边,且.(1)求;(2)若,且,求△ABC的面积.18. (13分)已知数列的前项和为,且.(1) 求证:为等差数列;(2)求;(3)若, 求19. (12分)已知,满足.且在R上恒成立.(1)求;(2)若,解关于的不等式:.20. (12分)设.(1)若,与在同一个值时都取极值,求;(2)对于给定的负数,当时有一个最大的正数,使得时,恒有.(i)求的表达式;(ii)求的最大值及相应的的值.21. (12分)已知数列满足,其中,函数.(1)若数列满足, ,求;(2)若数列满足.数列满足,求证:.重庆一中高2010级高三上期第四次月考答案数学试题卷(理科)2009.12二.填空题.(每题5分,共25分)11.;12.1 ;13. ;14.;15.三.解答题.(共75分)16.解:(1)∵∴∴(2)由(1)得: ∵∴∴∴的值域为17.解:(1)由正弦定理及有:即∴又∴∴又∴又∴(2)在△ABC中,由余弦定理可得:,又∴∴∴18.解:(1)当时,由已知有易知故∴为首项为2,公差为2的等差数列. (2)易知,当时, ∴(3)易知,时.∴19.解:(1) ∴∴由有,∵在R上恒成立, 即:恒成立显然时不满足条件,∴即∴∴(2) ∴即,即,∴当时,即时,解集为;当时,即时,解集为;当时,即时,解集为.20.解: (1)易知在时取得极值.由得由题意得:. 故.经检验时满足题意.(2) (i)因. ∴.情形一:当,即时,此时不满足条件。
重庆八中2010—2011学年度(上)高三年级第五次考试数学试题(理科)本试题分第I 卷(选择题)和第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|0,}A x x x x R =-≤∈,集合2{|log 0}B x x =≤,则A 、B 满足A.A B ⊆B.B A ⊆C.A B =D.A B ⊆/且B A ⊆/2.已知单位向量,i j 满足(2)j i i -⊥ ,则,i j夹角为A.6π B.4π C. 3π D.23π3.已知tan 2α=,则2cos 2(sin cos )ααα-的值为 A. 3- B. 3 C. 2- D. 24.“21m -<<”是方程22121x y m m+=+-表示椭圆的 A. 充分必要条件 B. 充分但不必要条件 C. 必要但不充分条件 D. 既不充分也不必要条件5.已知变量x 、y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最小值为A . 2-B. 3C. 7D. 126.已知函数(1)y f x =+是定义域为R 的偶函数,且在[1,)+∞上单调递增,则不等式(21)(2)f x f x -<+的解集为A.{|3}x x <B.1{|3}2x x << C.1{|3}3x x -<< D.1{|3}3x x <<7.由曲线22||||x y x y +=+围成的图形的面积等于A. 2π+B. 2π-C. 2πD. 4π8.已知正实数a 、b 满足1a b +=,则49aba b+的最大值为A.123B. 124C. 125D.1269.已知双曲线22221(0,0)x y a b a b-=>>的右支上存在一点P ,使得点P 到双曲线右焦点的距离等于它到双曲线左准线的距离,则双曲线离心率的取值范围是A. B. )+∞ C. (11]D. 1,)+∞10.若函数3()(3)f x a x ax =--在区间[1,1]-上的最小值等于3-,则实数a 的取值范围是A. (2,)-+∞B. 3[,12]2-C. 3[,13)2-D. (2,12]-第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置. 11.函数11x y x -=+的反函数的解析式为 . 12.数列{}n a 满足:10a =,1()n n a a n n N *+=+∈,则数列{}n a 的通项n a = . 13.经过原点O 且与函数()ln f x x =的图像相切的直线方程为 . 14.若1cos()33πα+=,则cos(2)3πα-= .15.直线0l y -=与抛物线24y x =相交于A 、B 两点,与x 轴相交于点F ,若()OF OA OB λμλμ=+≤ ,则λμ= .三、解答题:本大题共6小题,共76分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.) 设ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2,2cos 3A a b C π==,求: (Ⅰ)角B 的值;(Ⅱ)函数()sin 2cos(2)f x x x B =+-在区间[0,]2π上的最大值及对应的x 值.17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)已知平面上的两个定点(0,0),(0,3)O A ,动点M 满足||2||AM OM =. (Ⅰ)求动点M 的轨迹方程;(Ⅱ)若经过点A 的直线l 被动点M 的轨迹E 截得的弦长为2,求直线l 的方程. 18.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.) 已知函数2()x x f x e ae x =-+,x R ∈. (Ⅰ)当3a =时,求函数()f x 的极大值和极小值;(Ⅱ)若函数()f x 在(0,ln 2)上是单调递增函数,求实数a 的取值范围. 19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)设数列{}n a 的首项11a =,其前n 项和n S 满足:13(23)3n n tS t S t --+=(0,t >2,3,)n = . (Ⅰ)求证:数列{}n a 为等比数列;(Ⅱ)记{}n a 的公比为()f t ,作数列{}n b ,使11b =,11()(2,3,)n n b f n b -== ,求和: 12233445212221n n n n bb b b b b b b b b b b -+-+-++- .20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)已知定义域为(0,)+∞的单调函数()f x 满足:()()()f m f n f m n +=⋅对任意,m n ∈(0,)+∞均成立.(Ⅰ)求(1)f 的值;若()1f a =,求1()f a的值;(Ⅱ)若关于x 的方程2(1)()f x f kx +=有且仅有一个根,求实数k 的取值集合. 21.(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)直线0x y a b ±=称为椭圆2222:1(0)x y C a b a b+=>>的“特征直线”,若椭圆的离心率e =(Ⅰ)求椭圆的“特征直线”方程;(Ⅱ)过椭圆C 上一点000(,)(0)M x y x ≠作圆222x y b +=的切线,切点为P 、Q ,直线PQ与椭圆的“特征直线”相交于点E 、F ,O 为坐标原点,若OE OF ⋅取值范围恰为3(,3)[,)16-∞-+∞ ,求椭圆C 的方程.重庆八中2010—2011学年度(上)高三年级第五次考试数学(理科)参考答案一、选择题:提示:10.因为(1)3f =-,所以只需3(3)3a x ax --≥-对[1,1]x ∈-恒成立.由3(3)30a x ax --+≥,得:2(1)3(1)0ax x x -+-≥,因为[1,1]x ∈-,所以10x -≥,(1)3ax x +≥-,当1x =±或0x =时,不等式显然恒成立,当10x -<<时,3(1)a x x -≤+恒成立,即12a ≤;当01x <<时,3(1)a x x -≥+恒成立,即32a ≥-,综上,3122a -≤≤.二、填空题: 11.11x y x +=- 12.(1)2n n - 13.1y x e = 14.79 15.13提示:15.易知直线l 经过抛物线的焦点,且倾斜角为3π,如图,过点A 作准线1x =-的垂线,垂足为M ,过F 作直线AM 的垂线,垂足为P ,则在APF ∆中,1||||cos ||2AP AF FAP AF =∠=,又||||||||2AP AM MP AF =-=-,所以||4AF =,同理可得4||3BF = 从而3AF FB = ,即3()OF OA OB OF -=-,1344OF OA OB =+ ,故13,44λμ==,13λμ=.三、解答题: 16.(Ⅰ)由2cos a b C =,得sin 2sin cos A B C = …………………………………………2分∵()A B C π=-+ ∴sin()2sin cos B C B C +=,整理得sin()0B C -=……………4分 ∵B C 、是ABC ∆的内角,∴B C = 又由23A π=,∴6B π=…………………………. 6分(Ⅱ)3()sin 2cos(2sin 2)6226f x x x x x x ππ=+-=+=+ ……………9分 由02x π≤≤,得72666x πππ≤+≤……………………………………………………………11分 ∴max y =262x ππ+=,6x π=……………………………………………………13分17.(Ⅰ)设(,)M x y ,由条件||2||AM OM ==,………3分化简整理,得:22230x y y ++-=,即22(1)4x y ++= ……………………………6分 (Ⅱ)设圆22(1)4x y ++=的圆心E 到直线l 的距离为d,则d =若直线l 的斜率存在,设其为k ,则:2(l y k x-=,即20kx y -+=∴=k=,从而:0l x=……………………………10分当直线l的斜率不存在时,其方程为x=综上,直线l的方程为x=x=…………………………………………13分18.2()21x xf x e ae'=-+(Ⅰ)当3a=时,22()231(21)(1)x x x xf x e e e e'=-+=--令()0f x'<,得112xe<<,ln20x-<<令()0f x'>,得12xe<或1xe>,ln2x<-或0x>∴()f x在(,ln2)-∞-,(0,)+∞上递增,在(ln2,0)上递减.从而,5()(ln2)ln24f x f=-=--极大值,()(0)2f x f==-极小值…….………………....6分(Ⅱ)令2()210x xf x e ae'=-+≥,(0,ln2)x∈,即12xxa ee≤+对任意(0,ln2)x∈恒成立,令xt e=,(1,2)t∈,又令1()2h t tt=+,易知()h t在(1,2)上为增函数()3h t∴>,故3a≤……………………….………………………....13分19.(Ⅰ)由11221,1S a S a===+,得23(1)(23)3t a t t+-+=,221233atat a+∴==……..…2分又13(23)3n ntS t S t--+=,123(23)3n ntS t S t---+=(3,4,)n= 两式相减,得:13(23)0n nta t a--+=,1233nna ta t-+∴=(3,4,)n=综上,数列{}na为首项为1,公比为233tt+的等比数列…………………………..…….5分(Ⅱ)由2321()33tf tt t+==+,得1112()3n nnb f bb--==+,所以{}nb是首项为1,,公差为23的等差数列,213nnb+=……………………………….…………………………....9分12233445212221n n n nbb b b b b b b b b b b-+-+-++-132********()()()n n n b b b b b b b b b -+=-+-++- 2424()3n b b b =-+++245414()(23)32339n n n n +=-⋅+=-+ ……………………….………………………....13分20.(Ⅰ)令1m n ==,解得(1)0f = …………………………………………………2分 又令1,m a n a ==,解得1()1f a=- …………………………………………………5分 (Ⅱ)令m n =,得:22()()f n f n =,所求方程等价于2[(1)]()f x f kx +=,又()f x 是(0,)+∞上的单调函数,所以原方程可化为2(1)100x kx x kx ⎧+=⎪+>⎨⎪>⎩,即2(2)1010x k x x kx ⎧+-+=⎪>-⎨⎪>⎩….…………8分若0k >,则原问题为方程2(2)10x k x +-+=在(0,)+∞上有一个根,设其两根为12,x x ,则2(2)40k ∆=--≥,又注意到1210x x =>,∴只可能是二重正根,由0∆=解得4k =或0k =(矛盾,舍去)若0k <,则原问题为方程2(2)10x k x +-+=在(1,0)-上有一个根,仍有1210x x =>,记2()(2)1g x x k x =+-+,易知(0)10g =>,由根的分布原理,只需(1)0,g -<即0k <,综上,{}(,0)4k ∈-∞ ………………………………………………………………………….12分21. (Ⅰ)设222(0)c a b c =->,则由c e a ==,得2222234c a b a a -==,1,22b a b a ∴== 椭圆的“特征直线”方程为:20x y ±= …………………………………………………….3分 (Ⅱ)直线PQ 的方程为200x x y y b +=(过程略) ………………………………………….5分 设1122(,),(,)E x y F x y联立20020x x y y b x y ⎧+=⎨-=⎩,解得21002b y y x =+,同理22002b y y x =-…………………………….7分41212122200334b OE OF x x y y y y x y ⋅=+=-=-,00(,)M x y 是椭圆上的点,22002214x y b b ∴+=从而442222000331744b b OE OF x y x b ⋅==-- …………………………………………………….10分 2204x b <≤ 2222017164b x b b ∴-<-≤ 23O E O F b∴⋅<- 或2316b OE OF ⋅≥ 由条件,得21b =,故椭圆C 的方程为2214x y += …………………………………………12分。
高2010级(上)期末测试卷数学(理工类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项符合题目要求.1.设集合},{b a A =,则满足},,,{A d c b a B = 的所有集合B 的个数是( ) A . 1 B. 4 C.8 D.162.函数)1lg(+=x y 的反函数的图像为( )3. 在等差数列}{n a 中,138a a =,2a =3,则公差d =( )A.1B. -1C. ±1D. ±24. 直线1l 在x 轴和y 轴上的截距分别为3和1,直线2l 的方程为022=+-y x ,则直线1l 到2l 的角为( )A.71arctanB.45C.135D. 45 或135 5. 已知αtan 2.02,3sin <<-=a a π,则)6cos(πα-的值是( ) A.0 B.23C. 1D. 216.把函数)3lg(x y =的图像按向量→a 平移,得到函数)1lg(+=x y 的图像,则→a 为( ) A .(-1,3lg ) B.(1,-3lg ) C.(-1,-3lg ) D.(31,0) 7.已知xa x f =)(,xb x g =)(,当3)()(21==x g x f 时,21x x >,则a 与b 的大小关系不可能成立.....的是( )A. 1>>a bB. 01>>>b aC. 10<<<b a D. 01>>>a b8.双曲线)1(122>=-n y nx 的两焦点为21,F F ,点P 在双曲线上,且满足:2221+=+n F P F P ,ABCDA .1B .21C .2D .4 9.称→→→→-=b a b a d ),(为两个向量→a 、→b 间的“距离”.若向量→a 、→b 满足:①1=→b ;②→→≠b a ;③对任意的R t ∈,恒有),(),(→→→→≥b a d b t a d 则( )A .→→⊥b a B.)(→→→-⊥b a a C. )(→→→-⊥b a b D. )()(→→→→-⊥+b a b a10.关于x 的方程0)1(122=++++b xx a x x 有实数根,则22b a +的最小值是( ) A .52B .1C .54D .52二、填空题:(本大题共5个小题,共25分,把答案填写在答题卡相应位置上)11.抛物线022=+y x 的焦点坐标是________ ____. 12.不等式2log 12>+x 的解集是____ ________.13.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则x z )41(=.y)21(的最小值为__________.14.已知数列}{n a 满足,11,211221++-==-n na n n a a n n 则数列}{n a 的通项n a =__________ . 15 如图,一条螺旋线是用以下办法画成:ABC ∆是边长为1的正三角形,曲线32211,,A A A A CA 分别以A 、B 、C 为圆心,AC 、1BA 、2CA 为半径画弧,曲线321A A CA 称为螺旋线旋转一圈.然后又以A 为圆心3AA 为半径画弧,这样画到第n 圈,所得的螺旋线的长度n l =_____ _____.(用π表示即可)三、解答题:(本大题共6个小题,共75分)(各题解答必须写出必要的文字说明、演算步骤和推理过程).16.(本小题满分13分)已知向量)4,3(-=−→−OA ,)3,6(-=−→−OB ,)3,5(m m OC ---=−→−.(Ⅰ)若C B A ,,三点共线,求实数m 的值; (Ⅱ)若ABC ∠为锐角,求实数m 的取值范围.已知函数)0,0(cos sin cos 2)(2>>+=b a x x b x a x f ,)(x f 的最大值为a +1,最小值为21-. (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 的单调递增区间.18.(本小题满分13分) 已知数列}{n a 中,11=a ,113--⋅=n n n a a ).,2(*N n n ∈≥数列}{nb 的前n 项和))(9(log *3N n a S n n n ∈=. (Ⅰ)求数列}{n b 的通项公式;(Ⅱ)求数列{}n b 的前n 项和.19.(本小题满分12分) 已知ax xa x f ---=2log )(2是奇函数.(Ⅰ)求a 的值;(Ⅱ)若关于x 的方程x m x f --⋅=2)(1有实解,求m 的取值范围.已知点)1,1(A 是椭圆)0(12222>>=+b a b y a x 上一点,21,F F 是椭圆的两焦点,且满足421=+AF AF .(Ⅰ)求椭圆的两焦点坐标;(Ⅱ)设点B 是椭圆上任意一点,如果AB 最大时,求证A 、B 两点关于原点O 不对称; (Ⅲ)设点C 、D 是椭圆上两点,直线AC 、AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.21.(本小题满分12分)已知曲线C :1xy =过C 上一点(n n A x ,)n y 作一斜率21+-=n n x k 的直线交曲线C 于另一点11(n n A x ++,1)n y +,点列*()n A n N ∈的横坐标构成数列}{n x ,其中7111=x . (Ⅰ)求证:}3121{+-n x 是等比数列; (Ⅱ)求证:23123(1)(1)(1)x x x -+-+-+…*(1)1()n n x n N +-<∈.。
