列管式换热器课程设计
- 格式:doc
- 大小:1018.28 KB
- 文档页数:33
一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。
板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。
设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。
完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。
(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。
换热所用板片的厚度仅为0. 6~0. 8mm。
同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。
(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。
(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。
(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。
各类材料的换热板片也可适应工况对腐蚀性的要求。
当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。
同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。
列管换热器课程设计报告一、教学目标本课程的教学目标是让学生掌握列管换热器的基本原理、结构、类型、性能以及工程应用。
具体包括:1.知识目标:(1)了解列管换热器的定义、分类和性能;(2)掌握列管换热器的基本结构和工作原理;(3)熟悉列管换热器的设计和计算方法;(4)了解列管换热器在工程中的应用和维护。
2.技能目标:(1)能够分析列管换热器的结构和工作特点;(2)能够运用基本原理进行列管换热器的设计和计算;(3)能够根据工程需求选择合适的列管换热器类型;(4)能够对列管换热器进行正常的操作和维护。
3.情感态度价值观目标:(1)培养学生对列管换热器技术的兴趣和热情;(2)培养学生具备工程思维和创新能力;(3)培养学生具有良好的团队合作和沟通能力。
二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.列管换热器的定义、分类和性能;2.列管换热器的基本结构和工作原理;3.列管换热器的设计和计算方法;4.列管换热器在工程中的应用和维护;5.列管换热器技术的最新发展动态。
教学大纲安排如下:第1周:列管换热器的定义、分类和性能;第2周:列管换热器的基本结构和工作原理;第3周:列管换热器的设计和计算方法;第4周:列管换热器在工程中的应用和维护;第5周:列管换热器技术的最新发展动态。
三、教学方法为了达到课程目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,使学生了解列管换热器的基本概念、原理和计算方法;2.案例分析法:通过分析实际工程案例,使学生掌握列管换热器在工程中的应用;3.实验法:通过实验操作,使学生了解列管换热器的工作原理和性能;4.讨论法:通过小组讨论,培养学生团队合作和沟通能力。
四、教学资源教学资源包括:1.教材:选用《列管换热器》一书作为主要教材;2.参考书:提供相关领域的参考书籍,供学生自主学习;3.多媒体资料:制作课件、视频等多媒体资料,丰富教学手段;4.实验设备:准备列管换热器实验装置,供学生进行实验操作。
列管式换热器-课程设计
换热器是一种重要的化工设备。
随着其应用的不断扩大,对换热器的性能要求也越来越高。
以管式换热器为例,管式换热器具有结构简单、布置便利、运行可靠、热传递效率高、体积小、投资低等优点,在化工领域及各种壳管式再生塔、热交换器、海水-蒸汽换热器等热量转换系统中应用广泛。
本次课程设计的主题为管式换热器,围绕管式换热器的原理、性能与结构特性、设计过程、工艺流程展开设计与分析,具体的实习任务包括:
1. 熟悉管式换热器的基本原理、结构形式及性能特点;
2.学习管式换热器的性能计算方法,包括热量传递系数计算和散热量、传热量、温度梯度计算;
3.访问管式换热器制造厂,了解其生产工艺,深入了解管式换热器的结构、组成;
4.使用半求解数值模拟软件,进行现有管式换热器的模拟计算,提高热量传递性能;
5.按照管式换热器的设计原则、计算手段,进行管式换热器系列设计,并进行实验验证;
6.基于工作介质特性及换热器特点,进行管式换热器优化设计;
7.编制课程设计报告,完成本次课程设计任务。
课程设计任务的实施,将要求设计者在前期研究及样本实验的基础上,熟练掌握管式换热器的传热特性并能够根据不同的实验数据正确分析特性曲线,对比实验做适当的变化和选择,给出精确的设计值,从而客观地反映出不同材料的热传递特性差异;在实验室中勤奋地实践和调整,进一步加深对管式换热器热传递特性及设计方法的认识,提高使用者对新工艺材料和新设备的分析能力及设计能力。
