高一数学排列
- 格式:pdf
- 大小:1.23 MB
- 文档页数:9
高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。
在高一阶段,排列组合的学习主要集中在基本的知识点上。
本文将为大家介绍高一阶段排列组合的基础知识点及其应用。
一、排列与组合的概念排列和组合是组合数学中的两个基本概念。
排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。
排列和组合的计算方法也有所不同,下面分别介绍。
二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。
1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。
2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。
三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。
1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。
2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。
四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。
在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。
排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。
高中数学中的排列与组合在高中数学中,排列与组合是重要的概念和技巧。
它们在不同领域中都有着广泛的应用,尤其是在概率论、统计学和计算机科学中。
本文将介绍排列与组合的基本概念、原理和应用。
一、排列在数学中,排列是指从给定的元素中选取一部分,按照一定的顺序进行排列的方式。
下面我们来介绍排列的几个常见概念和公式。
1. 基本概念首先,我们引入排列的基本概念。
(1)全排列:从给定的n个元素中选取n个,按照一定的顺序进行排列,叫做全排列。
(2)k排列:从给定的n个元素中选取k个(k≤n),按照一定的顺序进行排列,叫做k排列。
2. 公式接下来,我们介绍排列的计算公式。
(1)全排列的计算公式:全排列的个数为n!(n的阶乘)。
(2)k排列的计算公式:k排列的个数为A(n,k) = n!/(n-k)!二、组合在数学中,组合是指从给定的元素中选取一部分,不考虑其顺序的方式。
下面我们来介绍组合的几个常见概念和公式。
1. 基本概念首先,我们引入组合的基本概念。
(1)全组合:从给定的n个元素中选取0个、1个、2个...直到n个元素的所有情况,叫做全组合。
(2)k组合:从给定的n个元素中选取k个(k≤n),不考虑顺序的所有情况,叫做k组合。
2. 公式接下来,我们介绍组合的计算公式。
(1)全组合的计算公式:全组合的个数为2^n。
(2)k组合的计算公式:k组合的个数为C(n,k) = n!/(k!(n-k)!)。
三、排列与组合的应用排列与组合有着广泛的应用,下面我们来介绍一些常见的应用领域。
1. 概率论与统计学在概率论和统计学中,排列与组合是计算事件的可能性的重要工具。
通过排列与组合的计算,我们可以确定事件的样本空间、计算事件的概率和进行统计推断等。
2. 计算机科学在计算机科学中,排列与组合是算法设计和分析的基础。
例如,在密码学中,排列与组合被用于生成和破解密码。
在图论和网络分析中,排列与组合是解决路径问题和网络优化问题的重要手段。
高一数学排列与组合知识点汇总高一数学排列与组合知识点(一)排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)!Ann=n!Cnm=n!/(n-m)!m!Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+…+Cnn-1abn-1+Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
高中数学中的排列与组合重要知识点详解排列与组合是高中数学中的重要知识点之一,它们在概率统计、数论以及实际问题中的应用非常广泛。
本文将详细介绍排列与组合的相关概念、性质以及应用。
一、排列的概念与性质排列是指从给定的元素中选取一部分按照一定的顺序进行排列,其结果不同于组合。
在排列中,每个元素只能使用一次,且不同的顺序会形成不同的排列。
1. 重复排列重复排列是指从给定的元素中选取一部分进行排列,但允许元素的重复使用。
对于n个元素中选取r个进行重复排列的可能数可以表示为n^r。
2. 不重复排列不重复排列是指从给定的元素中选取一部分进行排列,但不允许元素的重复使用。
对于n个元素中选取r个进行不重复排列的可能数可以表示为A(n, r)或nPr,计算公式为A(n, r) = n!/(n-r)!。
二、组合的概念与性质组合是指从给定的元素中选取一部分,不考虑其顺序,将其组成一个集合。
在组合中,不同顺序的元素组合形成的结果是相同的。
1. 重复组合重复组合是指从给定的元素中选取一部分进行组合,允许元素的重复使用。
对于n个元素中选取r个进行重复组合的可能数可以表示为C(n+r-1, r)或C(n+r-1, n-1),计算公式为C(n+r-1, r) = (n+r-1)! / (r!(n-1)!)。
2. 不重复组合不重复组合是指从给定的元素中选取一部分进行组合,不允许元素的重复使用。
对于n个元素中选取r个进行不重复组合的可能数可以表示为C(n, r)或nCr,计算公式为C(n, r) = n! / (r!(n-r)!。
三、排列与组合的应用排列与组合既有理论上的意义,也有广泛的实际应用。
1. 概率统计排列与组合在概率统计中经常用来计算样本空间的大小,从而计算概率。
例如,在抽取彩票号码、扑克牌的发牌问题中,可以利用排列与组合的知识来计算可能的结果数量。
2. 数论排列与组合也在数论中有重要的应用。