2010年重庆高考数学(理科)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)在等比数列{}n a 中,201020078a a = ,则公比q 的值为A. 2B. 3C. 4D. 8(2) 已知向量a ,b 满足0,1,2,a b a b ∙===,则2a b -=A. 0B. 22C. 4D. 8(3)2241lim 42x x x →⎛⎫- ⎪--⎝⎭= A. —1 B. —14 C. 14 D. 1 (4)设变量x ,y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z=2x+y 的最大值为A.—2B. 4C. 6D. 8(5) 函数()412x xf x +=的图象 A. 关于原点对称 B. 关于直线y=x 对称 C. 关于x 轴对称 D. 关于y 轴对称(6)已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则 A. ω=1 ϕ= 6π B. ω=1 ϕ=- 6π C. ω=2 ϕ= 6π D. ω=2 ϕ= -6π(7)已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A. 3B. 4C. 92D. 112(8) 直线y=323x +与圆心为D 的圆33cos ,13sin x y θθ⎧=+⎪⎨=+⎪⎩())0,2θπ⎡∈⎣交与A 、B 两点,则直线AD 与BD 的倾斜角之和为A. 76πB. 54πC. 43π D. 53π (9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙部排在10月1日,也不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线二.填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡的相应位置上。
2010年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•重庆)在等比数列{a n}中,a2010=8a2007,则公比q的值为()A.2 B.3 C.4 D.8【考点】等比数列的性质.【专题】计算题.【分析】利用等比数列的通项公式,分别表示出a2010和a2007,两式相除即可求得q3,进而求得q.【解答】解:∴q=2故选A【点评】本题主要考查了等比数列的性质.属基础题.2.(5分)(2010•重庆)已知向量,满足•=0,||=1,||=2,则|2﹣|=()A.0 B. C.4 D.8【考点】向量的模.【专题】计算题.【分析】利用题中条件,把所求|2|平方再开方即可【解答】解:∵=0,||=1,||=2,∴|2|====2故选B.【点评】本题考查向量模的求法,考查计算能力,是基础题.3.(5分)(2010•重庆)=()A.﹣1 B.﹣C.D.1【考点】极限及其运算.【专题】计算题.【分析】先进行通分,然后消除零因子,可以把简化为,由此可得答案.【解答】解:===﹣,故选B.【点评】本题考查函数的极限,解题时要注意消除零因子.4.(5分)(2010•重庆)设变量x,y满足约束条件,则z=2x+y的最大值为()A.﹣2 B.4 C.6 D.8【考点】简单线性规划的应用.【专题】计算题.【分析】先根据约束条件画出可行域,利用几何意义求最值,只需求出直线z=2x+y过点B时,z最大值即可.【解答】解:不等式组表示的平面区域如图所示,设z=2x+y,∵直线z=2x+y过可行域内B(3,0)的时候z最大,最大值为6,故选C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.5.(5分)(2010•重庆)函数的图象()A.关于原点对称 B.关于直线y=x对称C.关于x轴对称 D.关于y轴对称【考点】奇偶函数图象的对称性.【专题】计算题.【分析】题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,【解答】解:,∴f(x)是偶函数,图象关于y轴对称故选D.【点评】考查函数的对称性,宜从奇偶性入手研究.6.(5分)(2010•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ= B.ω=1,φ=﹣C.ω=2,φ= D.ω=2,φ=﹣【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;综合题.【分析】通过图象求出函数的周期,再求出ω,由(,1)确定φ,推出选项.【解答】解:由图象可知:T==π,∴ω=2;(,1)在图象上,所以2×+φ=,φ=﹣.故选D.【点评】本题考查y=Asin(ωx+φ)中参数的物理意义,由y=Asin(ωx+φ)的部分图象确定其解析式,考查视图能力,逻辑推理能力.7.(5分)(2010•重庆)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.【考点】基本不等式.【专题】计算题.【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用代入已知条件,化简为函数求最值.【解答】解:考察基本不等式,整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4故选B.【点评】此题主要考查基本不等式的用法,对于不等式在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.8.(5分)(2010•重庆)直线y=与圆心为D的圆(θ∈[0,2π))交与A、B两点,则直线AD与BD的倾斜角之和为()A. B. C. D.【考点】圆的参数方程;直线的倾斜角;直线和圆的方程的应用.【专题】计算题.【分析】根据题目条件画出圆的图象与直线的图象,再利用圆的性质建立两个倾斜角的等量关系,化简整理即可求出.【解答】解:数形结合,∠1=α﹣30°,∠2=30°+π﹣β,由圆的性质可知∠1=∠2,∴α﹣30°=30°+π﹣β,故α+β=,故选C.【点评】本题主要考查了圆的参数方程,以及直线的倾斜角和直线和圆的方程的应用,属于基础题.9.(5分)(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种【考点】排列及排列数公式;排列、组合的实际应用.【专题】压轴题.【分析】本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两者之间有一个排列,丙不排在10月1日,丁不排在10月7日,则可以甲乙排1、2号或6、7号,或是甲乙排中间,丙排7号或不排7号,根据分类原理得到结果.【解答】解:分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有2×种,然后排丁,有种,剩下其他四个人全排列有种,因此共有2×A22A41A44=384种方法第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后丙在7号,剩下四个人全排列有种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后排丙,丙不再1号和7号,有种,接着排丁,丁不排在10月7日,有种,剩下3个人全排列,有种,因此共有(4A22A44+4A22A31A31A33)=624种方法,故共有1008种不同的排法故选C.【点评】本题主要考查分类计数原理,分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.本题限制条件比较多,容易出错,解题时要注意.10.(5分)(2010•重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线 B.椭圆 C.抛物线D.双曲线【考点】抛物线的定义;双曲线的标准方程.【专题】计算题;压轴题;分类讨论.【分析】先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和z=a代入即可求得x和y的关系,根据其方程判断轨迹.【解答】解:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程就分别是y=0,z=0 和x=0,z=a(a是两异面直线公垂线长度,是个常数)空间内任意点设它的坐标是(x,y,z)那么由已知,它到两条异面直线的距离相等,即=两边平方,化简可得z=(y2﹣x2+a2)过一条直线且平行于另一条直线的平面是z=0和z=a分别代入所得式子z=0时代入可以得到y2﹣x2=﹣a2,图形是个双曲线z=a时代入可以得到y2﹣x2=a2,图形也是个双曲线故选D【点评】本题主要考查了双曲线的方程.考查了学生分析归纳和推理的能力.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•重庆)已知复数z=1+i,则= ﹣2i .【考点】复数代数形式的乘除运算.【专题】计算题.【分析】把复数z=1+I代入要求的式子,应用复数相除的法则化简得到结果.【解答】解:=,故答案为﹣2i.【点评】本题考查复数代数形式的运算法则.12.(5分)(2010•重庆)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m= ﹣3 .【考点】补集及其运算.【专题】计算题.【分析】由题意分析,得到A={0,3},后由根与系数直接间的关系求出m的值【解答】解;∵U={0,1,2,3}、∁U A={1,2},∴A={0,3},∴0、3是方程x2+mx=0的两个根,∴0+3=﹣m,∴m=﹣3,故答案为:﹣3.【点评】本题考查集合的运算即补集的运算及根与系数之间的关系,关键是由题意得出集合A.13.(5分)(2010•重庆)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为.【考点】互斥事件的概率加法公式.【分析】在两次罚球中至多命中一次的对立事件是两次都命中,设出命中的概率P,由对立事件的概率公式列出方程,求出命中一次的概率.【解答】解:设罚球的命中的概率为P,由两次罚球中至多命中一次的概率为,得∴,故答案为:.【点评】对立事件公式的应用经常在概率计算中出现,从正面做包含的事件较多,可以从反面来解决,注意区分互斥事件和对立事件之间的关系.14.(5分)(2010•重庆)已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.【考点】抛物线的简单性质;点到直线的距离公式;抛物线的定义.【专题】计算题;压轴题.【分析】设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB 的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.【解答】解:设BF=m,由抛物线的定义知AA1=3m,BB1=m∴△ABC中,AC=2m,AB=4m,直线AB方程为与抛物线方程联立消y得3x2﹣10x+3=0所以AB中点到准线距离为故答案为【点评】本题主要考查了抛物线的简单性质.考查了直线与抛物线的关系及焦点弦的问题.常需要利用抛物线的定义来解决.15.(5分)(2010•重庆)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2010)= .【考点】抽象函数及其应用;函数的周期性.【专题】计算题;压轴题.【分析】由于题目问的是f(2010),项数较大,故马上判断函数势必是周期函数,所以集中精力找周期即可;周期的寻找方法可以是不完全归纳推理出,也可以是演绎推理得出.【解答】解:取x=1,y=0得法一:根据已知知取x=1,y=1得f(2)=﹣取x=2,y=1得f(3)=﹣取x=2,y=2得f(4)=﹣取x=3,y=2得f(5)=取x=3,y=3得f(6)=猜想得周期为6法二:取x=1,y=0得取x=n,y=1,有f(n)=f(n+1)+f(n﹣1),同理f(n+1)=f(n+2)+f(n)联立得f(n+2)=﹣f(n﹣1)所以f(n)=﹣f(n+3)=f(n+6)所以函数是周期函数,周期T=6,故f(2010)=f(0)=故答案为:.【点评】准确找出周期是此类问题(项数很大)的关键,分别可以用归纳法和演绎法得出周期,解题时根据自己熟悉的方法得出即可.三、解答题(共6小题,满分75分)16.(13分)(2010•重庆)设函数f(x)=cos(x+π)+2cos2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.【考点】正弦函数的定义域和值域;正弦定理;余弦定理.【专题】计算题.【分析】(I)将f(x)=cos(x+π)+2化简,变形后可以用三角函数的有界性求值域.(II)由f(B)=1 求出∠B,利用余弦定理建立关于a的方程求出a.【解答】解:(I)f(x)=cos(x+π)+2=cosxcosπ﹣sinxsinπ+cosx+1=﹣cosx﹣sinx+cosx+1=cosx﹣sinx+1=sin(x+)+1因此函数f(x)的值域为[0,2](II)由f(B)=1 得sin(B+)+1=1,即sin(B+)=0,即B+=0或π,B=或﹣又B是三角形的内角,所以B=由余弦定理得b2=a2+c2﹣2accosB即1=a2+3﹣3a,整理a2﹣3a+2=0解得a=1或a=2答:(I)函数f(x)的值域为[0,2](II)a=1或a=2【点评】考查利用三角函数的有界性求值域与利用余弦定理解三角形,属基本题型,用来训练答题者熟练三角恒等变形公式与余弦定理.17.(13分)(2010•重庆)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.【考点】等可能事件的概率;排列、组合及简单计数问题.【专题】计算题.【分析】(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,满足条件的事件是甲和乙的演出序号都是偶数,根据等可能事件的概率公式得到结果.(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,甲和乙两个单位的演出序号不相邻,的对立事件是甲和乙两个单位的演出序号相邻,根据对立事件的概率公式得到结果.【解答】解:(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设A表示甲和乙的演出序号都是偶数,共有A32=6种结果,∴所求的概率P(A)==(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设B表示甲和乙两个单位的演出序号不相邻,则表示甲和乙两个单位的演出序号相邻,共有5A22=10种结果∴P(B)=1﹣P()=1﹣=.【点评】本题主要考查古典概型和对立事件,正难则反是解题时要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,使得题目看起来更加容易.18.(13分)(2010•重庆)已知函数,其中实数a≠1.(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.【考点】利用导数研究函数的单调性;导数的几何意义.【分析】首先求出函数的导数及在点f(0)处的值,然后求出在该点的切线方程,第二问根据函数的导数与极值的关系求出a的值,然后根据函数的导数与单调性的关系讨论函数的单调性.【解答】解:(1)=,当a=2时,f′(0)=,而f(0)=﹣,所以曲线在点(0,f(0))处的切线方程为:y﹣(﹣)=(x﹣0),即7x﹣4y﹣2=0.(2)因为a≠1,由(1)可知=;又因为f(x)在x=1处取得极值,所以,解得a=﹣3;此时,定义域(﹣1,3)∪(3,+∞);=,由f′(x)=0得x1=1,x2=7,当﹣1<x<1或x>7时f′(x)>0;当1<x<7且x≠3时f′(x)<0;由上讨论可知f(x)在(﹣1,1],[7,+∞)时是增函数,在[1,3),(3,7]上是减函数.【点评】掌握函数的导数与极值和单调性的关系.19.(12分)(2010•重庆)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=,求二面角A﹣EC﹣D的平面角的余弦值.【考点】点、线、面间的距离计算;与二面角有关的立体几何综合题.【专题】计算题;综合题;空间角.【分析】(1)先根据AD∥BC,推断出AD∥平面PBC,进而可知直线AD与平面PBC的距离为点A到平面PBC 的距离,根据PA⊥底面ABCD,判断出PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,进而可知AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,进而可推断出AE之长即为直线AD与平面PBC的距离.Rt△PAB中,根据PA和AB求得AE.