列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。
1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。
它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。
催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。
随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。
在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。
催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。
催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。
催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。
原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。
烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。
分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。
吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
列管式换热器课程设计报告书设计报告书:列管式换热器引言:设计报告书旨在对列管式换热器进行综合性的设计分析,详细讨论设计过程及结果。
本文档包括换热器的设计背景、设计目标、设计计算、设计结果及讨论以及结论等主要内容。
一、设计背景:二、设计目标:本次设计的目标是设计一台列管式换热器,用于将一种流体的温度从80℃升高到120℃,另一种流体的温度从150℃降至100℃。
设计要求包括:换热器的热功率、设计压力、流体入口温度和出口温度、换热面积等参数。
三、设计计算:1.确定热负荷和流体流量:根据流体的温度变化和流量要求,确定热负荷和流体流量。
并结合换热器的传热特性,计算出换热面积。
2.选择换热器类型和材料:根据设计要求,选择适合的列管式换热器类型和材料,考虑到流体性质、压力和温度等因素。
3.计算传热过程中的压降:根据流体性质和流体流量,计算流体在换热器中的压降。
4.确定换热器的尺寸:根据计算得到的换热面积和流体流量,确定换热器的尺寸和结构。
四、设计结果及讨论:根据实际情况及设计计算,确定了列管式换热器的参数和结构。
设计结果展示了换热器的尺寸、换热面积、流量参数等,并进行了相关讨论。
同时,设计结果还包括选择的换热器材料、设计压力和温度等。
五、结论:本次设计报告书综合分析了列管式换热器的设计过程及结果。
根据设计目标和计算得出的结果,可得出以下结论:1.设计的列管式换热器满足了设计要求,能够实现流体的热交换。
2.使用合适的材料和尺寸,可以优化换热器的性能和效率。
3.设计过程中需要考虑流体的性质、温度、压力和流量等因素,以确保换热器的安全和稳定运行。
结语:本设计报告书详细介绍了列管式换热器的设计背景、设计目标、设计计算、设计结果及讨论,以及最终得出的结论。
通过本次设计,我们加深了对列管式换热器的理解,并提高了设计能力。
在实际工程中,将根据需求及具体情况进行设计,并综合考虑各种因素,以确保换热器的优化运行。
列管式换热器课程设计一、课程目标知识目标:1. 学生能理解并掌握列管式换热器的工作原理及其在工业中的应用。
2. 学生能够描述列管式换热器的结构特点,并解释其设计参数对换热效率的影响。
3. 学生能够运用基本的物理和数学原理分析换热器内的热量传递过程。
技能目标:1. 学生能够运用所学知识,设计简单的列管式换热器,并进行基本的性能分析。
2. 学生能够通过计算软件或手动计算,完成换热器换热面积的计算。
3. 学生能够运用图表和数据分析方法,评价不同设计参数对换热性能的影响。
情感态度价值观目标:1. 培养学生对能源转换和利用中换热技术的兴趣,激发其探索热能工程领域的热情。
2. 通过团队合作完成换热器的设计,增强学生的团队合作意识和解决问题的能力。
3. 增进学生对工业节能和环境保护意识,培养其负责任的工程伦理观。
本课程针对高年级工程技术类专业的学生,结合学科特点,课程性质偏重于应用实践。
学生应具备一定的物理、数学基础及工程制图能力。
教学要求注重理论联系实际,通过课程学习,使学生不仅掌握换热器的基础知识,还能通过实际操作提高解决实际工程问题的能力,为未来从事相关领域工作打下坚实基础。
二、教学内容1. 列管式换热器基础理论- 换热器概述:定义、分类及在工业中的应用。
- 工作原理:热量传递的基本方式,流体流动与传热的关系。
2. 列管式换热器结构及设计参数- 结构特点:管壳式换热器的构造,管程与壳程的设计。
- 设计参数:影响换热性能的主要参数,包括换热面积、流体流速、温差等。
3. 换热器内的热量传递计算- 热量传递方程:导热、对流和辐射的基本方程。
