Xrd定性定量分析
- 格式:pdf
- 大小:434.55 KB
- 文档页数:37
第四章XRD的定量分析
主讲:金祖权博士
土木工程学院
课堂复习
粉末照相法
德拜-谢勒法
X 射线仪
物相定性分析
主要内容X射线定量分析
物相定量分析定量分析原理
a相的衍射强度:混合物线吸收系数见公式a相的衍射强度公式见公式u Ca K Ia /*=
外标法原理:
混合物中的A相强度公式
纯物质强度公式:I=K/u
两者相除:得到公式
外标法测试方法
测出混合物和纯物质的衍射强度,
带入公式可求
测出纯A的衍射强度
测出不同A含量混合物的衍射强度
绘制定标曲线,然后依据曲线标定
内标法原理:
试样:
基本控制式:
内标法测试方法
内标和外标法制作标准曲线费事
Chung提出了标准化的内标法,也称为基体冲洗法—K值法
原理:利用预先测定好的参比强度K值,在定量分析时不需要做标准曲线,利用被测相质量含量和衍射强度的线性方程,通过数学计算而得到.
定量分析应注意问题实验设备、测试条件和方法
试样的要求
定性图谱
无标定量在水泥中的应用。
研究X射线波长和一般晶体晶格参数发现,两者的尺寸是数值相当或比较接近,从而有科学家断言,晶体晶格是X射线发生衍射现象的天然栅栏!后来果然得到了验证。
晶体是这样;非晶体的物质没有这种有规律的格子排列格局,当然就不能获得X射线衍射现象了。
物质有没有固定的熔点、沸点,并没有验证是一个纯净物、包括晶体的独有的予以可区别其它物质的测试属性。
晶体的熔点、沸点是相对比较固定,熔程也是比较窄,但拥有这一熔点、沸点的物质未必仅此一个;有些非晶体的纯净物,其熔点沸点也会在一定数值、熔程也会很窄。
总之,可能在二十世纪初期还可以这样做,但现在更科学的大型精密仪器分析法出现后,就不被认同了。
X射线衍射原理及应用介绍:特征X射线及其衍射X射线是一种波长很短(约为20~0.06 nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。
考虑到X射线的波长和晶体内部原子间的距离(10^(-8)cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将会发生衍射;衍射波叠加的结果使射线的强度在某些方向上增强、而在其它方向上减弱;分析在照相底片上获得的衍射花样,便可确定晶体结构。
这一预见随后为实验所验证。
1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布拉格定律:2d sinθ=nλ,式中,λ为X射线的波长,衍射的级数n为任何正整数。
当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一具有d点阵平面间距的原子面上时,在满足布拉格方程时,会在反射方向上获得一组因叠加而加强的衍射线。
关于XRD物相定量分析X射线衍射(X-ray diffraction,XRD)是一种常见的物相分析技术,可以用于准确测定材料中的晶体结构、晶格参数和晶体取向。
它是通过将束缚在一个固定平面的晶体样品,用X射线进行照射,并测量和分析散射的X射线来实现的。
XRD物相定量分析是一种将XRD技术与定量分析方法相结合的技术,旨在确定材料中各种不同晶相的存在量。
这种分析方法在材料科学、地质学、矿物学和结构化学等领域具有重要的应用价值。
XRD物相定量分析主要分为两个步骤:第一步是通过X射线衍射图谱的处理和分析来确定各种晶相的存在和优先方向。
第二步是根据衍射峰的强度和峰面积来定量计算每个晶相的相对含量。
下面将详细介绍这两个步骤。
在XRD物相定量分析的第一步中,需要进行X射线衍射图谱的处理和分析,以确定各种晶相的存在和优先方向。
通常使用的工具是X射线衍射图谱,可以通过它来获得物样品的晶格常数和相位辅助信息。
在这一步中,需要使用的方法包括傅立叶变换、谱分析和红外线色散等。
这些方法可以将衍射峰的波长与晶体结构的特征相结合,以确定晶体中晶格参数和晶相的存在。
在第二步中,根据衍射峰的强度和峰面积来定量计算每个晶相的相对含量。
通常使用的方法是相对强度法和内部标定法。
相对强度法是通过比较不同晶相的强度峰来计算相对含量。
而内部标定法则是将一种已知晶相作为内部标定物质,通过测量其相对峰强来计算其他晶相的相对含量。
这种方法需要准确的内部标定物质来进行校准。
除了这两个步骤外,还需要考虑一些影响XRD物相定量分析的因素。