(2)过点D作DF⊥CE,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而求得DE在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG 平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.【解答】解:(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=,所以AE=PB==(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而DE==在Rt△CBE中,CE==,由CD=,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•s in=因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE,从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==,所以cos∠DFG==【点评】本题主要考查了点,线,面的距离计算.在求两面角问题时关键是找到两个面的平面角.20.(12分)(2010•重庆)已知以原点O为中心,为右焦点的双曲线C的离心率.(1)求双曲线C的标准方程及其渐近线方程;(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.【考点】直线与圆锥曲线的综合问题;双曲线的标准方程;双曲线的简单性质.【专题】计算题;压轴题.【分析】(1)设C的标准方程为(a>0,b>0),由题意知a=2,b=1,由此可求出C的标准方程和渐近线方程.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,则,设MN 与x轴的交战为Q,则,由此可求△OGH的面积.【解答】解:(1)设C的标准方程为(a>0,b>0),则由题意知,,∴a=2,b=1,∴C的标准方程为.∴C的渐近线方程为,即x﹣2y=0和x+2y=0.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此有x E x+4y E y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,由方程组及,解得,设MN与x轴的交点为Q,则在直线x E x+4y E y=4k,令y=0得,∵x E2﹣4y E2=4,∴==.【点评】本题考查圆锥曲线的性质和应用,难度较大,解题时要认真审题,注意挖掘隐含条件,仔细解答.21.(12分)(2010•重庆)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.【考点】数列递推式;数学归纳法.【专题】计算题;压轴题;探究型;归纳法.【分析】(1)根据a1,a2和a3猜测a n=(n2﹣1)c n+c n﹣1,进而用数学归纳法证明.(2)把(1)中求得的a n代入a2k>a zk﹣1,整理得(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0,分别表示c k和又c k',根据c k<<1求得c≥1,再根据c k'<0,判断出单调递增知c k'≥c1'求得<﹣,最后综合答案可得.【解答】解:(1)由a1=1,a2=ca1+c23=(22﹣1)c2+ca3=ca2+c3•5=(32﹣1)c3+c2,猜测a n=(n2﹣1)c n+c n﹣1,下面用数学归纳法证明,当n=1是,等式成立假设当n=k,等式成立即a k=(k2﹣1)c k+c k﹣1,则当n=k+1时a k+1=ca k+c k+1(2k+1)=(k2+2k)c k+1+c k=[(k+1)2﹣1]c k+1+c k,综上a n=(n2﹣1)c n+c n﹣1,对任意n∈N都成立.(2)由a2k>a zk﹣1得[(2k)2﹣1]c2k+c2k﹣1>[(2k﹣1)2﹣1]c2k﹣1+c2k﹣2,因c2k﹣2>0,所以(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0解此不等式得c>c k,或c<c k',其中c k=c k'=易知c k=1又由<=4k2+1,知c k<<1因此由c>c k对一切k∈N成立得c≥1又c k'=<0,可知单调递增,故c k'≥c1'对一切k∈N*成立,因此由c<c k'对一切k∈N*成立得c<﹣从而c的取值范围是(﹣∞,﹣)∪[1,+∞]【点评】本题主要考查了数列的递推式.考查了学生综合运用所学知识和实际的运算能力.。
高三数学开学测试题高三 班 考号 姓名一、选择题(本题共20小题,每题4分,共80分)1.函数)12lg(231-+-=x x y 的定义域是A.⎪⎭⎫⎢⎣⎡∞+ , 32B.⎪⎭⎫ ⎝⎛∞+ , 21C.⎪⎭⎫ ⎝⎛∞+ , 32 D.⎪⎭⎫ ⎝⎛32 , 21答案 C2.复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A3.2log 510+log 50.25=(A )0 (B )1 (C ) 2 (D )4 答案 C4.已知,a b R ∈,则“”是 “”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 答案:A5.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是(A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数答案 C6.设3.02131)21(,3log,2log ===c b a ,则 ..........................................................( )A a<b<cB a<c<bC b<c<aD b<a<c 答案 B解析 由已知结合对数函数图像和指数函数图像得到10,0<<<c a ,而13l o g 2>=b ,因此选B 。
7.若集合{}A =|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( )A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅ 答案 C8. 极坐标cos p θ=和参数方程12x t y t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A. 直线、直线B. 直线、圆C. 圆、圆D. 圆、直线 【答案】 D9.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 (A )30种 (B )36种 (C )42种 (D )48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法 即2212116454432C C C C C C -⨯+=42 法二:分两类甲、乙同组,则只能排在15日,有24C =6种排法甲、乙不同组,有112432(1)C C A +=36种排法,故共有42种方法 10.函数()412xx f x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称答案 D解析:)(241214)(x f x f xxxx=+=+=--- )(x f ∴是偶函数,图像关于y 轴对称11.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 【答案】D12.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 【答案】C解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个13.函数xx x xe e y e e--+=-的图像大致为 ...................................................... ( ).答案 A解析 函数有意义,需使0x x e e --≠ ,其定义域为{}0|≠x x ,排除C,D,又因为22212111xx x x xxxe e e y e eee--++===+---,所以当0x >时函数为减函数,故选A.14.设25a b m ==,且112ab+=,则m =(A(B )10 (C )20 (D )100 答案 A【解析】选A.211log 2log 5log 102,10,m m m m ab+=+==∴=又0,m m >∴=15.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④ 答案 B16.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是 (A )45(B)35(C )25(D)15【答案】D17.下列四个函数①31y x =+;②sin 3y x =;③2y x x=+;④2x xe ey --=中,奇函数的个数是( )(A )1 (B )2 (C )3 (D )4 答案:C18.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,, D .(10)(01)- ,, 答案 D19.已知偶函数()f x 在区间[0,)+∞单调递增的,,则满足(21)f x -<1()3f 的x 取值范围是 ( )(A )(13,23) B.[13,23) C.(12,23) D.[12,23)答案 A解析 由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(13),再根据f(x)的单调性得|2x -1|<13解得13<x <2320.已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞ 答案 C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+b=1a a+又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y xx'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞二、填空题(本题共5小题,每题4分,共20分)21.在6(2+的展开式中,x 的系数是__________(用数字作答).24022.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则不等式1|()|3f x ≥的解集为____________.答案 []3,1-解析 本题主要考查分段函数和简单绝对值不等式的解法. 属于基础知识、基本运算的考查.(1)由01|()|301133x f x x x <⎧⎪≥⇒⇒-≤<⎨≥⎪⎩.(2)由001|()|01111133333x xx x f x x ≥⎧≥⎧⎪⎪≥⇒⇒⇒≤≤⎨⎨⎛⎫⎛⎫≥≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎩.∴不等式1|()|3f x ≥的解集为{}|31x x -≤≤,∴应填[]3,1-.23. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为(结果用最简分数表示)。
绝密★启用前 解密时间:2010年6月7日17:00 【考试时间:6月7日15:00—17:00】2010年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)解析数学试题卷(理工农医类)共4页。
满分150分。
考试时间120分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)在等比数列}{n a 中,201020078a a =,则公比q 的值为( )A 、2B 、3C 、4D 、8(2)已知向量,满足2||,1||,0===⋅,则=-|2|( ) A 、0B 、22C 、4D 、8(3)=⎪⎭⎫⎝⎛---→2144lim 22x x x ( )A 、1-B 、41-C 、41 D 、1(4)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则y x z +=2的最大值为( )A 、2-B 、4C 、6D 、8(5)函数xx x f 214)(+=的图象( )A 、关于原点对称B 、关于直线x y =对称C 、关于x 轴对称D 、关于y 轴对称(6)已知函数sin()y x ωϕ=+(0,||2πωϕ><)的部分图象如题(6)图所示,则( )A 、6,1πϕω==B 、6,1πϕω-==C 、6,2πϕω==D 、6,2πϕω-==(7)已知0x >,0y >,228x y xy ++=,y x 2+的最小值是( )A 、3B 、4C 、29 D 、211 (8)直线233+=x y 与圆心为D的圆,1,x y θθ⎧=⎪⎨=⎪⎩([0,2)θπ∈)A 、B 两点,则直线AD 与BD 的倾斜角之和为( ) A 、π67B 、π45 C 、π34D 、π35(9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天. 若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A 、504种B 、960种C 、1008种D 、1108种(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( ) A 、直线B 、椭圆C 、抛物线D 、双曲线二、填空题:本大题共5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上. (11)已知复数,1i z +=则=-z z2____________. (12)设}0|{},3,2,1,0{2=+∈==mx x U x A U ,若}2,1{=A C U ,则实数=m _________.(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2516,则该队员每次罚球的命中率为_____________.(14)已知以F 为焦点的抛物线x y 42=上的两点B A 、满足3AF FB =,则弦AB 的中点到准线的距离为___________.(15)已知函数)(x f 满足:1(1)4f =,4()()()()f x f y f x y f x y =++-(,x y R ∈),则=)2010(f __________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)设函数22()cos()2cos 32xf x x π=++,x R ∈.(Ⅰ)求)(x f 的值域;(Ⅱ)记ABC ∆的内角C B 、、A 的对边长分别为c b a 、、,若3,1,1)(===c b B f ,求a 的值.(17)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求: (Ⅰ)甲、乙两单位的演出序号至少有一个为奇数的概率; (Ⅱ)甲、乙两单位之间的演出单位个数ξ的分布列与期望.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 已知函数)1ln(1)(+++-=x ax x x f ,其中实数1-≠a . (Ⅰ)若2=a ,求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)若)(x f 在1=x 处取得极值,试讨论)(x f 的单调性.(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,四棱锥ABCD P -为矩形,⊥PA 底面ABCD ,6==AB PA ,点E 是棱PB 的中点.(Ⅰ)求直线AD 与平面PBC 的距离; (Ⅱ)若3=AD ,求二面角D EC A --的平面角的余弦值.(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)已知以原点O 为中心,)0,5(F 为右焦点的双曲线C 的离心率25=e . (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(20)图,已知过点),(11y x M 的直线44:111=+y y x x l 与过点),(22y x N (其中12x x ≠)的直线44:222=+y y x x l 的交点E 在双曲线OGH ∆的面积.(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 在数列}{n a 中,11a =,11(21)n n n a ca c n ++=++(n N *∈),其中实数0≠c .(Ⅰ)求}{n a 的通项公式;(Ⅱ)若对一切*∈N k 有122->k k a a ,求c 的取值范围.2010年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)解析数学试题卷(理工农医类)共4页。
绝密★启用前 解密时间:2010年6月7日17:00 【考试时间:6月7日15:00—17:00】2010年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)解析数学试题卷(理工农医类)共4页。
满分150分。