- 换热系数:不同流体和工况下的换热系数计算。
4. 列管式换热器的设计与性能分析- 设计步骤:换热器设计的基本流程,包括换热面积、管径、管长等计算。
- 性能分析:运用图表和数据分析方法,评价设计参数对换热性能的影响。
5. 案例分析与实操练习- 案例分析:实际工程中的换热器设计案例,分析其设计原理和优化方法。
列管式换热器课程设计报告书列管式换热器是一种常见的换热设备,其结构简单、效率高,广泛应用于石化、电力、制药等工业领域。
为了进一步了解列管式换热器的工作原理和设计方法,本课程设计以列管式换热器的设计与优化为主题,旨在培养学生运用所学知识解决实际工程问题的能力。
一、课程设计的目标与任务本课程设计的目标是通过学习列管式换热器的设计原理和方法,培养学生的设计能力和创新思维,使其掌握列管式换热器的设计与优化方法。
具体任务如下:1.研究列管式换热器的原理和结构,了解其工作过程和基本参数;2.学习换热器设计的基本原理和方法,包括换热面积计算、传热系数估算等;3.进行列管式换热器的设计计算和优化分析;4.编写课程设计报告书,总结设计过程和结果。
二、课程设计的内容和方法1.理论学习通过教材、参考书籍和互联网资源,学习列管式换热器的基本原理、结构和工作过程。
学生还需深入了解换热器的传热理论和设计方法,了解不同种类的换热器。
2.设计计算学生根据教师提供的设计要求和实际工况数据,进行列管式换热器的设计计算。
包括换热面积的计算、传热系数的估算、管束的选择等。
学生可以借助计算机软件进行设计计算,加深对设计原理和方法的理解。
3.优化分析学生在设计计算的基础上,进行列管式换热器的优化分析。
通过调整设计参数,寻求更优的设计方案。
优化目标可以包括换热效率、压降、材料成本等。
学生需要运用数学方法和工程经验,进行综合评价和决策。
4.报告撰写学生根据设计计算和优化分析的结果,撰写课程设计报告书。
报告需要包括设计计算的过程和结果、优化分析的方法和结果、结论和建议等。
同时,学生还需要附上设计过程中的数据、图表和计算公式,以便他人理解和复现设计过程。
三、评价方法和标准1.设计计算和优化分析的准确性和合理性;2.报告书的内容完整、结构合理、文字准确、图表清晰;3.学生对设计中关键问题的分析和讨论;4.学生对设计过程的理解程度和设计思路的合理性。
列管式换热器课程设计目录1.引言 (1)2.设计方案的确定 (3)2.1冷、热流体流动通道的选择 (3)2.2流速的选择 (4)2.3流动方式的选择 (5)2.4换热管的选择 (5)2.5管子的排列方式 (6)2.6管间距的选择 (7)2.7折流挡板间距的选择 (8)3.1估算传热面积,初选换热器型号 (9)3.1.1基本物性数据的查取 (9)3.1.2热负荷计算 (9)3.1.3确定流体的流径 (9)3.1.4计算平均温度差 (9)3.1.5选K值,估算传热面积 (11)3.1.6初选换热器型号 (11)3.2核算压降 (12)3.2.1管程压降 (12)3.2.2壳程压降 (13)3.3核算总传热系数 (14)3.3.1管程对流传热系数iα (14)α (15)3.3.2壳程对流传热系数03.3.3污垢热阻 (15)3.3.4总传热系数K (16)4.设计结果一览表 (17)设计小结 (19)参考文献 (21)1.引言列管式换热器的型式主要依据换热器管程与壳程流体的温度差来确定。
因管束与壳体的温度不同会引起膨胀程度的差异,若两流体的温差相差较大时,就可能由于热应力而引起管子弯曲或使管子从管板上拉脱,因此必须考虑这种热膨胀的影响。
根据热补偿方法的不同,列管式换热器有以下几种型式:固定管板式换热器、浮头式换热器、U形管式换热器和填料函式换热器。
固定管板式换热器由管箱、壳体、管板、管子等零部件组成(如图1﹣1)[1],其结构较紧凑,排管较多,在相同直径下面积较大,制造较简单。
它的的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。
这种换热器管程可以用隔板分成任何程数。
固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。
列管式换热器-课程设计一、概述列管式换热器是一种将多个平行管道嵌入到圆柱形壳体中、同时将流体分别流过内、外两侧实现热量传递的设备。
本次课程设计将要探讨的是该设备的设计过程。
二、设计过程1. 确定设计参数设计前需要先确定所需的设计参数,如换热器的设计热负荷、流量、压力等,这些参数将决定换热器的尺寸和布局,为后续设计提供基础。
2. 换热器类型选择根据设计参数、使用场景、材料成本等因素选择适合的换热器类型,如单相流、双相流、冷凝器、蒸发器等。
3. 确定材料和尺寸选择适合的材料和尺寸以满足设计参数,同时考虑生产和运输的成本和实际情况。
4. 确定管束参数确定管束长度、管束密度、管道直径和布局等参数,保证管束的压力和流速符合设计要求,并达到最佳热传导效果。
5. 热传导计算进行热传导计算,以确定管束长度和直径,根据流动状态和温度场计算出换热系数、平均温差和热效率等参数。
6. 设计壳体结构设计壳体的结构和尺寸,确定支撑方式和绝热方式,同时考虑安全和易于维护的因素。
