37Ⅲ泵车液压系统解析
- 格式:ppt
- 大小:4.96 MB
- 文档页数:29
泵车的构造及工作原理
泵车是一种用于输送各种液体或混凝土材料的特种车辆。
它主要由底盘、液压系统、液压泵、水箱、管道系统、输送管和喷管等组成。
底盘是泵车的基础,一般采用重型卡车底盘,具有足够的强度和稳定性。
液压系统是泵车的核心部件,由液压泵、液压马达和液压阀等组成。
液压泵负责将液体或混凝土材料从搅拌罐中抽取并送入管道系统中,液压马达则提供动力,使泵车能够进行工作。
液压阀控制液压系统的压力和流量,确保泵送的稳定性和安全性。
水箱是用来存放清洗泵送管道的水。
管道系统是泵车输送液体或混凝土材料的通道,一般由高强度的钢管组成,能够承受高压力和耐磨损。
输送管连接在液压泵和喷管之间,起到连接和输送材料的作用。
喷管是通过调节泵送压力和流量,将液体或混凝土材料喷射出去。
泵车的工作原理是利用液压泵的作用,在高压力下将液体或混凝土材料从搅拌罐中抽取,并通过管道系统输送到目标位置。
当液压泵运转时,通过液压阀控制液体或混凝土的压力和流量,使其保持稳定。
当泵车工作时,一般需要将输送管和喷管伸展到需要泵送的位置,通过调整喷管的角度和流量控制材料的喷射方向和范围。
总之,泵车通过液压系统的工作原理,将液体或混凝土材料从
一处输送到另一处,并且能够实现精准的喷射和泵送。
它在建筑工地、市政工程和道路维修等领域有着广泛的应用。
泵车工作原理1泵车作为一种现在建筑工程中常见的设备,广泛运用于混凝土输送领域,为了保证混凝土的质量,加快施工进程,我们有必要了解泵车的工作原理。
泵车由泵车主体、输送管路、液压系统、电气系统和液压油箱组成。
所谓“泵车主体”指的是车架,泵车车架离地面较高,这是为了保证混凝土输送时不会碰到凸起物,影响混凝土的均匀性。
泵车车架上安装了一根伸缩臂和一个泵体,伸缩臂的长度可以根据施工需要调节。
泵体安装在伸缩臂的末端,它是泵车运行的核心部件。
输送管路连接在泵体下方,将混凝土输送到施工位置。
泵车的液压系统主要由双联泵、水箱、液压离合器、液压控制阀、油缸等部件组成。
液压系统通过双联泵将水和液压油分别输送到液压离合器和液压控制阀,使泵体能够产生压力,推动混凝土通过输送管路到达施工位置。
水箱主要起到冷却液压油的作用,避免油温过高影响泵车运行。
液压控制阀是泵车的心脏,它负责调节输送压力和控制液压油的流量大小。
油缸则用于伸缩臂的伸缩,调节混凝土的输出位置。
电气系统是泵车的其他关键部件,控制泵车的各项功能。
电气系统由发电机、电路控制箱、电线、传感器、按钮等构成。
电路控制箱是控制泵车电气系统的大脑,传感器负责监测泵车的行驶、液压系统的压力和泵体的状态,当泵车发生异常时,它会发出警报。
按钮则是泵车操作员手中的工具,通过按钮操作,可以实现伸缩臂、泵体和油缸的运行。
以上是泵车的主要构成部分和功能模块介绍,下面进入泵车的工作原理阶段。
首先,泵车的一般工作流程是:将混凝土卡车上的混凝土从进料斗输送到泵车的料斗,然后启动泵车,伸缩臂延展,输送管路延伸到施工位置,将混凝土从泵车中压缩,通过输送管路注入施工位置。
完成注入后,将泵车的伸缩臂和输送管路收缩即可。
泵车的工作原理主要涉及泵体和液压系统的运作。
当启动泵车时,液压系统会将混凝土从泵车料斗中送到泵体内,利用泵体旋转的同时,内部的活塞不断摆动,将混凝土向输送管路推送。
同时,液压控制阀会根据泵车运行的情况调整压力和流量,保证混凝土稠度和速度的稳定。
湖南交通职业技术学院毕业设计(论文)审核设计(论文)题目:三一重工37米泵车结构原理与常见故障分析作者陈良明专业工程机械运用与维护班级机维1001班成绩校内指导教师王惠明校外指导教师熊平阳2013年 3月 10日摘要随着现代基础建设的飞速发展,混凝土输送泵作为一种高效率的建设机械,特别是混凝土输送泵车,已被广泛应用。