考试时间120分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)在等比数列}{n a 中,201020078a a =,则公比q 的值为( )A 、2B 、3C 、4D 、8【命题意图】本题考查等比数列的概念,基础题. 【解析】∵8320072010==q a a ,∴2q =,选A. (2)已知向量,满足2||,1||,0===⋅,则=-|2|( ) A 、0B 、22C 、4D 、8【命题意图】本题考查向量的有关概念和基本运算.【解析】∵|2|(2a b a -=-===∴选B.(3)=⎪⎭⎫⎝⎛---→2144lim 22x x x ( )A 、1-B 、41-C 、41D 、1 【命题意图】本题考查函数极限的概念、运算法则、0型极限的求法以及转化与化归思想.【解析】2222241211lim lim lim 42(4)(2)24x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭,选B. (4)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则y x z +=2的最大值为( )A 、2-B 、4C 、6D 、8【命题意图】本题考查线性规划的求解问题.作为选择题,要准确快速求解,可利用端点处取得最值(函数的思想)来求解则更好,从而要求考生对性规划的问题有较深刻的认识.【解析】不等式组⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 表示的平面区域是如图所示的ABC ∆,当直线y x z +=2过点(3,0)A 的时,z 取得最大值6,故选C.(5)函数xx x f 214)(+=的图象( )A 、关于原点对称B 、关于直线x y =对称C 、关于x 轴对称D 、关于y 轴对称【命题意图】本题考查函数的概念和奇偶性、幂的运算性质和计算能力.【解析】∵)(241214)(x f x f xxx x =+=+=---,∴()f x 是偶函数,图像关于y 轴对称,选D (6)已知函数sin()y x ωϕ=+(0,||2πωϕ><)的部分图象如题(6)图所示,则( )A 、6,1πϕω==B 、6,1πϕω-==C 、6,2πϕω==D 、6,2πϕω-==【命题意图】本题考查sin()y A x ωϕ=+的图像和性质,数形结合思想等,这是高考的常考题型,但又是学生的软肋,注意复习,多加训练. 【解析】由图像可知,周期74()123T πππ=-=,∴2ω=,由五点作图法知232πϕπ=+⨯,解得6πϕ=-,所以2ω=,6πϕ=-,选D.(7)已知0x >,0y >,228x y xy ++=,y x 2+的最小值是( )A 、3B 、4C 、29D 、211 【命题意图】本题考查均值不等式的灵活应用、一元二次不等式的解法以及整体思想.【解析】由均值不等式,得2228)2(82⎪⎭⎫⎝⎛+-≥⋅-=+y x y x y x ,整理,得()()0322422≥-+++y x y x ,即()()08242≥++-+y x y x ,又02>+y x ,所以24x y +≥,选B.(8)直线233+=x y 与圆心为D的圆,1,x y θθ⎧=⎪⎨=⎪⎩([0,2)θπ∈)A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A 、π67 B 、π45 C 、π34D 、π35【命题意图】本题考查直线的倾斜角、斜率、方程,圆的标准方程和参数方程,直线与圆的位置关系以及数形结合的思想方法.【解析】画出图形,301-=∠α,βπ-+=∠ 302由圆的性质可知21∠=∠βπα-+=-∴ 3030,故=+βα43π,选C.(9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天. 若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A 、504种B 、960种C 、1008种D 、1108种【命题意图】此题是一个排列组合问题.既考查了分析问题,解决问题的能力,更侧重于考查学生克服困难解决实际问题的能力和水平.【解析】分两类:①甲乙排1、2号或6、7号,共有4414222A A A ⨯种不同的安排方法;②甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法,故共有1008种不同的排法,选C.(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A 、直线B 、椭圆C 、抛物线D 、双曲线【命题意图】本题考查空间中线与线,线与面的垂直,动点的轨迹的求法,同时考查空间想象力. 【解析】(直接法)记这两直线为1l ,2l ,异面直线的距离为k ,平面α为过1l 且平行于2l 的平面,设α上某个点P 满足条件。
重庆一中高2010级高三上期第四次月考数 学 试 题 卷(理科)2009.12数学试题共3页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.(每小题5分,共50分) 1.已知集合{|||2}M x x =<,集合3{|0}1x N x x -=<+,则M N =( )A.{|2}x x <-B.{|3}x x >C.{|23}x x <<D.{|12}x x -<< 2.若31(,sin ),(cos ,)23a b αα==,且//a b ,则锐角α=( )A.15︒B. 30︒C. 45︒D. 60︒3.下列命题中正确的是( )A.若实数,a b 满||||||a b a b -=+,则0ab ≤B.若实数,a b 满足||||||a b a b -<+,则0ab <C.若,a b R ∈,则||||||a b a b -<+D.若,a b R ∈,则||||||a b a b -<+4.等差数列{}n a 满足:296a a a +=,则9S =( )A.2-B.0C.1D.2 5.已知,a b R ∈,则“33log log a b >”是“11()()22ab<”的( )条件. A. 充要 B. 既不充分也不必要 C. 必要不充分 D. 充分不必要 6.△ABC 中,3sin 4cos 6,3cos 4sin 1A B A B +=+=,则∠C=( )A.6π B.56π C.6π或56π D.3π或23π7.已知22,3p q ==,p 与q 的夹角为4π,如下图所示,若52AB p q =+,3AC p q =-,且D为BC 的中点,则AD =( )B.152C.7D.88.已知()log ,(01)a f x x a a =>≠且.且当0x <时,1xa >,则1(1)1f x->的解集是( )A.1(,)1a +∞- B.1(1,)a C. 1(,)1a -∞- D.1(1,)1a- 9.定义域为R 的函数()f x 对任意x 都有(2)(2)f x f x +=-,且其导函数()f x '满足()02f x x '>-,则当24a <<时,有( )A. 2(2)(2)(log )a f f f a <<B.2(2)(2)(1og )af f f a << C.2(2)(1og )(2)a f f a f << D.2(1og )(2)(2)af a f f <<10.若实数,,αβγ满足222cos cos cos 2αβγ++=,则sin sin βαγ⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值是( ) A.14B.4C.4D. 4二.填空题.(每小题5分,共25分) 11.若4cos(2)5πθ-=,则cos2θ= . 12.p 分有向线段12p p 所成的比为2-,则2p 分有向线段1pp 所成的比为 . 13.手表的表面在一平面上,整点1,2,…,12这12个数字等间隔地分布在半径为2的圆周上,从整点i 到整点(1)i +的向量记作1i i t t +,则1223233412112...t t t t t t t t t t t t ⋅+⋅++⋅= .14.设函数()323614f x x x x =+++,且()()20f a f b +=,则a b += .15.设ABC ∆的内角A B C ,,满足sin ,sin ,sin A B C 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是 .三.解答题.(共75分)16. (13分)已知向量(3sin ,cos ),(cos ,cos ),a wx wx b wx wx ==(其中0w >).设()f x a b =⋅,且()f x 的最小正周期为π. (1)求w ; (2)若03x π<≤,求()f x 的值域.17. (13分)△ABC 中,,,a b c 分别是角A,B,C 的对边,且cos 3cos C a cB b-=. (1)求sin B ;(2)若b =且a c =,求△ABC 的面积.18. (13分)已知数列{}n a 的前n 项和为n S ,且11120,(2,),2n n n a S S n n N a -+⋅=≥∈=. (1) 求证:1{}nS 为等差数列; (2)求n a ;(3)若2(1)n n b n a =⋅-⋅, 求21lim .n n n b b +→∞+19. (12分)已知3211().(,,)34f x ax x cx d a c d R =-++∈,满足(0)0,(1)0f f '==. 且()0f x '≥在R 上恒成立. (1)求,,a c d ; (2)若223311()()424h x x b b x b =-+-+-, ()b R ∈解关于x 的不等式:()()0f x h x '+<.20. (12分)设2()83()f x ax x a R =++∈.(1)若()()g x x f x =⋅, ()f x 与()g x 在x 同一个值时都取极值,求a ;(2)对于给定的负数a ,当8a ≤-时有一个最大的正数()M a ,使得[0,()]x M a ∈时,恒有|()|5f x ≤.(i)求()M a 的表达式;(ii)求()M a 的最大值及相应的a 的值.21. (12分)已知数列{}n a 满足10,n a a m >=,其中01m <<,函数()1x f x x=+. (1)若数列{}n a 满足1()n n a f a +=,(1,)n n N ≥∈,求n a ;(2)若数列{}n a 满足1(),(1,)n n a f a n n N +≤≥∈.数列{}n b 满足1nn a b n =+, 求证:12...1n b b b +++<.重庆一中高2010级高三上期第四次月考答案数学试题卷(理科)2009.12 一.选择题.(每小题5分,共50分)二.填空题.(每题5分,共25分)11.725; 12.1 ; 13.9; 14. 2-; 15.三.解答题.(共75分)16.解:(1)21()cos cos2(1cos2)2f x wx wx wx wx wx=⋅+=++1sin(2)62wxπ=++∵0w>∴22Twππ==∴1w=(2)由(1)得:1()sin(2)62f x xπ=++∵03xπ<≤∴52666xπππ<+≤∴1sin(2)126xπ≤+≤∴()f x的值域为3[1,]217.解:(1)由正弦定理及cos3cosC a cB b-=有:cos3sin sincos sinC A CB B-=即sin cos3sin cos sin cosB C A B C B⋅=-⋅∴sin()3sin cosB C A B+=⋅又A B Cπ++=∴sin()sinB C A+=∴sin3sin cosA A B=⋅又sin0A≠∴1cos3B=又0Bπ<<∴sin B==(2)在△ABC中,由余弦定理可得:222323a c ac+-=,又a c=∴24323a=∴224a=∴211sin sin22ABCS ac B a B∆=⋅=⋅=18.解:(1)当2n≥时,由已知有1120n n n nS S S S---+⋅=易知0nS≠故1112n nS S--=∴1{}nS为首项为2,公差为2的等差数列.(2)易知12nSn=,当2n ≥时,1111()21n n n a S S n n -=-=-- ∴1,12111(),221n n a n n n ⎧=⎪⎪=⎨⎪-≥⎪-⎩(3)易知1110b =-=,2n ≥时1n b n=. ∴211lim lim 12n n n n b n b n +→∞→∞++==+19.解:(1)(0)0f = ∴0d =∴21()2f x ax x c '=-+ 由(1)0f '=有12a c +=, ∵()0f x '≥在R 上恒成立, 即:2102ax x c -+≥恒成立显然0a =时不满足条件,∴2011()4()022a a a >⎧⎪⎨∆=---≤⎪⎩即20104a a >⎧⎪⎨⎛⎫∆=-≤ ⎪⎪⎝⎭⎩∴14a =∴14a c == (2)2111()424f x x x '=-+ ∴()()0f x h x '+<即223()0x b b x b -++<,即()2()0x b x b --<,∴当2b b >时,即01b <<时,解集为2(,)b b ;当2b b =时,即0b =或b=1时,解集为φ;当2b b <时,即0b <或b>1时,解集为2(,)b b .20.解: (1)易知0,()a f x ≠在4x a=-时取得极值. 由32()83g x ax x x =++得2()3163g x ax x '=++ 由题意得:2443()16()30a aa ⋅-+⋅-+=. 故163a =. 经检验163a =时满足题意. (2) (i)因24160,()()3a f x a x aa <=++-. ∴()max 163f x a=-.情形一:当1635a ->,即80a -<<时,此时不满足条件。
2010年普通高等学校招生全国统一考试(重庆卷)数学(理工类)模拟试卷(三)数学试题(理工类)共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试卷上答题无效。
5.考试结束,将试卷和答题卡一并收回。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求. 1. 设条件p :||x x =;条件q :20x x +≥,那么p 是q 的什么条件A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分非必要条件 2. 已知2120012224(1),(1)()n n nn n n a a a a x b b x b x b x n N x x xx+-=+++++=++++∈, 记0120122,n n M a a a a N b b b b =++++=++++,则→∞n lim 23lim n M NM N →∞-+的值是 A .2 B .13- C .0 D .233. 设n S 为等差数列{}n a 的前n 项的和,2007200512008,220072005S Sa =--=,则2008S 的值为A .-2007B .-2008C .2007D .2008 4. 已知23tan sin =αα,则αα44cos sin -的值是A .-7B .21-C .43D .21 5. 已知函数32()32,(0,2)f x x x x =-+∈的反函数为1()f x -,则A .1113()()22ff --< B .1113()()22ff --->- C .1113()()22f f -->D .1135()()22f f --< 6. 已知(),()f xg x 都是定义在R 上的函数, g (x )≠0,''()()()()f x g x f x g x <,()()x f x a g x =,(1)(1)5(1)(1)2f f g g -+=-,在有穷数列(){}()f ng n ( n =1,2,…,10)中,任意取前k 项相加,则前k 项和大于1516的概率是A .15B .25C .45D .357. 从M 点出发三条射线MA ,MB ,MC 两两成60°,且分别与球O 相切于A ,B ,C 三点,若球的体积为323π,则OM 的距离为 A.B.C .3D .48. 点P 为双曲线1C :()0,012222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为 A .3B .21+C .13+D .29. 如图所示,已知D 是面积为1的ABC ∆的边AB 上任一点,E 是边AC 上任一点,连结DE ,F 是线段DE 上一点,连结BF ,设123,,AD AB AE AC DF DE λλλ===,且23112λλλ+-=,记BDF ∆的面积为123(,,)s f λλλ=,则S 的最大值是【注:必要时,可利用定理:若,,,+∈R c b a 则3)3(c b a abc ++≤, (当且仅当c b a ==时,取“=”)】A .12B .13 C .14 D .1810.已知实数,x y 满足20200x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,每一对整数(,)x y 对应平面上一个点,则过这些点中的其中三点可作多少个不同的圆A .70B .61C .52D .43二.填空题:本大题共5小题,每小题5分,共25分. 11.已知A 、B 、C 是ABC ∆的三个内角,向量),sin ,2(cos ),sin ,2(sinB Cb A B A =+= 12a b ⋅=,则tan tan A B ⋅= . 12.设21(0)()(0)x f x xa x x ⎧-<⎪=⎨⎪+≥⎩,要使函数()f x 在(,)-∞+∞内连续,则a 的值为 . 13.如果O 是线段AB 上一点,则||||0OB OA OA OB +=,类比到平面的情形;若O 是ABC ∆内一点,有S S S OCA OBC OAB =⋅+⋅+⋅∆∆∆,类比到空间的情形:若O是四面体ABCD 内一点,则有 . 14.若,x y 满足条件||||1(0)ax y a +≤>,则(a )(,)P x y 的轨迹形成的图形的面积为1,则a = . (b )2222xx y y a+++的最大值为 . 15.第29届奥林匹克运动会于2008年在北京举行.29和2008是两个喜庆的数字,若使200829n n ++与200829之间所有正整数的和不小于2008,则n 的最小值为 .三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)在ABC ∆中,设BC CA CA AB ⋅=⋅. (Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若||2BA BC +=且2[,]33B ππ∈,求BA BC ⋅的取值范围.17.(本小题满分13分)甲、乙两人参加一项智力测试.已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题,规定每位参赛者都从备选项中随机抽出3道题进行测试,至少答对2道题才算通过.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人通过测试的概率.18.(本小题满分13分)如图,直三棱柱A 1B 1C 1-ABC 中,C 1C =CB =CA =2,AC ⊥CB .D 、E 分别为棱C 1C 、B 1C 1的中点. (Ⅰ)求A 1B 与平面A 1C 1CA 所成角的大小; (Ⅱ)求二面角B -A 1D -A 的大小;(Ⅲ)试在线段AC 上确定一点F ,使得EF ⊥平面A 1BD .如图,已知椭圆22143x y +=的右焦点为F ,过F 的直线(非x 轴)交椭圆于M 、N 两点,右准线l 交x 轴于点K ,左顶点为A .(Ⅰ)求证:KF 平分∠MKN ;(Ⅱ)直线AM 、AN 分别交准线l 于点P 、Q ,设直线MN 的倾斜角为θ,试用θ表示 线段PQ 的长度|PQ |,并求|PQ |的最小值.20.(本小题满分12分)函数ln y x =关于直线1x =对称的函数为()f x ,又函数211(0)2y ax a =+>的导函数为()g x ,记()()()h x f x g x =+.(Ⅰ)设曲线()y h x =在点(1,(1))h 处的切线为l , l 与圆22(1)1x y ++=相切,求a 的值;(Ⅱ)求函数()h x 的单调区间;(Ⅲ)求函数()h x 在[0,1]上的最大值.已知函数+∈=N x x f y ),(,满足:①对任意,a bN +∈,都有)()()(b af b bf a af >+)(a bf +;②对任意n ∈N *都有[()]3f f n n =.(Ⅰ)试证明:()f x 为N +上的单调增函数; (Ⅱ)求(1)(6)(28)f f f ++;(Ⅲ)令(3),nn a f n N +=∈,试证明:121111.424n n n a a a <+++<+2010级高三数学(理)模拟试题(三)参考答案一、选择题:本大题共10题,每小题5分,共50分。