7. 流体力学分析进行流体力学分析,确定流体在管道中的流动状态,以保证衬里的材料和厚度设计得足够坚固,以避免漏泄和磨损。
8. 设计精度分析进行精度分析和优化,以确定设备的运行效率和稳定性,并满足设计和生产的要求。
9. 制造和安装根据设计图纸制造和安装换热器,并进行预试运行和调试,最终达到设计要求。
三、总结以上是列管式换热器的设计过程,该过程需要深入掌握流体力学、热传导学、结构力学等知识,同时也需要掌握计算机辅助设计软件的使用,以提高效率和质量。
设计合理的列管式换热器能够提高生产效率,降低能耗,并为工业生产的可持续发展提供支持。
化工原理课程设计(列管式换热器)课程设计任务书设计条件:⒈气体处理量:15000 kg/h⒉气体进口温度:110℃;气体出口温度:60℃⒊循环水进口温度:20℃;出口温度:40 ℃⒋压力:气体压力3MPa;循环水压力0.4 MPa⒌混合气体85℃下物性参数:密度9kg/m3;定压比热容3.297kJ/(kg·℃);导热系数0.0279W/(m·K);粘度1.5×10-5Pa·s6.循环水30℃下物性参数:密度995.7kg/m3;定压比热容4.174kJ/(kg·℃);导热系数0.618 W/(m·K);粘度0.8007×10-3Pa·s设计任务:1. 接受设计任务,熟悉与设计任务有关的图书、资料。
2. 工艺设计(1)选择工艺流程包括确定换热器类型;换热器流体流动空间的安排等。
(2)传热过程工艺计算包括物料衡算确定各物料流率;热量衡算,确定换热器热负荷以及冷却水消耗量。
3. 换热器结构设计包括换热器壳体直径、长度、厚度;管板尺寸、厚度和结构;封头尺寸和法兰以及它们之间的连接和材料的选用等。
4. 选定主要附属件5. 绘制列管式换热器设备总装配图参考设计指导书的设备装配参考图,根据具体设计完成的换热器,在3#纸上绘制换热器总装配图。
6. 编写设计说明书设计说明书应根据设计指导思想阐明设计观点和特点;列出本设计主要技术数据。
应按设计过程列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历,有条件的还应注明其误差范围。
设计时间2011年6月20 日至2011年 6月 24 日指导老师:目录1. 前言(概述)1.1 设计依据1.2设计任务及要求(简述)1.3设计方案初定2. 传热过程工艺计算2.1试算和初选换热器的规格2.2核算压强降2.3核算总传热系数3. 换热器结构设计3.1 壳体壁厚的计算3.2 管板结构和尺寸的确定3.3 管板与壳体、封头的连接3.4 温差应力补偿4. 设计结果汇总(列表)5. 设计评述(结束语)6. 参考资料前言换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。
2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。
3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。
技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。
2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。
3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。
情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。
2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。
3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。
本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。
课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。
在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。
通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。
二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。
教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。
教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。
教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。