正确使用和深刻理解混凝土输送泵车是广大操作使用者的渴求。
本文针对三一37米混凝土泵车结构、使用原理及液压故障和处理方法做了详细的介绍;特针对其常见故障、案例进行了分析并给出了故障现象、故障分析、排除过程一系列具体的排故思路。
前面先介绍泵车的结构、保养和维护,后介绍泵车液压故障及处理办法,最后进行案例分析,循循渐进使读者从简入深,更好的认识和使用混凝土输送泵车。
此些故障、案例均是自己总结的亲身体会,其中许许多多都是汗与水的结晶,但是由于本身知识和技能的不足,可能会有许多不足之处,望各位谅解与纠正。
关键词:输送泵车,结构原理,故障诊断,排除技能目录第一章泵车的基本概况 (1)1.1 泵车的结构 (1)1.2 泵车特点 (2)1.3 技术参数 (4)第二章泵车的保养及维护 (5)2.1 机械部分 (5)2.2 臂架部分 (14)2.3 液压系统 (14)第三章泵车液压系统故障及处理方法 (19)3.1 系统无压力或压力不足 (19)3.2流量不足 (19)3.3泄漏 (19)3.4过热 (19)3.5振动 (19)3.6 冲击 (20)第四章泵车故障案例浅析 (21)4.1 泵车电气原理图 (21)4.2 臂架只能单边旋转或两边都不转 (22)4.3近控遥控时臂架支腿均不能动作 (23)4.4 搅拌压力不正常且调不上 (23)第五章结束语 (25)参考文献 (26)致谢 (27)第一章泵车的基本概况三一重工SANY系列混凝土泵车是以先进的有限元分析、动力学分析为基础,采用最前沿的材料以及控制技术开发而成的精品,并在“一切源于创新”的信念指导下,相继开发出开式油路全液压控制、主油缸智能换向控制、柴油机转速计算机自动控制装置、易更换砼活塞的泵送机构等一系列专利技术,以及数十项计算机安全控制技术。
混凝土泵车泵送部分液压系统故障分析与处理摘要:针对混凝土泵车泵送部分主油缸活塞不动作、主油缸活塞运行缓慢、主油缸换向失效、输送管出料不连续、分配S阀摆动无力、主油缸行程变短、液压油乳化问题等情况进行了分析,在此基础上提出切实可行的处理措施。
关键词:混凝土泵车;泵送液压系统;故障;处理措施一、概述现代工程建筑中混凝土泵车发挥着越来越重要的作用。
然而,混凝土泵车时常因为出现故障而影响工程建筑质量和进度,而混凝土泵车故障一般都是因为液压系统出现故障造成的,因为泵送部分直接接触混凝土,负荷重、摩擦严重、工况恶劣等原因造成泵送部分液压系统故障。
故障的排除只是一种事后的补救措施,液压设备的管理,在于防重于治,建立健全可行的维护保养制度,可收到事半功倍的效果,也可大大提高经济效益。
二、故障诊断技术1. 感觉诊断法液压系统故障的诊断方法很多,对于一些较为简单的故障,可以通过眼看、手摸、耳听和嗅闻等手段对零部件进行检查。
包括:(1)视觉诊断法;(2)听觉诊断法;(3)触觉诊断法;(4)嗅觉诊断法2、仪表测量检查法仪表测量检查法就是借助对液压系统各部分液压油的压力、流量和油温的测量来判断该系统的故障点。
3.精密诊断法精密诊断方法是减量在简易诊断方法的基础上对一些疑难问题通过采用一些现代化的诊断仪器设备以及电子计算机系统等来对这些问题进行进一步的诊断分析。
4、基于信号处理与分析法在液压系统中,有些故障用简单的方法是无法将系统的故障分析出来的,需要对所采集的信号进行分析和处理,将故障的特征找出来。
基于信号处理与建模分析的诊断法实质是以传感器技术和动态测试技术为手段,以信号处理和建模为基础的诊断技术。
下列介绍几种信号处理与分析的诊断法:(1)摆缸内泄系数法分析。
将左右摆缸的相关系数提取出来,通过信号分析的的方法,就可以确定出摆缸内泄和相关系数之间的关系确定出来,如图2所示,如果系数小于1就说明摆缸有内泄现象。
图1左右摆缸压力相关系数(2)霍尔传感器监测法分析霍尔传感器安装在泵上的监测主油泵转速。