2010年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的.1.在等比数列{}n a 中,201020078a a =,则公比q 的值为 ( ) A .2 B. 3C. 4D. 8【测量目标】等比数列的性质. 【难易程度】容易【考查方式】利用等比数列的通项公式分别表示出2010a ,2007a ,两式相除即可求得3q ,进而求得q . 【参考答案】A 【试题解析】8320072010==q a a 2=∴q 2.已知向量a ,b 满足 a b =0,|a |=1,|b |=2,则|2-a b |= ( )A . 0C. 4D. 8【测量目标】平面向量的数量积运算. 【考查方式】把所求式平方再开方即可. 【难易程度】容易 【参考答案】B 【试题解析】2-=ab === 3. 2241lim 42x x x →⎛⎫-⎪--⎝⎭= ( ) A . -1B. -14C.14D.1【测量目标】极限及其运算.【考查方式】通分后消除相同因子,由此得到答案. 【难易程度】容易 【参考答案】B 【试题解析】:2241lim 42x x x →⎛⎫-⎪--⎝⎭=222211lim lim 424x x x x x →→--==--+ 4. 设变量x ,y 满足约束条件01030y x y x y ⎧⎪-+⎨⎪+-⎩≥≥≤,则z =2x +y 的最大值为 ( )A. -2B. 4C. 6D. 8【测量目标】二元线性规划求目标函数的最值.【考查方式】先根据约束条件画出可行域,利用几何意义求最值,只需求出直线过点B 时,z 最大值即可. 【难易程度】容易 【参考答案】C【试题解析】不等式组表示的平面区域如图所示 当直线过点(3,0)B 的时候,z 取得最大值6.第4题图5. 函数41()2x xf x +=的图象( )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称 【测量目标】函数奇偶性的综合运用.【考查方式】先验证奇偶性,然后判断图象性质. 【难易程度】容易 【参考答案】D【试题解析】)(241214)(x f x f xxx x =+=+=---)(x f ∴是偶函数,图象关于y 轴对称. 6. 已知函数πsin(),(0,||)2y x ωϕωϕ=+><的部分图象如图所示,则 ( )第6题图A. π1,6ωϕ==B. π1,6ωϕ==- C. π2,6ωϕ== D. π2,6ωϕ==-【测量目标】三角函数的图象、由图象求解析式.【考查方式】先求出周期,然后求出ω,由(0,1)确定ϕ. 【难易程度】容易 【参考答案】D【试题解析】π2T ω=∴= ,由五点作图法知ππ232ϕ⨯+=,ϕ= π6-. 7. 已知0x >,0y >,228x y xy ++=,则2x y +的最小值是 ( ) A. 3B. 4C.92D.112【测量目标】基本不等式求最值.【考查方式】根据基本不等式性质逐步推导求出结果. 【难易程度】中等 【参考答案】B【试题解析】2228(2)82x y x y x y +⎛⎫+=-- ⎪⎝⎭≥,整理得()()2242320x y x y +++-≥ 即()()24280x y x y +-++≥,又02>+y x ,24x y ∴+≥8.直线3y x =+D的圆,([0,2π))1x y θθθ⎧=⎪∈⎨=⎪⎩交于A 、B 两点,则直线AD 与BD 的倾斜角之和为 ( ) A.7π6 B. 5π4C.4π3D.5π3【测量目标】圆的参数方程;直线的倾斜角.【考查方式】画出圆的图象与直线的图象,再利用圆的性质建立2个倾斜角的等量关系,化简求出结果.【难易程度】容易 【参考答案】C【试题解析】数形结合301-=∠α,230πβ∠=+-由圆的性质可知21∠=∠,3030παβ∴-=+- 故=+βα4π3第8题图9. 某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有 ( )A. 504种B. 960种C. 1008种D. 1108种 【测量目标】排列、组合的实际应用.【考查方式】针对实际问题运用分类原理的相关性质求解得出结果. 【难易程度】容易 【参考答案】C【试题解析】分两类:甲乙排1、2号或6、7号 共有2142442A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有24113243334A (A A A A )+种方法,故共有1008种不同的排法.10. 到两互相垂直的异面的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线 【测量目标】抛物线的定义;双曲线的标准方程. 【考查方式】根据题意采用排除法逐个排除得到结果. 【难易程度】容易 【参考答案】D【试题解析】排除轨迹是轴对称图形,排除A 、C ,轨迹与已知直线不能有交点,排除B. 二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11. 已知复数1i z =+,则2z z-=____________. 【测量目标】复数代数形式的四则运算.【考查方式】把1i z =+代入化简计算得到结果. 【难易程度】容易 【参考答案】2i - 【试题解析】21i 1i 1i 2i 1i--=---=-+. 12. 设{0,1,2,3}U =,2{|0}A x U x mx =∈+=,若{1,2}U A =ð,则实数m =________. 【测量目标】集合的基本运算.【考查方式】由题意分析得到A 点坐标,进而求出m 值. 【难易程度】容易 【参考答案】3-【试题解析】 {1,2}U A =ð,∴{}0,3A =,故3m =-. 13. 某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至少命中一次的概率为1625,则该队员每次罚球的命中率为____________. 【测量目标】互斥事件的概率.【考查方式】根据互斥事件的性质求出结果. 【难易程度】容易 【参考答案】35【试题解析】由251612=-p 得53=p 14. 已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =,则弦AB 的中点到准线的距离为____________.【测量目标】抛物线的简单几何性质;点到直线的距离公式;抛物线的定义.【考查方式】先求出1AA 和1BB ,进而判断出直线AB 斜率求出方程,联立方程求得结果.【难易程度】容易 【参考答案】83【试题解析】设BF m =,由抛物线的定义知m BB m AA ==11,3ABC ∴△中,AC =2m ,AB =4m ,3=AB k (步骤1)直线AB 方程为)1(3-=x y ,与抛物线方程联立消y 得031032=+-x x 所以AB 中点到准线距离为381351221=+=++x x . (步骤2)第14题图15. 已知函数()f x 满足:1(1)4f =,4()()()(),(,)f x f y f x y f x y x y =++-∈R ,则(2010)f =____________.【测量目标】函数的周期性;抽象函数及其应用.【考查方式】先推理函数周期性,然后根据周期性求出结果. 【难易程度】容易 【参考答案】12【试题解析】取1,0x y ==得21)0(=f (步骤1) 法一:通过计算(2),(3),(4),f f f …,寻得周期为6 (步骤2) 法二:取,1,x n y ==有()(1)(1)f n f n f n =++-, 同理(1)(2)()f n f n f n +=++(步骤3)联立得(2)(1)f n f n +=--所以6T =故()12010(0)2f f ==. (步骤4) 三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.) 设函数22()cos(π)2cos ,32xf x x x =++∈R .(Ⅰ) 求()f x 的值域;(Ⅱ) 记ABC △的内角A B C 、、的对边长分别为a b c 、、,若()1f B =,1b =,c =a 的值.【测量目标】三角函数的定义域、值域;正弦定理;余弦定理.【考查方式】化简求出()f x 最简式,然后求出值域;利用余弦定理求解. 【难易程度】中等【试题解析】(Ⅰ) 22()cos(π)2cos ,32xf x x x =++∈R =22()cos cosπsin sin πcos 133f x x x x =-++=1cos cos 12x x x -++=1cos 12x x +=5πsin()16x ++ (步骤1)因此()f x 的值域为[0,2]. (步骤2)(Ⅱ)由()1f B =得5πsin()116B ++=,即5πsin()06B +=, 又因为0πB <<,故π6B =. (步骤3)解法一:余弦定理2222cos b a c ac B =+-得2320a a -+=,解得1a =或2.(步骤4)解法二:由正弦定理sin sin b c B C =,得πsin 23C C ==或2π3. (步骤5)当π3C =时,π2A =,从而2a ==; (步骤6) 当2π3C =时,π6A =,又π6B =,从而1a b ==. (步骤7)17. (本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)在甲、乙等6个单位参加的一次“唱读传讲”赛出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ) 甲、乙两单位的演出序号至少有一个为奇数的概率; (Ⅱ) 甲、乙两单位之间的演出单位个数ξ的分布列与期望. 【测量目标】排列、组合及其应用;离散型随机分布列和期望.【考查方式】根据等可能事件的概率公式求出结果;根据对立事件性质求出结果. 【难易程度】中等【试题解析】(Ⅰ)只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数. 设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的序号均为偶数”, 由等可能事件的概率计算公式得()()2326C 14111C 55P A P A =-=-=-=. (步骤1)(Ⅱ)ξ的所有可能值为0,1, 2, 3, 4,且()26510C 3P ξ===,()26441C 15P ξ===,()26312C 5P ξ===, ()26223C 15P ξ===,()26114C 15P ξ===. (步骤2) 从而知ξ有分布列所以01234315515153E ξ=⨯+⨯+⨯+⨯+⨯=.(步骤3) 18. (本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)已知函数1()ln(1)x f x x x a-=+++,其中实数1a ≠-.(Ⅰ) 若2a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ) 若()f x 在1x =处取得极值,试讨论()f x 的单调性. 【测量目标】利用导数判断函数的单调性;导数的几何意义.【考查方式】根据导数在点(0,(0))f 处值求出切线方程;先求出a 值,然后利用导数研究单调性.【难易程度】中等 【试题解析】 (Ⅰ)()22(1)111=()1()1x a x a f x x a x x a x +--+'+=+++++.(步骤1) 当2a =时,()221170(02)014f +'=+=++,而()102f =-,(步骤2) 因此曲线()y f x =在点(0,(0)f 处的切线方程为17()(0)24y x --=- ,即7420x y --=. (步骤3)(Ⅱ)因1a ≠-,由(Ⅰ)知()2111(1)11a f a +'=+++,又因()f x 在1x =处取得极值,所以()10f '=,(步骤4)即11012a +=+,解得3a =-. (步骤5) 此时()1ln(1)3x f x x x -=++-,其定义域为(1,3)(3,)-+∞ ,且()2221(1)(7)(3)1(3)(1)x x f x x x x x ---'=+=-+-+,由()0f x '=得11x =,27x =. (步骤6) 当11x -<<或7x >时,()0f x '>; 当17x <<且3x ≠时,()0f x '<. (步骤7) 综上所述,()f x 在区间(1,1]-,[7,)+∞上是增函数, 在区间[1,3),(3,7]上是减函数.(步骤8)19. (本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,PA =AB E 是棱PB 的中点.(Ⅰ) 求直线AD 与平面PBC 的距离;(Ⅱ) 若AD A -EC -D 的平面角的余弦值.第19题图【测量目标】线面垂直的判定;点、线、面间的距离计算;二面角;空间直角坐标系. 【考查方式】先证线面垂直然后求出距离;根据法向量求出二面角余弦值. 【难易程度】中等【试题解析】解法一:(Ⅰ) 如图1 ,在矩形ABCD 中,//AD BC ,从而//AD 平面PBC , 故直线AD 与平面PBC 的距离为点A 到平面PBC 的距离. (步骤1)因⊥PA 底面ABCD ,故P A A B ⊥,由AB PA =知PAB △为等腰直角三角形,又点E 是棱PB 中点,故PB AE ⊥. (步骤2)又在矩形ABCD 中,AB BC ⊥,而AB 是PB 在底面ABCD 内的射影,由 三垂线定理得PB BC ⊥,从而⊥BC 平面PAB ,(步骤3) 故AE BC ⊥.从而⊥AE 平面PBC ,故AE 之长即为直线AD 与平面PBC 的距离 (步骤4)在Rt PAB △中,PA PB ==12AE PB ===(步骤6)第19题图1(Ⅱ)过点D 作CE DF ⊥,交CE 于F ,过F 点作CE FG ⊥,交AC 于G ,则DFG ∠为所求的二面角的平面角.由(Ⅰ)知⊥BC 平面PAB ,又AD BC ,得⊥AD 平面PAB ,故AE AD ⊥,从而622=+=AD AE DE .(步骤7)在Rt CBE △中,622=+=BC BE CE .由6=CD ,所以CDE △为等边三角形,故F 为CE 的中点,且πsin32DF CD ==. (步骤8) 因为⊥AE 平面PBC ,故CE AE ⊥,又CE FG ⊥,知12FG A E ,从而23=FG ,且G 点为AC 的中点. (步骤9)连接DG ,则在Rt ADC △中,23212122=+==CD AD AC DG .所以222cos 2DF FG DG DFG DF FG +-∠== (步骤10)解法二:(Ⅰ)如图2,以A 为坐标原点,射线AB 、AD 、AP 分别为x 轴、y 轴、z 轴正半轴,建立空间直角坐标系xyz A -. (步骤11)设)0,,0(a D ,则)0,,6(),0,0,6(a C B ,)26,0,26(),6,0,0(E P . 因此)6,0,6(),0,,0(),26,0,26(-===a ,则0,0AE BC AE PC == ,所以⊥AE 平面PBC .又由BC AD //知//AD 平面PBC ,故直线AD 与平面PBC 的距离为点A 到平面PBC 的距离,即为3||=. (步骤12)第19题图2(Ⅱ)因为3||=,则)0,3,6(),0,3,0(C D . 设平面AEC 的法向量1111(,,)x y z =n ,则110,0AC AE ==n n .又)26,0,26(),0,3,6(==,故⎪⎩⎪⎨⎧=+=+,02626,0361111z x y x (步骤13) DEC 所以1111,2x z x y -=-=. 可取21-=z,则(=n .设平面的法向量2222(,,)x y z =n ,则220,0DC DE ==n n .又)26,3,26(),0,0,6(-==,故222200x x z =⎧-= 所以2222,0y z x ==. 可取12=y,则2(0,1=n .故121212cos ,||||==n n n n n n (步骤14) 所以二面角D EC A --的平面角的余弦值为36. (步骤15) 20. (本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)已知以原点O为中心,F 为右焦点的双曲线C的离心率e =(Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求OGH △的面积.