《化工原理》列管式换热器课程设计说明书目录一、化工原理课程设计任务书 (2)二、确定设计方案 (3)1.选择换热器的类型2.管程安排三、确定物性数据 (4)四、估算传热面积 (5)1.热流量2.平均传热温差3.传热面积4.冷却水用量五、工艺结构尺寸 (6)1.管径和管内流速2.管程数和传热管数3.传热温差校平均正及壳程数4.传热管排列和分程方法5.壳体内径6.折流挡板 (7)7.其他附件8.接管六、换热器核算 (8)1.热流量核算2.壁温计算 (10)3.换热器内流体的流动阻力七、结构设计 (13)1.浮头管板及钩圈法兰结构设计2.管箱法兰和管箱侧壳体法兰设计3.管箱结构设计4.固定端管板结构设计5.外头盖法兰、外头盖侧法兰设计............146.外头盖结构设计7.垫片选择8.鞍座选用及安装位置确定9.折流板布置10.说明八、强度设计计算 (15)1.筒体壁厚计算2.外头盖短节、封头厚度计算3.管箱短节、封头厚度计算 (16)4.管箱短节开孔补强校核 (17)5.壳体接管开孔补强校核6.固定管板计算 (18)7.浮头管板及钩圈 (19)8.无折边球封头计算9.浮头法兰计算 (20)九、参考文献 (20)课程设计任务书学院生命科学与工程学院专业班级生物工程2班姓名樊立宇学号20104456课程设计题目列管式换热器的设计完成时间2012年7月11日至2012年7月18日设计内容及要求某生产过程的流程如图所示。
反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。
已知混合气体的流量为X kg h,压力为6.9MPa,循环冷却水的压力为0.4MPa,循环水的入口温度为27℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。
指导教师:王枢2012年7 月18 日摘要首先,根据设计任务书的要求,结合换热介质的物性特征确定换热器的类型。
目录§一.任务书1.1.化工原理课程设计的重要性1.2.课程设计的基本内容和程序1.3.列管式换热器设计内容1.4.设计任务和操作条件1.5.主要设备结构图§二.概述及设计要求2.1.换热器概述2.2.固定管板式换热器2.3.设计要求§三.设计条件及主要物理参数3.1.初选换热器的类型3.2.确定物性参数3.3.计算热流量及平均温差3.4.管程安排(流动空间的选择)及流速确定3.5.计算传热系数k3.6.计算传热面积§四.设计结果汇总§五.设计评述§六.工艺流程图§七.符号说明§八.参考资料§一化工原理课程设计任务书1.1.化工原理课程设计的重要性化工原理课程设计是学生学完基础课程以及化工原理课程以后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用化工原理和相关选修课程的知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。
通过这一环节,使学生掌握单元操作设计的基本程序和方法,熟悉查阅技术资料、国家技术标准,正确选用公式和数据,运用简洁文字和工程语言正确表述设计思想和结果;并在此过程中使学生养成尊重实际问题向实践学习,实事求是的科学态度,逐步树立正确的设计思想、经济观点和严谨、认真的工作作风,提高学生综合运用所学的知识,独立解决实际问题的能力。
1.2.课程设计的基本内容和程序化工原理课程设计的基本内容有:1、设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。
2、主要设备的工艺计算:物料衡算、能量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算。
3、辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备规格型号的选定。
4、工艺流程图:以单线图的形式描绘,标出主体设备与辅助设备的物料方向、物流量、主要测量点。
5、主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。
牛奶列管式换热器课程设计
一、课程目的
本课程的主要目的是系统学习用于制冷和加热牛奶的列管式换热器的结构特点和工作原理,以及列管式换热器在制冷、加热牛奶时所应用的工艺参数设置。
二、主要内容
1. 什么是列管式换热器
列管式换热器,又称为管换热器,是以管子为换热介质的换热器,由采暖用的列管式热水器和牛奶用的列管式换热器组成。
它具有锅炉膨胀控制系统,以及保护性能高的、表面耐腐蚀的列管等特点。
2. 工作原理
列管式换热器是将待换热的物体介入换热器的两个分管中,一端是冷源,另一端是热源。
换热器里的冷源介质和热源介质通过分管交叉流通,其中移动部分即热源介质从热端流到冷端,冷源介质从冷端流到热端,在介质耗散的换热过程中,热能由热源介质传递给冷源介质,实现物体制冷或加热的效果。
3. 设计要求
(1)换热器的工作温度范围;
(2)物料的流量量;
(3)换热器类型;
(4)换热器参数设计;
(5)换热器装饰及其典型连接零件;
(6)换热器物料流动模式;
(7)加热或制冷装置设计。
4. 附加内容
(1)换热器安全及维护措施;
(2)阻力计算;
(3)节能设计方法;
(4)管道配置准备及计算;
(5)热力学特性分析及其计算;
(6)换热器的结构及材料;
(7)耦合器的设计与选择等。
三、推荐参考书籍
(1)换热器理论与设计(第2版)/任剑钢著.(2)分离式换热器/荣庆栋著.