一、概述泵车是目前施工现场常见的重型机械设备之一,它常用于混凝土的输送和泵送,广泛应用于建筑、桥梁等工程领域。
而泵车的液压系统则是其重要组成部分,对于泵车的工作性能和安全性起着至关重要的作用。
本文将介绍泵车液压系统的主要元件和工作原理。
二、泵车液压系统的主要元件1. 液压泵:液压泵是泵车液压系统的动力来源,它负责将机油从油箱中吸入并通过高压管路传送至执行元件,从而实现液压系统的工作。
液压泵通常采用柱塞泵或齿轮泵,其性能直接影响着泵车液压系统的工作效率和功率输出。
2. 油缸:油缸是泵车液压系统中的执行元件,主要负责产生推动力和输送混凝土。
油缸根据其工作方式可分为单作用油缸和双作用油缸,其结构和工作原理略有不同。
3. 阀组:阀组是控制液压系统工作的关键元件,它包括方向阀、压力阀、流量阀等,用于控制液压泵的启停、流向和压力等参数,从而实现对液压系统的精准控制。
4. 油箱:油箱是泵车液压系统的储油器,它主要用于储存液压油并对其进行冷却和过滤,同时还起到除气和沉淀杂质的作用,保证液压系统的正常工作。
5. 液压管路:液压管路连接液压泵、油缸、阀组等各个液压元件,是液压系统中输送液压油的通道,其材质和连接方式直接影响着液压系统的密封性和传动效率。
6. 滤清器:滤清器是液压系统中的重要保护装置,它主要用于过滤液压油中的杂质和颗粒物,保证液压系统的正常工作和元件的使用寿命。
7. 液压油:液压油是液压系统中的工作介质,其质量和类型直接影响着液压系统的工作性能和稳定性,因此选择适合的液压油对于泵车液压系统的工作至关重要。
三、泵车液压系统的工作原理泵车液压系统主要由液压泵、执行元件、控制阀组、液压油箱和管路等组成,通过液压传动实现对泵车的混凝土输送和泵送过程的控制。
1. 液压泵工作原理:液压泵通过轴的旋转运动产生离心力,使液压油在泵的吸液腔、压油腔之间不断的循环,从而产生一定压力的液压油,并通过高压管路输送至液压系统的各个执行元件。
析泵车支腿液压系统原理,发现泵车的每个支腿液压缸都带双向制动阀保护,即使拆下供油油管,也无法将油缸无杆腔中的液压油放出,而且双向制动阀接在液压缸无杆腔进油口上,在不拆下双向制动阀的情况下无法拆开,就收不回支腿。
只有在双向制动阀上想办法了,泵车的支腿液压系统原理图如图1所示。
在支腿上的双向制动阀(零备件手册上未详细介绍该双向制动阀的结构)上有一个大号螺帽,分析双向制动阀是由两个可控单向阀组成的,该螺帽是其中的一个,让人试着用扳手松开螺帽,有液压油渗出。
当松到三、四圈时,该可控单向阀被喷射出来,值得庆幸的是操作人员有所准备,将身体躲开了,未造成人员伤害。
最终用撬棍等将该支腿收起,并用铁线将其加固,也采用类似的方法将其它三个支腿收回合拢。
总结处理这次故障的经验,应该用千斤顶将支腿臂顶起,将油缸内的油压释放掉,再拆双向制动阀,就不会有危险了。
活塞一般由聚氨脂类材料制成,有弹性较耐磨,输送缸内壁也镀有耐磨材料。
活塞和输送缸之间的润滑方式一般有两种:一种是自动加油润滑,每泵送一次,加油系统自动加一次润滑油;另一种是手动加油系统,需人工定期加油。
对于自动加油系统,需定期检查油路是否畅通,否则一旦油路受阻,活塞和输送缸将急剧磨损;对于手动加油系统,操作人员应根据工作环境的不同,定期补充润滑油,通常情况下1次/h。
切记:加油时,一定要将活塞点动至垂直加油点的下部,以使润滑油刚好进入活塞中间的油槽。
泵送过程中,操作人员还要经常进行“憋缸”操作,即在主油缸活塞运行到终点时,操作点动按钮,保持5~8s,以补充主油缸封闭油腔的液压油(对于依靠接近开关换向的泵机,还要将接近开关尽量靠近主油缸一侧),以充分利用输送缸的行程,避免输送缸局部磨损。
操作人员还应密切注意水箱,一旦发现水已浑浊或水中有砂子,表明活塞可能磨损,需及时更换活塞,否则将加剧活塞和输送缸的磨损。