第20题图【测量目标】双曲线的标准方程;双曲线的简单几何性质.【考查方式】设出标准方程,根据已知条件求出未知参数;根据直线方程联立求出面积.【难易程度】较难【试题解析】(I )设C 的标准方程是)0,0(12222>>=-b a by a x ,(步骤1) 则由题意.25,5===a c e c 因此,1,222=-==a c b a C 的标准方程为.1422=-y x (步骤2) C 的渐近线方程为,21x y ±=即02=-y x 和02=+y x .(步骤3) (II )解法一:由题意点),(E E y x E 在直线111:44l x x y y +=和44:122=+y y x x l 上,因此有E E E x x y y x x 211,44=+442=+E y y (步骤4)设G 、H 分别是直线MN 与渐近线02=-y x 及02=+y x 的交点,由方程组44,20E E x x y y x y +=⎧⎨-=⎩及44,20,E E x x y y x y +=⎧⎨+=⎩解得4,22,2G E E G E E x x y y x y ⎧=⎪+⎪⎨⎪=⎪+⎩42.22H E E H E E x x y y x y ⎧=⎪-⎪⎨-⎪=⎪-⎩ (步骤5)解得22,22G H E E E Ey y x y x y ==-+-设MN 与x 轴的交点为Q ,则在直线44E E x x y y +=中,令0y =得4Q E x x =(易知0E x ≠).注意到2244E E x y -= 得:1411222OGH G H E E E E ES OQ y y x x y x y =-=++- △ =222424EE E Ex x x y =- .解法二:设),(E E y x E ,由方程组得⎩⎨⎧=+=+,44,442211yy x x y y x x (步骤6) 解得,,)(4122121122112y x y x x x y y x y x y y x E E --=--=(步骤7)因21x x ≠,则直线MN 的斜率21214EEy y x k x x y -==--.故直线MN 的方程为11()4EEx y y x x y -=--,注意到1144x x y y +=,因此直线MN 的方程为44E E x x y y +=.下同解法一. (步骤8)21. (本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)在数列{}n a 中,11a =,1*1(21),()n n n a ca c n n ++=++∈N 其中实数0c ≠.(Ⅰ) 求{}n a 的通项公式;(Ⅱ) 若对一切*k ∈N 有221k k a a ->,求c 的取值范围.【测量目标】数学归纳法.【考查方式】根据归纳法求出通项公式;分类讨论求出c 的取值范围.【难易程度】较难【试题解析】(Ⅰ)解法一:由11a =,22222133(21)a ca c c c c c =+=+=-+ . 3322323258(31)a ca c c c c c =+=+=-+ ,44324343715(41)a ca c c c c c =+=+=-+ ,猜测21*(1),n n n a n c c n -=-+∈N .下面用数学归纳法证明.当1n =时,等式成立;假设当n k =时,即21(1)k k k a k c c -=-+, (步骤1)则当1n k =+时,12111(21)(1)(21)k k k k k k a ca c k c k c c c k +-++⎡⎤=++=-+++⎣⎦21(2)k k k k c c +=++21(1)1k k k c c +⎡⎤=+-+⎣⎦. 综上,21(1)n n n a n c c -=-+对任何*n ∈N 都成立. (步骤2) 解法二:由原式得11(21)n n n n a a n c c++=++. (步骤3) 令n n n a b c =,则11b c =,1(21)n n b b n +=++,因此对n 2…有 112211()()()n n n n n b b b b b b b b ---=-+-++-+…1(21)(23)3n n c =-+-+++…=211n c-+, 因此21(1)n n n a n c c -=-+,2n ….又当1n =时上式成立,所以21*(1),n n n a n c c n -=-+∈N . (步骤4)(Ⅱ)解法一:由221k k a a ->,得222122122(2)1(21)1k k k k k c c k c c ---⎡⎤⎡⎤-+>--+⎣⎦⎣⎦, 因022>-k c ,所以01)144()14(222>-----c k k c k . (步骤5)解此不等式得:对一切k *∈N ,有k c c >或k c c '<,其中 )14(2)14(4)144()144(22222--+--+--=k k k k k k c k ,k c '=. (步骤6)易知1lim =∞→k k c ,又由144)14(4)14()14(4)144(2222222+=+-+-<-+--k k k k k k ,知12848)14(214)144(22222<--=-++--<k k k k k k k c k , 因此由k c c >对一切k *∈N 成立得1c …. (步骤7)又0k c '=<,易知k c '单调递增,故1k c c ''…对一切k *∈N 成立,因此由k c c '<对一切k *∈N 成立得116c c +'<=-从而c 的取值范围为),1[)6131,(+∞+--∞ . (步骤8)解法二:由122->k k a a ,得221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c ,所以014)(4222>-+-+-c c ck k c c 对k *∈N 恒成立.(步骤9)记14)(4)(222-+-+-=c c cx x c c x f ,下分三种情况讨论.(ⅰ)当02=-c c 即0=c 或1=c 时,代入验证可知只有1=c 满足要求. (ⅱ)当02<-c c 时,抛物线)(x f y =开口向下,因此当正整数k 充分大时,0)(<x f不符合题意,此时无解.(ⅲ)当02>-c c 即0<c 或1>c 时,抛物线)(x f y =开口向上,其对称轴 )1(21c x -=必在直线1=x 的左边. 因此,)(x f 在),1[+∞上是增函数. 所以要使0)(>k f 对k *∈N 恒成立,只需0)1(>f 即可.(步骤10)由013)1(2>-+=c c f 解得6131--<c 或6131+->c . 结合0<c 或1>c 得6131+-<c 或1>c .综合以上三种情况,c 的取值范围为),1[)6131,(+∞+--∞ (步骤11)。
2010年普通高等学校招生全国统一考试(重庆卷)理科化学部分测试模拟试卷(一)理科综合能力测试试题卷分选择题和非选择题两部分.第一部分(选择题)第二部分(非选择题).满分300分,考试时间150分钟.第一部分(选择题 126分)本题包括21小题.每小题6分,共126分.每小题只有一个....选项符合题意.6.已知单位体积的稀溶液中,溶质的分子数或离子数越多,该溶液的凝固点就越低.则下列溶液凝固点最低的是A.0.02mol/L的蔗糖溶液B.0.01mol/L的硫酸银溶液C.0.01mol/L的氯化铝溶液D.0.02mol/L的氨水溶液7.氧化还原反应实际上包含氧化和还原两个过程.(1)向氯酸钠的酸性水溶液中通入二氧化硫,该反应中氧化过程的反应式为:SO2 + 2H2O – 2e-→ SO42- + 4H+;(2)向亚氯酸钠(NaClO2)固体中通入用空气稀释的氯气,该反应中还原过程的反应式为:Cl2+ 2e-→2Cl-.在(1)和(2)反应中均会生成产物X,则X的化学式为A.NaClO B.ClO2C.HClO D.NaClO48.在化学反应中,有时存在“一种物质过量,另一种物质仍不能完全反应”的情况.下列反应中属于这种情况的是①过量的锌与浓硫酸反应;②过量的氢气与少量的N2在工业生产条件下;③过量的浓盐酸与碳酸钙反应;④过量的乙酸和少量乙醇在浓硫酸、加热条件下;⑤过量二氧化锰与浓盐酸在加热条件下;⑥过量的铜与浓硫酸在加热条件下A.②③④⑥B.②④⑤⑥C.①②④⑤D.③④⑤⑥9.表示下列变化的式子正确的是A.NaHCO 3水解的离子方程式:HCO3-+H2O H3O++CO32-B.石灰石溶于醋酸的离子方程式:CaCO3+2H+=Ca2++CO2↑+H2OC.钢铁电化学腐蚀的负极反应:4OH--4e-=2H2O +O2↑D.1L0.5mol/L H2SO4溶液与1L1.0mol/L NaOH溶液反应,放出57.3 kJ的热量:1/2 H2SO4(aq) + NaOH(aq)=1/2 Na2SO4(aq) + H2O(l);ΔH=-57.3kJ/mol 10.常见的晶体有如下类型:①分子晶体;②离子晶体;③原子晶体;④金属晶体,在非金属元素所形成的单质或化合物中,固态时的晶体类型可以是A.①②③④B.只有①③④C.只有①②③ D.只有①③11.对于平衡体系2SO 2(g) + O2(g) 2SO3(g);ΔH<0.下列结论中正确的是A. 若温度不变,将容器的体积增大一倍,此时的SO2浓度变为原来的0.48倍B. 若平衡时SO2、O2的转化率相等,说明反应开始时,两者的物质的量之比为2:1C. 若从平衡体系中分离出SO3,则有利于提高SO2的转化率和加快正反应速率D. 平衡状态时SO2、O2、SO3的物质的量之比一定为2:1:212.肉桂醛是一种实用香精,它广泛用于牙膏、洗涤剂、糖果以及调味品中.工业上可通过下列反应制备:CHO CH=CHCHOCHO+H2O+CHA B下列相关叙述正确的是题27图① B 的相对分子质量比A 大28;② A 、B 可用酸性高锰酸钾溶液鉴别;③ B 中含有的含氧官能团是醛基、碳碳双键;④ A 、B 都能发生加成反应、还原反应;⑤ A 能发生银镜反应; ⑥ B 的同类同分异构体(含苯环、包括B )共有5种;⑦ A 中所有原子一定处于同一平面A .只有①②⑤B .只有③④⑤C .只有④⑤⑥D .只有②⑤⑥⑦13.下列有关工业生产的叙述正确的是A .用明矾净水是因为Al 3+水解生成Al(OH)3胶粒具有很强的吸附性B .合成氨生成过程中,采用高温高压都是为了提高N 2、H 2转化率C .硫酸工业中,在接触室安装热交换器是为了利用硫铁矿燃烧时放出的热量D .电解饱和食盐水制烧碱采用离子交换膜法,可防止阴极室产生的Cl 2进入阳极室第二部分(非选择题 174分)26.(15分)现有A 、B 、C 、D 四种常见的短周期主族元素,其原子序数依次增大.其中A 、B 是同周期相邻元素,且A 单质及其氢化物是重要的工业生产原料;C 、D 是同周期元素,且在该周期中,分别为原子半径最大和最小的元素,C 、D 最外层电子数之和与B 的原子序数相等,回答下列问题:(1)B 元素的名称为 ,C 元素在周期表中位于第 周期第 族.(2)工业上由A 单质合成其氢化物的化学反应方程式为: .(3)当今工业电解CD 饱和水溶液的装置名称是 ,阳极电极反应式为 ,溶液的pH 将 (填“增大”、“减小”或“不变”),若有1mol电子转移,生成气体体积之和是 L (标准状况下).27.(14分)A ~H 是纯净物或溶液中的溶质,其中A 是日常生活中常用的金属单质.它们之间有如下关系:(部分产物和反应条件略)根据上述信息,回答下列问题: (1)写出下列物质的化学式B ,E .(2)H 和 SO 2生成强酸F ,此反应中氧化剂是 .(3)写出①的离子方程式: .(4)写出②的化学方程式: .(5)C 溶液中滴入NaOH 溶液有何现象? .28.(15分)实验室通过实验测定NaOH 溶液和盐酸反应的中和热.实验需用约450mL 0.50mol/L NaOH溶液.容量瓶(100mL ,250mL ,500mL 各一个)(1)配制0.50 mol/L NaOH 溶液:将NaOH 固体放在 (填实验用品题28图 题29图或仪器的名称),用托盘天平 g NaOH 固体.在使用容量瓶前必须进行的操作是 .(2)下列操作会使所配溶液的浓度偏高的是(填序号) .A .烧杯、玻璃棒没有洗涤B .转移时有溶液溅出容量瓶外C .定容时,将容量瓶上、下颠倒摇匀后发现液面低于刻度线再加水D .容量瓶用蒸馏水洗涤后再用相同溶质的溶液润洗E .定容时俯视容量瓶刻度线.(3)将50mL 0.50mol/L 盐酸与60mL 0.50mol/L NaOH 溶液在右图所示的装置中进行中和反应.从实验装置上看,图中尚缺少的一种玻璃仪器是 .(4)一定量的稀盐酸和过量的NaOH 溶液反应,当生成1mol H 2O 时放出的热量为57.3 kJ ,则该反应的热化学方程式为 .已知:① HCl(aq)+NH 3·H 2O(aq)=NH 4Cl(aq)+H 2O(l);△H=-a kJ·mol -1② HCl(aq)+NaOH(s)=NaCl(aq)+H 2O(l);△H=-b kJ·mol -1③ HNO 3(aq)+KOH(aq)=NaNO 3(aq)+H 2O(l);△H=-c kJ·mol -1则a 、b 、c 三者的大小关系为 (填字母).A .a >b >cB .b >c >aC .a=b=cD .无法比较29.(16分)快乐是什么?精神病学专家通过实验发现:在大脑的相应部位——“奖赏中心”,给予柔和的电击,便会处于似乎极度快乐的状态.人们已经将“奖赏中心”各部分的脑电图绘制出来,并认为,在各区域之间传递信息的化学物质是多巴胺,所以“奖赏中心”又称为多巴胺系统.多巴胺结构如右图:(1)多巴胺分子式: .(2)试判断多巴胺能发生的化学反应 . A .加成 B .取代 C .氧化 D .水解(3)写出与多巴胺互为同分异构体且满足下列三个条件的所有物质的结构简式:① 属于1、3、5三取代苯 ② 苯环上直接连有一个羟基和一个氨基③ 分别能与钠和氢氧化钠反应,消耗钠与氢氧化钠的物质的量之比为2:1 .(4)多巴胺可由香兰素与硝基甲烷缩合,再经锌汞齐还原水解而得.合成过程表示如下:催化剂(Ⅰ) 写出下列反应类型:反应① ,反应⑤ . (Ⅱ) A 的结构简式: . (Ⅲ) 写出②的化学方程式: .2010年普通高等学校招生全国统一考试(重庆卷)理科综合能力测试模拟试卷(一)(参考答案)化学部分6、C7、B8、B9、D 10、C 11、B 12、C 13、A26. (15分)(1)氧(2分) 三(1分) IA (1分)(2)N2+3H2 2NH3(3分)(不写可逆号及反应条件扣2分) (3)离子交换膜电解槽(2分)2Cl —-2e —=Cl2↑(2分),增大(2分),22.4(2分)27. (14分) (1) HNO3,NO2,(各2分)(2) H 2O 2(2分)(3) 3 Fe 2++4H ++NO 3-=3 Fe 3++NO↑+2H 2O .(3分)(4) 2H 2O 22H 2O+O 2↑(3分) (5) 先产生白色沉淀,然后迅速变为灰绿色,最后变为红褐色沉淀.(2分)28.(15分)(1)小烧杯(或玻璃器皿)(2分)10.0 g (2分) 检查容量瓶是否漏水(2分)(2)D E (2分)(3)环形玻璃搅拌器(2分)(4)H +(aq)+OH -(aq)=H 2O(l);△H =-57.3kJ·mol -1(3分)B (2分)29.(16分)(1)C 8H 11NO 2 (2分)(2)ABC (3分)(3)(各2分)(4 )Ⅰ、加成反应 取代反应 (各1分) Ⅱ、(2分)A :Ⅲ、(3分)催化剂加热,加压。
2010年普通高等学校招生全国统一考试(某某卷)数学(理工类)模拟试卷(一)数学试题(理工类)共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的某某、某某号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试卷上答题无效。