(3)热管换热器原理及设计/毛宏安著. (4)热管换热器应用/徐新良著.。
——大学《化工原理》列管式换热器课程设计说明书学院:班级:学号:姓名:指导教师:时间:年月日目录一、化工原理课程设计任务书............................................................................ . (2)二、确定设计方案............................................................................ (3)1.选择换热器的类型2.管程安排三、确定物性数据............................................................................ (4)四、估算传热面积............................................................................ (5)1.热流量2.平均传热温差3.传热面积4.冷却水用量五、工艺结构尺寸............................................................................ (6)1.管径和管内流速2.管程数和传热管数3.传热温差校平均正及壳程数4.传热管排列和分程方法5.壳体内径 6.折流挡板 (7)7.其他附件8.接管六、换热器核算............................................................................ . (8)1.热流量核算2.壁温计算 (10)3.换热器内流体的流动阻力七、结构设计............................................................................ . (13)1.浮头管板及钩圈法兰结构设计2.管箱法兰和管箱侧壳体法兰设计3.管箱结构设计4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14)6.外头盖结构设计7.垫片选择8.鞍座选用及安装位置确定9.折流板布置10.说明八、强度设计计算............................................................................ .. (15)1.筒体壁厚计算2.外头盖短节、封头厚度计算3.管箱短节、封头厚度计算 (16)4.管箱短节开孔补强校核 (17)5.壳体接管开孔补强校核 6.固定管板计算 (18)7.浮头管板及钩圈 (19)8.无折边球封头计算9.浮头法兰计算 (20)九、参考文献............................................................................ .. (20)一、化工原理课程设计任务书某生产过程的流程如图3-20所示。
反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。
已知混合气体的流量为231801kg h,压力为6.9MPa,循环冷却水的压力为0.4MPa,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。
已知:混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=⨯g循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=⨯g二、确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。
2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。
但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。
三、确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
故壳程混和气体的定性温度为T=260110+ =85℃ 管程流体的定性温度为t=3422939=+℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
对混合气体来说,最可靠的无形数据是实测值。
若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。
混和气体在85℃下的有关物性数据如下(来自生产中的实测值): 密度 31/90m kg =ρ定压比热容 1p c =3.297kj/kg •℃热导率 1λ=0.0279w/m •℃粘度 1μ=1.5×10-5Pa •s循环水在34℃ 下的物性数据:密度 1ρ=994.3㎏/m 3定压比热容 1p c =4.174kj/kg •K热导率1λ=0.624w/m •K粘度 1μ=0.742×10-3Pa •s四、估算传热面积1.热流量Q 1=111t c m p ∆=231801× 3.297×(110-60)=3.82×107kj/h=10614.554kw2.平均传热温差先按照纯逆流计算,得 m t ∆=K3.48296039110ln)2960()39110(=-----3.传热面积由于壳程气体的压力较高,故可选取较大的K 值。
假设K=320W/(㎡k)则估算的传热面积为Ap=2176.6863.4832010614554m t K Q m =⨯=∆4.冷却水用量 m =ipi t c Q ∆1=h kg s kg /2.915486/3.2541010174.4106145543==⨯⨯五、工艺结构尺寸1.管径和管内流速 选用Φ25×2.5较高级冷拔传热管(碳钢),取管内流速u 1=1.3m/s 。