例如,样品制备和衍射仪的性能等。
样品制备需要保证样品的纯度、颗粒大小和十分的均匀性,以避免峰重叠和多相分析误差。
而衍射仪的性能则涉及到亮度、解析度和角度精确度等因素,对结果的准确性和精度有着重要的影响。
总体来说,XRD物相定量分析是一种重要的材料表征技术,可以准确测定材料中各种晶相的相对含量,并为材料的特性和性能提供重要的信息。
XRD实验物相定性分析解析X射线衍射(XRD)是一种非常常用的实验技术,用于物相的定性和定量分析。
通过观察材料中X射线的衍射图案,我们可以确定材料的晶体结构、晶体定向和晶格参数等信息。
本文将详细介绍XRD实验物相定性分析的原理和解析过程。
nλ = 2dsinθ其中,n是衍射阶次,λ是入射X射线的波长,d是晶格间距,θ是入射角。
通过测量衍射角θ和计算晶格间距d,我们可以确定材料的晶体结构。
在进行XRD实验时,我们首先需要准备待测物样品,通常是一块固体材料。
然后,我们将样品放置在X射线束下,以使X射线通过样品,发生衍射。
衍射的X射线通过样品后,会被X射线探测器测量,产生衍射谱图。
在解读衍射谱图时,我们需要关注以下两个关键参数:衍射角(2θ)和衍射强度(I)。
衍射角是X射线的入射角度,是由仪器测量得到的,而衍射强度则表示材料中的晶体结构和取向。
通常,衍射强度与晶体的晶格性质、晶体结构以及晶体定向有关。
通过比对样品的衍射谱图与数据库中的标准衍射谱图,我们可以确定材料的物相。
数据库中包含了各种材料的XRD衍射谱图,包括金属、陶瓷、无机晶体等。
对于未知物相的样品,我们可以通过计算其衍射角和衍射强度与数据库中的标准进行比对,从而找到与其相匹配的物相。
此外,我们还可以通过拟合样品的衍射谱图,计算出材料的晶格参数。
常用的拟合方法有布拉格法、勒貌法和整形法等。
这些方法利用了衍射角和衍射强度的信息,通过数学模型计算出最适合样品的晶格参数。
需要注意的是,XRD实验在物相定性分析上具有一定的局限性。
例如,对于非晶态或粘土等无定形材料,XRD无法提供明确的物相信息。
此外,XRD实验还无法确定材料中不同晶体相的相对含量,只能进行物相定性分析。
综上所述,XRD实验是一种常用的物相定性分析技术。
通过观察样品的衍射谱图,并与数据库中的标准进行比对,我们可以确定材料的物相。
此外,通过拟合样品的衍射谱图,我们还可以计算材料的晶格参数。
X射线,又叫X光,英文简称X-ray,是一种电磁波。
它的波长介于紫外线和伽玛射线之间,它的波长分布在可见光之外,因此肉眼无法观察到。
常用的X射线波长分布在0.5埃~2.5埃。
正因为它是一种电磁波,因此它与无线电波、红外线、可见光、伽玛射线等,没有本质区别,只是波长不同而已。
∙X射线既然是一种波,因此在特定条件下,会产生X射线干涉和衍射现象,也可以用频率、波长来表征;∙X射线还具有料子性,它能产生光电效应、荧光辐射和康普顿散射等现象。
因此我们可以把X射线看成是一个个的光子(光量子),每一个光子都具有特定的能量。
光子数量可以由光电计数器(一种传感器)捕获。
∙用于金属探伤的X-ray波长一般在0.05埃~1.0埃之间或更短,因为当X-ray波长愈短时,光子能量就愈大,x-ray的穿透能力就愈强,可以检测更厚、更重的材料。
因此有时,我们把波长短的X射线为硬X射线,反之则称为软X射线。
XRD是什么意思?XRD是英文X-ray diffraction或者X-Ray Diffractometer的缩写,即X射线衍射,或X射线衍射仪。
我们经常也把X射线衍射分析技术也直接称为XRD分析,或简称为XRD。
XRD分析手段有2种,分单晶X射线衍射法,多晶X射线衍射法。
对应地,所用的XRD设备,也分为单晶衍射仪和多晶衍射仪。
物相,简称为相,它是有某种晶体结构并能用化学式表征其化学成分(或有一定的成分范围)的固体物质。
化学成分不同的是不同的物相,化学成分相同而内部结构不同的,也是不同的物相。
例如,同样是铁,它能以晶体结构为体心立方结构的Fe、也能以面心立方结构的Fe、还能以体心立方结构的高温Fe,这3种物相形式存在。
什么是物相分析?或者说什么是X射线衍射分析?其实这两者是一个问题。
物相,是指具有某种晶体结构并能用化学式表征其化学成分的固体物质,因此对每种物质或材料,常常需要弄清楚它含有什么元素,每种元素的存在状态如何,这种回答这种元素的存在状态,即是物相分分析的问题,也称为物相鉴定。