5.考试结束,将试卷和答题卡一并收回。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1. 设全集{1,3,5,7}U =,集合A ={3,5},B ={1,3,7},则()U AC B =A . {5}B . {3,5}C . {1,5,7}D . Φ2. 已知复数z i +,在映射下f 的象是z i ⋅,则12i -+的原象为A . 13i -+B . 2i -C . 2i -+D . 23. 已知,αβ是不同的两个平面,直线a α⊂,直线b β⊂,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 4. 已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η=A . 0B . 1C . 2D . 45. 已知向量,a b 是互相垂直的单位向量满足||13,3,4c c a c b =⋅=⋅=,则对任意的实数12,t t ,12||c t a t b --的最小值为A . 5B . 7C . 12D . 136. 已知()sin(2))(0)f x x x ϕϕϕπ=+++<<是R 上的偶函数,则ϕ的一个值为A .6πB .3πC .23π D . 56π7. 若数列{}n a 满足121,2a a ==且21(3)n n n a a a n --=≥,则2010a 的值为A . 1B . 2C . 12D . 201028. 函数x xx xe e y e e--+=-的图像大致为9. 已知函数1()lg1x f x x +=-,实数,,a bc 满足||1,||1,||1ab c <<<,且()20091a bfab+=+, ()20101b c f bc-=-,则()1a cf ac ++的值 A . -1 B . lg 2 C . 1 D . 310.已知3211()(1)(1)132f x x a x a b x =++++++,若方程()0f x '=的两个实数根可以分别作为一个椭圆和双曲线的离心率,则 A . 3a b -<-B .3a b -≤-C . 3a b ->-D . 3a b -≥-二.填空题:本大题共5小题,每小题5分,共25分.11. 设()3xf x =,则11()9f -=____________.12. 已知b 为二项式(9)nx +展式中各项系数之和,且∞→n lim 1110lim n n n b a b aa +→∞+=+,则实数a 的取值X 围是____________.13. 定义一种新运算“""⊗”如下:当a b ≥时,a b a ⊗=;当a b <时,2a b b ⊗=,对于函数()[(2)]2,(2,2)f x x x x x =-⊗⋅-⊗∈-(“·”和“""-”仍为通常的乘法和减法运算),把()f x 的图像按向量a 平移后得到()g x 的图像,若()g x 是奇函数,则a =____________.14. 为迎接三个代表团参加某项活动,我市共准备了四个宾馆以供各代表团入住,假定每个代表团可入住任一宾馆,且入住各个宾馆是等可能的,则三个代表团恰好分住其中三个不同宾馆的概率为____________.15. 若双曲线22221(0,0)x y a b a b -=>>上横坐为32a 的点到右焦点的距离大于它到左准线的距离,则该双曲线两条渐近线所夹的锐角的取值X 围是____________.三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos 25A =,3AB AC ⋅=. (Ⅰ)求ABC ∆的面积; (Ⅱ)若6b c +=,求a 的值.17.(本小题满分13分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字.(Ⅰ)取出的3个小球上的数字互不相同的概率; (Ⅱ)随机变量ξ的概率分布和数学期望; (Ⅲ)计分介于20分到40分之间的概率.18.(本小题满分13分)如图(1)在直角梯形ABCP 中,BC ∥,,,AP CD BC AB AP ⊥⊥PD DC AD ===2,E 、F 、G 分别是PC 、PD 、BC 的中点,现将PDC ∆沿CD 折起,使平面⊥PDC 平面ABCD (如图2).(Ⅰ)求二面角D EF G --的大小;(Ⅱ)在线段PB 上确定一点Q ,使⊥PC 平面ADQ ,并给出证明过程.已知函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时()ln (0,).f x ax x a a R =+>∈(Ⅰ)求()f x 的解析式; (Ⅱ)设ln ||()||x g x x =,[,0)(0,]x e e ∈-,求证:当1a =-时,1|()|().2f xg x >+20.(本小题满分12分)已知椭圆1C :22221(0)y x a b a b+=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆1C 的方程;(Ⅱ)设点P 在抛物线2C :2()y x h h =+∈R )(R h ∈上,2C 在点P 处的切线与1C 交于点,M N .线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.21.(本小题满分12分)设函数()ln(1)f x x x =+-在区间(])(,0*∈N n n 上的最小值为.n b 令,)1ln(n n b n a -+=72),(2421231-=∈=+-n n kk k a c N k a a a a a a t .(Ⅰ)求;n b ;(Ⅱ)试求所有的正整数m ,使得12m m m c c c ++为数列{}n c 中的项; (Ⅲ)求证:122 1.n t t t +++<2010级高三数学(理)模拟试题(一)参考答案一、选择题:本大题共10题,每小题5分,共50分。
2010年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)在等比数列{a n}中,a2010=8a2007,则公比q的值为()A.2 B.3 C.4 D.82.(5分)已知向量,满足•=0,||=1,||=2,则|2﹣|=()A.0 B.C.4 D.83.(5分)=()A.﹣1 B.﹣ C.D.14.(5分)设变量x,y满足约束条件,则z=2x+y的最大值为()A.﹣2 B.4 C.6 D.85.(5分)函数f(x)=的图象()A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称6.(5分)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ= B.ω=1,φ=﹣C.ω=2,φ= D.ω=2,φ=﹣7.(5分)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.8.(5分)直线y=与圆心为D的圆(θ∈[0,2π))交与A、B两点,则直线AD与BD的倾斜角之和为()A.B.C.D.9.(5分)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种10.(5分)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知复数z=1+i,则=.12.(5分)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=.13.(5分)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为.14.(5分)已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.15.(5分)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2010)=.三、解答题(共6小题,满分75分)16.(13分)设函数f(x)=cos(x+π)+2cos2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.17.(13分)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.18.(13分)已知函数,其中实数a≠1.(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=,求二面角A﹣EC﹣D的平面角的余弦值.20.(12分)已知以原点O为中心,为右焦点的双曲线C的离心率.(1)求双曲线C的标准方程及其渐近线方程;(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.21.(12分)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c ≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.2010年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•重庆)在等比数列{a n}中,a2010=8a2007,则公比q的值为()A.2 B.3 C.4 D.8【分析】利用等比数列的通项公式,分别表示出a2010和a2007,两式相除即可求得q3,进而求得q.【解答】解:∴q=2故选A2.(5分)(2010•重庆)已知向量,满足•=0,||=1,||=2,则|2﹣|=()A.0 B.C.4 D.8【分析】利用题中条件,把所求|2|平方再开方即可【解答】解:∵=0,||=1,||=2,∴|2|====2故选B.3.(5分)(2010•重庆)=()A.﹣1 B.﹣ C.D.1【分析】先进行通分,然后消除零因子,可以把简化为,由此可得答案.【解答】解:===﹣,故选B.4.(5分)(2010•重庆)设变量x,y满足约束条件,则z=2x+y的最大值为()A.﹣2 B.4 C.6 D.8【分析】先根据约束条件画出可行域,利用几何意义求最值,只需求出直线z=2x+y 过点B时,z最大值即可.【解答】解:不等式组表示的平面区域如图所示,设z=2x+y,∵直线z=2x+y过可行域内B(3,0)的时候z最大,最大值为6,故选C.5.(5分)(2010•重庆)函数f(x)=的图象()A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称【分析】题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,【解答】解:,∴f(x)是偶函数,图象关于y轴对称故选D.6.(5分)(2010•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ= B.ω=1,φ=﹣C.ω=2,φ= D.ω=2,φ=﹣【分析】通过图象求出函数的周期,再求出ω,由(,1)确定φ,推出选项.【解答】解:由图象可知:T==π,∴ω=2;(,1)在图象上,所以2×+φ=,φ=﹣.故选D.7.(5分)(2010•重庆)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用代入已知条件,化简为函数求最值.【解答】解:考察基本不等式,整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4故选B.8.(5分)(2010•重庆)直线y=与圆心为D的圆(θ∈[0,2π))交与A、B两点,则直线AD与BD的倾斜角之和为()A.B.C.D.【分析】根据题目条件画出圆的图象与直线的图象,再利用圆的性质建立两个倾斜角的等量关系,化简整理即可求出.【解答】解:数形结合,∠1=α﹣30°,∠2=30°+π﹣β,由圆的性质可知∠1=∠2,∴α﹣30°=30°+π﹣β,故α+β=,故选C.9.(5分)(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种【分析】本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两者之间有一个排列,丙不排在10月1日,丁不排在10月7日,则可以甲乙排1、2号或6、7号,或是甲乙排中间,丙排7号或不排7号,根据分类原理得到结果.【解答】解:分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有2×种,然后排丁,有种,剩下其他四个人全排列有种,因此共有2×A22A41A44=384种方法第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后丙在7号,剩下四个人全排列有种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后排丙,丙不再1号和7号,有种,接着排丁,丁不排在10月7日,有种,剩下3个人全排列,有种,因此共有(4A22A44+4A22A31A31A33)=624种方法,故共有1008种不同的排法故选C.10.(5分)(2010•重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线【分析】先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和z=a代入即可求得x和y的关系,根据其方程判断轨迹.【解答】解:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程就分别是y=0,z=0 和x=0,z=a(a是两异面直线公垂线长度,是个常数)空间内任意点设它的坐标是(x,y,z)那么由已知,它到两条异面直线的距离相等,即=两边平方,化简可得z=(y2﹣x2+a2)过一条直线且平行于另一条直线的平面是z=0和z=a分别代入所得式子z=0时代入可以得到y2﹣x2=﹣a2,图形是个双曲线z=a时代入可以得到y2﹣x2=a2,图形也是个双曲线故选D二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•重庆)已知复数z=1+i,则=﹣2i.【分析】把复数z=1+I代入要求的式子,应用复数相除的法则化简得到结果.【解答】解:=,故答案为﹣2i.12.(5分)(2010•重庆)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=﹣3.【分析】由题意分析,得到A={0,3},后由根与系数直接间的关系求出m的值【解答】解;∵U={0,1,2,3}、∁U A={1,2},∴A={0,3},∴0、3是方程x2+mx=0的两个根,∴0+3=﹣m,∴m=﹣3,故答案为:﹣3.13.(5分)(2010•重庆)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为.【分析】在两次罚球中至多命中一次的对立事件是两次都命中,设出命中的概率P,由对立事件的概率公式列出方程,求出命中一次的概率.【解答】解:设罚球的命中的概率为P,由两次罚球中至多命中一次的概率为,得∴,故答案为:.14.(5分)(2010•重庆)已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.【分析】设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.【解答】解:设BF=m,由抛物线的定义知AA1=3m,BB1=m∴△ABC中,AC=2m,AB=4m,直线AB方程为与抛物线方程联立消y得3x2﹣10x+3=0所以AB中点到准线距离为故答案为15.(5分)(2010•重庆)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2010)=.【分析】由于题目问的是f(2010),项数较大,故马上判断函数势必是周期函数,所以集中精力找周期即可;周期的寻找方法可以是不完全归纳推理出,也可以是演绎推理得出.【解答】解:取x=1,y=0得法一:根据已知知取x=1,y=1得f(2)=﹣取x=2,y=1得f(3)=﹣取x=2,y=2得f(4)=﹣取x=3,y=2得f(5)=取x=3,y=3得f(6)=猜想得周期为6法二:取x=1,y=0得取x=n,y=1,有f(n)=f(n+1)+f(n﹣1),同理f(n+1)=f(n+2)+f(n)联立得f(n+2)=﹣f(n﹣1)所以f(n)=﹣f(n+3)=f(n+6)所以函数是周期函数,周期T=6,故f(2010)=f(0)=故答案为:.三、解答题(共6小题,满分75分)16.(13分)(2010•重庆)设函数f(x)=cos(x+π)+2cos2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.【分析】(I)将f(x)=cos(x+π)+2化简,变形后可以用三角函数的有界性求值域.(II)由f(B)=1 求出∠B,利用余弦定理建立关于a的方程求出a.【解答】解:(I)f(x)=cos(x+π)+2=cosxcosπ﹣sinxsinπ+cosx+1=﹣cosx﹣sinx+cosx+1=cosx﹣sinx+1=sin(x+)+1因此函数f(x)的值域为[0,2](II)由f(B)=1 得sin(B+)+1=1,即sin(B+)=0,即B+=0或π,B=或﹣又B是三角形的内角,所以B=由余弦定理得b2=a2+c2﹣2accosB即1=a2+3﹣3a,整理a2﹣3a+2=0解得a=1或a=2答:(I)函数f(x)的值域为[0,2](II)a=1或a=217.(13分)(2010•重庆)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.【分析】(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,满足条件的事件是甲和乙的演出序号都是偶数,根据等可能事件的概率公式得到结果.(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,甲和乙两个单位的演出序号不相邻,的对立事件是甲和乙两个单位的演出序号相邻,根据对立事件的概率公式得到结果.【解答】解:(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设A表示甲和乙的演出序号都是偶数,共有A32=6种结果,∴所求的概率P(A)==(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设B表示甲和乙两个单位的演出序号不相邻,则表示甲和乙两个单位的演出序号相邻,共有5A22=10种结果∴P(B)=1﹣P()=1﹣=.18.(13分)(2010•重庆)已知函数,其中实数a≠1.(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.【分析】首先求出函数的导数及在点f(0)处的值,然后求出在该点的切线方程,第二问根据函数的导数与极值的关系求出a的值,然后根据函数的导数与单调性的关系讨论函数的单调性.【解答】解:(1)=,当a=2时,f′(0)=,而f(0)=﹣,所以曲线在点(0,f(0))处的切线方程为:y﹣(﹣)=(x﹣0),即7x﹣4y ﹣2=0.(2)因为a≠1,由(1)可知=;又因为f(x)在x=1处取得极值,所以,解得a=﹣3;此时,定义域(﹣1,3)∪(3,+∞);=,由f′(x)=0得x1=1,x2=7,当﹣1<x<1或x>7时f′(x)>0;当1<x<7且x≠3时f′(x)<0;由上讨论可知f(x)在(﹣1,1],[7,+∞)时是增函数,在[1,3),(3,7]上是减函数.19.(12分)(2010•重庆)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=,求二面角A﹣EC﹣D的平面角的余弦值.【分析】(1)先根据AD∥BC,推断出AD∥平面PBC,进而可知直线AD与平面PBC的距离为点A到平面PBC的距离,根据PA⊥底面ABCD,判断出PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,进而可知AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC ⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,进而可推断出AE 之长即为直线AD与平面PBC的距离.Rt△PAB中,根据PA和AB求得AE.(2)过点D作DF⊥CE,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而求得DE在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.