2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数 Ns=6273.102.0785.0)3.9943600/(2.915486422≈⨯⨯⨯=ud Vi π按单程管计算,所需的传热管长度为 L=m n d A so p14627025.014.376.686≈⨯⨯=π按单程管设计,传热管过长,宜采用多管程结构。
根据本设计实际情况,采用非标设计,现取传热管长l=7m ,则该换热器的管程数为 Np=2714==l L 传热管总根数 Nt=627×2=12543.传热温差校平均正及壳程数 平均温差校正系数: R=5293960110t t T -T 1221=--=-P=124.0291102939t T t t 1112=--=--按单壳程,双管程结构,查【化学工业出版社《化工原理》(第三版)上册】:图5-19得:96.0=∆t ε平均传热温差46.448.30.96=⨯=∆=∆∆塑m t mt tεK由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。
4.传热管排列和分程方法采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。
见【化学工业出版社《化工原理》(第三版)上册】:图6-13。
取管心距t=1.25d 0,则 t=1.25×25=31.25≈32㎜隔板中心到离其最.近一排管中心距离: S=t/2+6=32/2+6=22㎜ 各程相邻管的管心距为44㎜。
管数的分程方法,每程各有传热管627根,其前后管程中隔板设置和介质的流通顺序按【化学工业出版社《化工原理》(第三版)上册】:图6-8选取。
5.壳体内径 采用多管程结构,进行壳体内径估算。
取管板利用率η=0.75 ,则壳体内径 为:D=1.05tmm N T 137457.0/12543205.1/=⨯=η按卷制壳体的进级档,可取D=1400mm筒体直径校核计算:壳体的内径i D 应等于或大于(在浮头式换热器中)管板的直径,所以管板直径 的计算可以决定壳体的内径,其表达式为:e 21n t D c i +-=)( Θ管子按正三角形排列:3912541.1N 1.1n t c =⨯==取e=1.20d =1.2⨯25=30mm∴i D =32 ⨯(39-1)+2 ⨯30 =1276mm 按壳体直径标准系列尺寸进行圆整:i D =1400mm6.折流挡板 采用圆缺形折流挡板,去折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=0.25×1400=350m ,故可取h=350mm取折流板间距B=0.3D ,则 B=0.3×1400=420mm ,可取B 为450mm 。
折流板数目1414.5145070001N B ≈=-=-=折流板间距传热管长折流板圆缺面水平装配,见图:【化学工业出版社《化工原理》(第三版)上册】:图6-9。
7.其他附件拉杆数量与直径选取,本换热器壳体内径为1400mm ,故其拉杆直径为Ф16拉杆数量8,其中长度5950mm 的六根,5500mm 的两根。
壳程入口处,应设置防冲挡板。
8.接管壳程流体进出口接管:取接管内气体流速为u 1=10m/s ,则接管内径为302.01014.3)903600/(23180144VD 1=⨯⨯⨯==πμ圆整后可取管内径为300mm 。
管程流体进出口接管:取接管内液体流速u 2=2.5m/s ,则接管内径为361.05.214.3)3.9943600/(2.91548642=⨯⨯⨯=D圆整后去管内径为360mm六、换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式【化学工业出版社《化工原理》(第三版) 上册】:式(5-72a ): 14.03155.0010)(Pr Re 36.0wed μμλα= 当量直径,依【化学工业出版社《化工原理》(第三版)上册】:式(5-73a )得e d =m d d t oo 02.0]423[422=-ππ 壳程流通截面积:1378.0)32251(1400450)1(S =-⨯=-=t d BD o o 壳程流体流速及其雷诺数分别为s m u o /2.51378.0)903600/(231801=⨯=624000105.1902.502.0u d Re 50e =⨯⨯⨯==-1μρo普朗特数773.10279.0105.110297.3c Pr 53p -⨯⨯⨯==λμ粘度校正1)(14.0≈wμμK m w o ⋅=⨯⨯⨯=23155.0/7.935773.162400002.00279.036.0α(2)管内表面传热系数: 4.08.0Pr Re 023.0iii d λα=管程流体流通截面积:1969.02125402.0785.02=⨯⨯=i S 管程流体流速:s m u i /3.11969.0)3.9943600/(2.915486=⨯=雷诺数: 34841)10742.0/(3.9943.102.0Re 3≈⨯⨯⨯=-普朗特数:96.4624.010742.010174.4Pr 33=⨯⨯⨯=K /585896.43484102.0624.0023.024.08.0⋅=⨯⨯⨯=m w i α(3)污垢热阻和管壁热阻:【化学工业出版社《化工原理》(第三版)上册】:表5-5取: 管外侧污垢热阻 w k m R o /0004.02⋅= 管内侧污垢热阻w k m R i /0006.02⋅=管壁热阻按【化学工业出版社《化工原理》(第三版)上册】:图5-4查得碳钢在该条 件下的热导率为50w/(m ·K)。