例如,在数论中,可能出现对排列和组合的计数问题,而排列与组合的知识可以帮助解决这些问题。
第10章排序10.1基本概念排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个项值有序的序列。
作为排序依据的数据项称为“排序码”,也即数据元素的关键码。
为了便于查找,通常希望计算机中的数据表是按关键码有序的。
如有序表的折半查找,查找效率较高。
还有,二叉排序树、B-树和B+树的构造过程就是一个排序过程。
若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可能不唯一,这是因为具有相同关键码的数据元素,这些元素在排序结果中,它们之间的的位置关系与排序前不能保持。
若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。
排序分为两类:内排序和外排序。
内排序:指待排序列完全存放在内存中所进行的排序过程,适合不太大的元素序列。
外排序:指排序过程中还需访问外存储器,足够大的元素序列,因不能完全放入内存,只能使用外排序。
10.2插入排序10.2.1直接插入排序设有n个记录,存放在数组r中,重新安排记录在数组中的存放顺序,使得按关键码有序。
即r[1].key≤r[2].key≤……≤r[n].key先来看看向有序表中插入一个记录的方法:设1<j≤n,r[1].key≤r[2].key≤……≤r[j-1].key,将r[j]插入,重新安排存放顺序,使得r[1].key≤r[2].key≤……≤r[j].key,得到新的有序表,记录数增1。
【算法10.1】①r[0]=r[j];//r[j]送r[0]中,使r[j]为待插入记录空位i=j-1;//从第i个记录向前测试插入位置,用r[0]为辅助单元,可免去测试i<1。
②若r[0].key≥r[i].key,转④。
//插入位置确定③若r[0].key < r[i].key时,r[i+1]=r[i];i=i-1;转②。
排列组合1、分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N=m+n种不同的方法。
2、分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法. 那么完成这件事共有N=m×n种不同的方法。
3、排列及排列数:(1)排列:排列数:从n个不同元素中取出m个(m≤n)个元素的所有排列的个数,(2)排列数公式()()1.nnA mn=m-⋅⋅⋅-1+n全排列:4、组合及组合数:(1)组合:组合数:(2)\计算公式:.5、组合数的性质:1、捆绑与插空法:例1.8位同学排成一队,问:⑴甲乙必须相邻,有多少种排法?⑵甲乙不相邻,有多少种排法?⑶甲乙必须相邻且与丙不相邻,有多少种排法?⑷甲乙必须相邻,丙丁必须相邻,有多少种排法?⑸甲乙不相邻,丙丁不相邻,有多少种排法?例2.某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?例3.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)2、定序问题缩倍法:例1.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)例2.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在A 的右边(A,B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种例3.从1,2,3,4,5五个数字当中任选3个组成一个三位数,其中十位比个位数字大的三位数共有多少个?3、 标号排位问题分步法:例1.同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )A 、6种B 、9种C 、11种D 、23种例2.将标有1, 2,… 10的10个小球投入同样标有1, 2,… 10的圆筒中,每个圆筒都不空,且所投小球与圆筒标号均不相同的投法共有多少种?4、 有序分配问题逐分法:例1.有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )种A. 1260B. 2025C. 2520D. 5040例2.12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )种A 、4448412C C C B 、44484123C C C C 、3348412A C C D 、334448412A C C C例3.有6本不同的书,按照以下要求处理,各有几种分法?(1) 平均分给甲、乙、丙三人;(2) 甲得一本,乙得两本,丙得三本.5、 隔板法:例1.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?例2.求方程X+Y+Z=10的正整数解的个数例3.将10个相同的小球装入3个编号分别为1,2,3的盒子当中,每次将10个球装完,每个盒子里的球的个数都不小于盒子的编号数,则不同的装法共有多少种?6、多元问题分类法:例1.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A. 210个B. 300个C. 464个D. 600个例2.(1)从1,2,3,…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(2)从1,2,3,…,100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)共有多少种?7、至少问题间接法:例1.从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有()种A. 140B. 80C. 70D. 35例2.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长。