【解答】解:(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB 的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=,所以AE=PB==(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而DE==在Rt△CBE中,CE==,由CD=,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sin=因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE,从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==,所以cos∠DFG==20.(12分)(2010•重庆)已知以原点O为中心,为右焦点的双曲线C的离心率.(1)求双曲线C的标准方程及其渐近线方程;(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.【分析】(1)设C的标准方程为(a>0,b>0),由题意知a=2,b=1,由此可求出C的标准方程和渐近线方程.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,则,设MN与x轴的交战为Q,则,由此可求△OGH的面积.【解答】解:(1)设C的标准方程为(a>0,b>0),则由题意知,,∴a=2,b=1,∴C的标准方程为.∴C的渐近线方程为,即x﹣2y=0和x+2y=0.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此有x E x+4y E y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,由方程组及,解得,设MN与x轴的交点为Q,则在直线x E x+4y E y=4k,令y=0得,∵x E2﹣4y E2=4,∴==.21.(12分)(2010•重庆)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.【分析】(1)根据a1,a2和a3猜测a n=(n2﹣1)c n+c n﹣1,进而用数学归纳法证明.(2)把(1)中求得的a n代入a2k>a zk﹣1,整理得(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0,分别表示c k和又c k',根据c k<<1求得c≥1,再根据c k'<0,判断出单调递增知c k'≥c1'求得<﹣,最后综合答案可得.【解答】解:(1)由a1=1,a2=ca1+c23=(22﹣1)c2+ca3=ca2+c3•5=(32﹣1)c3+c2,猜测a n=(n2﹣1)c n+c n﹣1,下面用数学归纳法证明,当n=1是,等式成立假设当n=k,等式成立即a k=(k2﹣1)c k+c k﹣1,则当n=k+1时a k=ca k+c k+1(2k+1)=(k2+2k)c k+1+c k=[(k+1)2﹣1]c k+1+c k,+1综上a n=(n2﹣1)c n+c n﹣1,对任意n∈N都成立.(2)由a2k>a zk﹣1得[(2k)2﹣1]c2k+c2k﹣1>[(2k﹣1)2﹣1]c2k﹣1+c2k﹣2,因c2k﹣2>0,所以(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0解此不等式得c>c k,或c<c k',其中c k=c k'=易知c k=1又由<=4k2+1,知c k<<1因此由c>c k对一切k∈N成立得c≥1又c k'=<0,可知单调递增,故c k'≥c1'对一切k∈N*成立,因此由c<c k'对一切k∈N*成立得c<﹣从而c的取值范围是(﹣∞,﹣)∪[1,+∞]。
重庆市部分重点中学2009-2010学年度高三开学考试数学试题理科试卷考试时间:120分钟 满分:150分参考公式: 球的表面积公式24R S π=,其中表示球的半径球的体积公式334R V π=,其中表示球的半径一、选择题:本大题共10个小题,每小题5分,共50分. 1.12coslog 12sinlog 22ππ+的值为( )(A )2 (B )2- (C )4 (D )4-2.设为虚数单位,复数imiz 212+-=的实部与虚部互为相反数,则实数的值为( ) (A )2 (B )23(C ) (D )23-3.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为( )(A )2:3 (B )1:1 (C )3:2 (D )3:24.已知向量),(n a p n =,)1,(1+=+n a q n ,(*N n ∈),若31=a ,q p //,则数列}{n a 的通项n a 等于( ) (A )2+n (B )53+n (C )n 3 (D )n 5 5.下列命题正确的是( )(A )直线b a ,与直线所成角相等,则b a // (B )直线b a ,与平面成相等角,则b a // (C )平面βα,与平面均垂直,则βα//(D )直线b a ,均在平面外,且α⊥a ,b a ⊥,则α//b6.直线过点)1,1(-A 且与线段)11(0323≤≤-=--x y x 相交,的倾斜角的取值范围是( ) (A )]2,4[ππ (B )]49,2[ππ (C )),2[]4,0[πππ⋃ (D )],2[]4,0(πππ⋃ 7.n S 为数列}{n a 的前项和, 若)(22*N n a S n n ∈-=,则数列}{n a 的通项公式为( ) (A )2)21(-=n n a (B )132-⋅=n n a (C )n n a 2=(D )12-=n n a8.北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度 15的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为 60和 30,看台上第一排和最后一排的距离610米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为( ) (A )53(米/秒) (B )53(米/秒) (C )56(米/秒) (D )51(米/秒)9.已知1||=OA ,3||=OB ,0=⋅OB OA ,点在A O B ∠内,且 30=∠AOC ,设OB n OA m OC += (R n m ∈,),则nm等于( ) (A )31(B )3 (C )33 (D )310.若0,,>c b a ,且324)(-=+++bc c b a a ,则c b a ++2的最小值为( ) (A )13- (B )13+ (C )232+ (D )232- 二、填空题:本大题共4小题,每小题5分,共20分.11.已知y x ,满足⎪⎩⎪⎨⎧≥++-≤+≥0242c y x y x x ,且目标函数y x z +=3的最小值是5,则的最大值为12.在∆ABC 中,角A ,B ,C 的对边分别为,,,a b c 若 13a =,4c =,60A =,则b =__________.13. 已知函数2 1()(2) 1ax bx c x f x f x x ⎧++≥-=⎨--<-⎩,其图象在点(1,(1)f )处的切线方程为21y x =+,则它在点(3,(3))f --处的切线方程为 .14.已知数列{}n b 满足11=b ,x b =2(∈x N *),*11||(2,)n n n b b b n n N +-=-≥∈.①若2=x ,则该数列前10项和为 ;②若前100项中恰好含有30项为0,则x 的值为 . 15.设函数(),()f x g x 的定义域分别为D J ,D E .且D J D E ,若对于任意x ∈D J ,都有()(),g x f x =则称函数()g x为()f x 在D E 上的一个延拓函数.设()ln (0),()f x x x x g x =>为()f x 在(,0)(0,)-∞⋃+∞上的一个延拓函数,且()g x 是奇函数,则()g x =________________________;设()21(0)x f x x =-≤,()g x 为()f x 在R 上的一个延拓函数,且且()g x 是偶函数,则()g x =________________________.三、解答题:本大题共6小题,共76分,解答应写出文字说明,证明过程或演算步骤. 16.(本题满分13分)已知x x a x x f cos sin 34cos 4)(2+-=,将)(x f 的图象向左平移4π个单位后所得的图象关于12π=x 对称.(1)求实数,并求出)(x f 取得最大值时的集合; (2)求)(x f 的最小正周期,并求)(x f 在]6,4[ππ-上的值域.17.(本题满分13分)如图,正三棱柱111C B A ABC -的所有棱长均为2,为棱1CC 的中点. (1)求异面直线AC 与BD 所成角的余弦值; (2)求证:直线⊥1AB 平面BD A 1;(3)求直线11C A 与平面BD A 1所成角的正弦值.A A 1CC 1D18.(本题满分13分)设点为坐标原点,曲线016222=+-++y x y x 上有两点Q P ,满足关于直线04=++my x 对称,又满足0=⋅OQ OP .(1)求的值;(2)求直线PQ 的方程.19.(本题满分12分)已知等差数列}{n a 的首项11=a ,且公差0>d ,其第二项、第五项、第十四项分别是等比数列}{n b 的第二项、第三项、第四项.(1)求数列}{n a 与}{n b 的通项公式;(2)设数列}{n c 对任意自然数均有12211+=+++n n n a b c b cb c 成立,求n n c a c a c a +++ 2211的值.20.(本题满分12分) 已知函数axxx x f -+=1ln )(,其中为大于零的常数. (1)若函数)(x f 在),1[+∞上单调递增,求的取值范围; (2)求函数)(x f 在区间]2,1[上的最小值; (3)求证:对于任意的*N n ∈且1>n 时,都有nn 13121ln +++>成立.21.(本小题满分12分)已知数列{}n a 满足1a =25a =,116n n n a a a +-=+(2n ≥,*n N ∈),若数列{}1n n a a λ++是等比数列. (1)求数列{}n a 的通项公式; (2)求证:当k 为奇数时,111143k k k a a +++<; (3)求证:1211112n a a a +++< (*n N ∈).AA 1C C 1 DOz高三数学(理科)答案一、选择题1、B2、D3、A4、C5、D6、C7、C8、A9、B 10、D二、填空题 11、10 12.23y x =-- 13. 9,6或7 14.1或3 15. ||ln ||,21x x x -- 三、解答题16、解:(I )由已知x x a x x f cos sin 34cos 4)(2+-=关于3x π=对称2(0)()3f f π⇒=41231a a ⇒-=--⇒=, 2)62sin(4)(--=πx x f ,………4分 当且仅当22623x k x k k z πππππ-=+⇒=+∈,时取最大值,所以,取得最大值时的集合为⎭⎬⎫⎩⎨⎧∈+=z k k x x 3ππ.…………6分(II ))(x f 的最小正周期为;2[,]2[,]46636x x πππππ∈-⇒-∈-, 11sin(2)62x π∴-≤-≤, (8)分)(x f 在[,]46ππ-上的值域为[]6-,0.…………10分17、解:如图建立空间直角坐标系,……1分则在棱长均为2的正三棱柱中,各点坐标为:(0,0,3)A , (1,0,0)B ,(1,0,0)C -,1(0,2,3)A ,1(1,2,0)B ,(1,1,0)D -,则 (1)(1,0,3),(2,1,0)AC BD =--=-……………3分cos ,AC BD AC BD AC BD⋅<>=(1,0,3)(2,1,0)5525--⋅-==……………5分(2)11(1,2,3),(1,2,3),AB BA =-=-由1110,0,AB BA AB BD ⋅=⋅=知111,,AB A B AB BD ⊥⊥又1AB 与BD 是平面1A BD 内的两条相交直线,故1AB⊥平面1A BD ;…………8分(3)设直线11AC 与平面1A BD 所成角为(0)2πθθ≤≤,由(2)知1AB 是平面1A BD 的法向量,而11AC A C =则有111sin cos ,AB AC AC AB AB ACθ⋅=<>=⋅2.4= ………12分18、(1)曲线方程为9)3()1(22=-++y x ,表示圆心为(-1,3),半径为3的圆.……2分,04,对称在圆上且关于直线点=++my x Q P∴圆心(-1,3)在直线上,代入直线方程得=-1 …………4分(2)∵直线PQ 与直线y=x +4垂直,b x y PQ y x Q y x P +-=∴方程设),,(),,(2211将直线b x y +-=代入圆方程. 得.016)4(2222=+-+-+b b x b x232232,0)16(24)4(422+<<->+-⨯⨯--=∆b b b b 得……6分 由韦达定理得216),4(22121+-=⋅--=+b b x x b x x …………8分b b b x x x x b b y y 4216)(22121221++-=⋅++-=⋅11220,0OF OQ x y x y ⋅=∴+=…………10分…………12分19、(1)解:由已知,有2(1)(113)(14)d d d ++=+,又0d >,故2d = …………2分再设等比数列{}n b 首项1b ,公比为1(0)q b q 与均不为,则12139b q b q =⎧⎨=⎩解得113b q =⎧⎨=⎩121,3.n n n a n b -∴=-=…………………………5分(2)由知≥2时,31121231n n n c c c c a b b b b --+++⋅⋅⋅+=,则 12nn n nc a a b +=-=,1223n nn c b -==⋅(≥2)………………7分 而1123c b a ==,∴13,(1)23,(2)n n n c n -=⎧=⎨⋅≥⎩……………………9分 . 1 ).2 3 2 , 2 3 2 ( 1 . 0 4 1 6 2+ - = ∴ + - ∈ = = + + - x y b b bb 所求的直线方程解得 即 3121123(),n n nc c c c a n N b b b b ++++⋅⋅⋅+=∈故1122n n nS a c a c a c =++⋅⋅⋅+=12132332532(21)3n n -+⋅⋅+⋅⋅+⋅⋅⋅+-⋅3nS =2392332532(21)3nn +⋅⋅+⋅⋅+⋅⋅⋅+-⋅∴n S =(22)33n n -⋅+*()n N ∈ ……………12分20、解:).0(1)(2>-='x axax x f ……………2分 (1)由已知,得),1[0)(+∞≥'在x f 上恒成立, 即),1[1+∞≥在xa 上恒成立又当,11,),1[≤+∞∈xx 时),1[.1+∞≥∴的取值范围为即a a ……………4分 (2)当1≥a 时,0)(>'x f 在(1,2)上恒成立,这时)(x f 在[1,2]上为增函数, 0)1()(min ==∴f x f .当,210≤<a0)(<'x f 在(1,2)上恒成立,这时)(x f 在[1,2]上为减函数,.212ln )2()(min af x f -==∴当121<<a 时, 令).2,1(1,0)(∈=='ax x f 得又有对于)1,1[a x ∈ ,0)(]2,1(,0)(>'∈<'x f a x x f 有对于.111ln )1()(min aa a f x f -+==∴ ……………6分综上,)(x f 在[1,2]上的最小值为:①当;212ln )(,210a x f a mim -=≤<时 ②当121<<a 时,.111ln )(min aa x f -+=③当0)(,1min =≥x f a 时 . ………8分(3)由(1),知函数),1[ln 11)(+∞+-=在x xx f 上为增函数,当.11,1>->n n n 时),1()1(f n n f >-∴ 即1,,1)1ln(ln *>∈>--n N n nn n 且对于恒成立,]1ln 2[ln ]2ln 3[ln )]2ln()1[ln()]1ln([ln ln -+-++---+--= n n n n n.2131111+++-+> n n,1,*时且对于>∈∴n N n nn 13121ln +++>恒成立. ……12分21.解(1)∵数列{}1n n a a λ++是等比数列∴()()11111111616611n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a λλλλλλλλλ--+-----+++++++===+++++应为常数 ∴61λλ=+ 得2λ=或3λ=- 当2λ=时,可得{}12n n a a ++为首项是21215a a +=,公比为3的等比数列,则113152-+⋅=+n n n a a ①当3λ=-时,{}13n n a a +-为首项是10312-=-a a ,公比为2-的等比数列,∴()113102n n n a a -+-=-- ② ①-②得, ()32nn n a =-- ………4分(注:也可由①利用待定系数或同除12n +得通项公式)(2)当k 为奇数时,11111342312313411+++++--++=-+k k k k k k k k a a ()()()()11111134872768403323233232kkk kk k k k k k k k k k ++++++⎡⎤⎛⎫⋅-⋅⎢⎥⎪⎝⎭-⨯+⨯⎢⎥⎣⎦==<⋅+-+- ∴ 113411++<+k k k a a ………8分 (3)由(Ⅱ)知k 为奇数时,11131313411++++=<+k k k k k a a ………10分 ①当n 为偶数时, 2121111111111333232n n n a a a ⎛⎫+++<+++=-< ⎪⎝⎭ ②当n 为奇数时,121211111111+++++<+++n n n a a a a a a a 2111111111333232n n ++⎛⎫+++=-< ⎪⎝⎭ ………13分。