若更换新活塞后,水很快又变浑浊,则表明输送缸已磨损,需更换输送缸了。
三一重工37米泵车结构原理与常见故障分析三一重工37米泵车的基本结构主要包括车架、上车架、下车架、臂架、液压系统和电气系统等。
其中,车架是整个设备的骨架,负责提供足够的稳定性和支持力;上车架和下车架承载整个装置,上下运动;臂架是泵车通过伸缩臂实现混凝土输送的主要部位,臂架通过液压系统控制,可以实现水平和垂直方向的伸缩变化。
液压系统是泵车的核心部分,主要包括液压泵、液压缸、液压阀门等。
液压泵通过带动液压油进行压力传递和转换,实现伸缩臂的伸缩、旋转运动。
液压油经过液压阀门的调节,控制液压缸的运动,以达到对伸缩臂运动的精确控制。
常见故障分析主要集中在以下几个方面:1.液压系统故障:液压系统故障包括液压泵异常、液压油渗漏、液压阀门失效等。
针对这些故障,需要检查液压泵和液压油管路的连接情况,及时更换密封件,修复泄露部位,并检查液压阀门的工作状态,及时进行维修和更换。
2.臂架故障:臂架故障主要包括臂架卡滞、臂架松动等。
对于卡滞问题,需要检查液压缸的密封件是否正常,润滑油是否足够,及时进行维修和更换;对于松动问题,需要检查关键连接部位的紧固程度,及时调整和固定。
3.电气系统故障:电气系统故障主要包括电机异常、电缆故障等。
这些故障可能导致泵车的电力供应中断,影响工作正常进行。
针对这些问题,需要检查电机的工作状态和电缆的连接情况,及时修复和更换。
以上是三一重工37米泵车的结构原理和常见故障分析。
了解其结构原理和常见故障,能够帮助操作人员更好地运用和维护该设备,提高工作效率和安全性。
同时,在实际使用过程中,还应定期进行设备的保养和检查,及时发现问题并进行维修处理,以保证设备的正常运行。
混凝土输送泵车液压系统的分析摘要:混凝土泵车作为建筑施工中的重要工具,在施工中处于重要位置。
混凝土泵车与混凝土直接接触,工作负荷大,必须经常保养和维护,否则就会发生故障。
本文主要对混凝土泵车液压系统进行描述,利用实际工作经验对液压系统常见故障和处理手段进行介绍。
关键词:混凝土输送泵车液压系统随着国民经济的不断发展,能源、交通和城市建设的步伐不断加快,使得施工地点越来越多。
混凝土泵车作为机械化施工的重要设备,其在机械化施工中的地位越来越重要。
液压设备作为施工机械的重要部分,直接关系到施工工程的质量和速度,也是工程机械整机故障率最高的部件。
本文主要介绍工程机械液压传统系统,并分析液压系统故障出现的原因和处理的手段。
[1]1 液压系统工作原理液压系统主要分为泵送液压回路、自动换向回路和密封回路三部分。
[2]1.1 泵送液压回路泵送液压回路包括,安全、顺序、减压、储能和电磁等阀门,还包括滑阀缸和主油缸等。
泵送液压回路的工作原理为:主油泵输送液压油,经过减压阀流入储能器中。
同时,另一路通过滑阀换向阀流于滑阀油缸,推动滑阀缸运动。
一旦滑阀油缸到位以后,油压逐渐上升,增加储能器内的压力。
一旦油压达到10.5kPa时,顺序阀被打开,油通过主换向阀进入主油缸,推动主油缸运动。
安全阀将液压系统的最高压力限制在28MPa以下,而减压阀则将液压系统的压力限制在21MPa以下,两者有效地保护液压系统的元件,保持滑阀油缸运行的平稳,减少自动换向系统产生的冲击压力。
顺序阀门和储能器使得主油缸动作滞后于滑阀油缸,这样可以促进混凝土的吸入和排除。
1.2 自动换向回路自动换向回路主要分为主换向、滑阀换向、先导、升压、逆转和手动运转等阀门。
自动换向回路的工作原理为:主油缸中的活塞达到终点位置,其撞击主油缸体上的先导阀针,促使先导阀换向。
油泵输送的压力油使得手动运转阀、先导阀和逆转阀运转,最后升压阀换向。
一旦主油缸活塞换向后,到达前方活塞终点位置,其撞击另一先导阀针,使得升压阀再次换向。