北师大版数学必修四课件:3.2.3两角和与差的正切函数
- 格式:pptx
- 大小:3.35 MB
- 文档页数:35
两角和与差的正切函数一、教学目标1、知识与技能:(1)能够利用两角和与差的正、余弦公式推导出两角和与差的正切公式;(2)能够运用两角和与差的正切公式进行化简、求值、证明;(3)揭示知识背景,引发学生学习兴趣;(4)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法:借助两角和与差的正、余弦公式推导出两角和与差的正切公式,让学生进一步体会各个公式之间的联系及结构特点;讲解例题,总结方法,巩固练习.3、情感态度价值观:通过本节的学习,使同学们对两角和与差的三角函数有了一个全新的认识;理解掌握两角和与差的三角的各种变形,提高逆用思维的能力.二、教学重、难点 :重点: 公式的应用. 难点: 公式的推导. 三、学法与教学用具学法:(1)自主性学习+探究式学习法:通过通过类比分析、探索、掌握两角和与差的正切公式的推导过程。
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距。
教学用具:电脑、投影机 四、教学过程 【探究新知】1.两角和与差的正切公式 T α+β ,T α-β问:在两角和与差的正、余弦公式的基础上,你能用tan α,tan β表示tan(α+β)和tan(α-β)吗?(让学生回答) [展示投影] ∵cos (α+β)≠0 tan(α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(-+=++ 当cos αcos β≠0时分子分母同时除以cos αcos β得:tan(α+β)=βαβαtan tan 1tan tan -+以-β代β得: 2.运用此公式应注意些什么?(让学生回答)[展示投影] 注意:1︒必须在定义域范围内使用上述公式。
即:tan α,tan β,tan(α±β)只要有一个不存在就不能使用这个公式,只能(也只需)用诱导公式来解;2︒注意公式的结构,尤其是符号。