小学数学教学中的抽象性
- 格式:docx
- 大小:22.18 KB
- 文档页数:8
如何在小学数学中培养学生的数学抽象能力数学抽象能力是指从具体的数学现象、数学问题中,抽取出数量关系、空间形式等数学本质特征,并形成数学概念、数学命题、数学方法的能力。
在小学数学教学中,培养学生的数学抽象能力具有重要意义,它不仅有助于学生更好地理解和掌握数学知识,还能为学生今后的学习和生活打下坚实的基础。
那么,如何在小学数学教学中培养学生的数学抽象能力呢?一、利用直观教学,帮助学生感知抽象小学生的思维以形象思维为主,他们对直观、具体的事物更容易理解和接受。
因此,在教学中,教师可以充分利用直观教学手段,如实物、模型、图形、多媒体等,帮助学生感知抽象的数学概念和知识。
例如,在教学“认识图形”时,教师可以先让学生观察生活中常见的各种图形,如三角形的红旗、圆形的车轮、长方形的黑板等,然后让学生通过摸一摸、折一折、剪一剪等活动,亲身体验图形的特征。
这样,学生就能在直观感知的基础上,抽象出图形的本质特征,形成对图形的初步认识。
又如,在教学“小数的意义”时,教师可以先出示一些商品的价格标签,如 58 元、125 元等,让学生观察这些价格中都有一个小圆点,然后通过分一分、涂一涂等活动,让学生理解小数是把“1”平均分成 10 份、100 份、1000 份……得到的十分之几、百分之几、千分之几……的数。
通过这样的直观教学,学生就能从具体的价格中抽象出小数的意义。
二、引导学生观察比较,培养抽象概括能力观察是思维的“窗口”,比较是思维的“桥梁”。
在教学中,教师要引导学生认真观察数学现象,比较数学对象的异同,从而培养学生的抽象概括能力。
例如,在教学“乘法的初步认识”时,教师可以出示这样一组算式:2 + 2 + 2 = 6,3 + 3 + 3 + 3 = 12,4 + 4 + 4 + 4 + 4 = 20。
让学生观察这些算式有什么共同点,学生通过观察会发现这些算式都是相同加数相加。
然后教师再引导学生思考:如果有 100 个 5 相加,用加法算式写出来会很麻烦,有没有更简便的方法呢?从而引出乘法的概念。
数学抽象及其在教学中的应用抽象性是数学的基本特点之一,所有的数学知识可以说都是经过抽象得到的,小学数学中的知识和方法亦是如此。
数学抽象也是一种基本的数学思想。
学生学习数学,不仅是要学习那些由前人抽象概括形成的数学知识,同时还要学习形成知识的抽象概括的方法。
了解数学抽象的特殊性以及如何在小学数学教学中有效应用数学抽象方法就显得十分必要。
本文将在分析数学抽象的内涵、分类、教育价值的基础上,探讨数学抽象在小学数学教学中的应用。
一、数学抽象的内涵和分类1.数学抽象的内涵。
“抽象”一词源于拉丁语“abstracio”,其本意是排除、抽取的意思。
现在人们对抽象的理解一般有两种,一种是用来形容那种远离具体经验,因而不太容易理解的对象性质的程度;另一种是指从具体事物中舍弃非本质属性而抽取本质属性的过程和方法。
后者反映出抽象是一种思维活动。
抽象性是数学的基本特点之一,抽象也是数学活动最基本的思维方法。
作为方法的数学抽象抽取的是事物在数量关系和空间形式等方面本质属性,进而提炼数学概念,构造数学模型,建立数学理论。
2.数学抽象的分类。
数学的一切活动,从概念到方法,实质上都是抽象的,大到组织一个数学体系所用的公理化方法,在实际应用中的数学模型方法,小到一个概念的给出,一个计算过程的建立,一个证明技巧的发现,甚至于一个问题的表征都需要用到数学抽象。
由此也可以看出数学抽象是多种多样的,也是多层次的。
了解数学抽象的分类有助于我们在教学中抓住抽象的重点和关键。
数学抽象根据抽象对象的性质可以分为“表征型抽象”“原理型抽象”和“建构型抽象”。
对事物所表现出来的特征的抽象,称为“表征型抽象”。
例如三角形、正方形、圆、立方体、轴对称等概念都是“表征型抽象”的结果。
对事物内在因果性、规律性、关系性的抽象,称为“原理型抽象”。
例如乘法分配律、三角形内角和为180º等基本数学关系都是“原理型抽象””的结果。
而建立在这些抽象基础上的数学建构性活动称为“建构型抽象”。
小学数学教学中如何培养学生的抽象思维能力要培养学生的抽象思维能力,我们可以在小学数学教学中采取以下方法:1.引导学生进行数学建模:数学建模是培养学生抽象思维能力的重要方法之一、教师可以给学生提供一些实际问题,让他们来使用数学知识进行建模和求解。
例如,教师可以提出一个实际问题,让学生设计一个数学模型,并通过算式、图表等方式进行表示和解释。
通过这样的实践,学生可以培养对问题抽象化和数学符号的理解能力。
2.提供多样化的问题解决方法:数学问题往往有多种解决方法,教师可以引导学生探索问题的多种解决思路,并鼓励他们思考和比较不同的方法优缺点。
例如,教师可以提供一道问题,要求学生使用图形法、数字法、代数法等不同的方法进行解答。
通过比较不同方法的优劣,学生可以培养综合考虑问题和灵活运用不同方法的能力。
3.鼓励学生进行推理和证明:在进行数学教学时,教师可以引导学生进行推理和证明,培养他们的逻辑思维能力。
例如,教师可以给学生提供一些已知条件和结论,让他们通过推理和证明来解决问题。
通过这样的练习,学生可以培养逻辑思维和推理能力,并逐渐习惯于进行严密的证明过程。
4.进行数学游戏和竞赛:数学游戏和竞赛是培养学生抽象思维能力的有效途径。
教师可以利用数学游戏和竞赛来激发学生的兴趣,并提供一些有挑战性的问题供学生解决。
通过参与游戏和竞赛,学生可以锻炼他们的抽象思维和解决问题的能力。
5.融入创造性思维:除了培养学生的抽象思维能力,还可以注重培养他们的创造性思维能力。
教师可以鼓励学生在解决数学问题时思考出不同的解决思路,并鼓励他们独立探索和尝试新的方法。
通过这样的过程,学生可以培养创新思维和问题解决能力。
总而言之,要培养学生的抽象思维能力,在小学数学教学中我们可以采取多种方法。
通过数学建模、多样化的问题解决方法、推理和证明、数学游戏和竞赛以及创造性思维的融入,学生可以逐渐培养抽象思维和解决问题的能力。
这些方法既可以在课堂上进行,也可以作为课外活动进行拓展,以全面促进学生的数学思维发展。
小学数学教学中抽象思想的渗透摘要:数学具有抽象性。
教师要教好数学,学生要学好数学,都需要在小学数学教学中渗透抽象思想,推动学生抽象思维的形成。
有意识地渗透抽象思想,对小学数学教学质量的提升也有着事半功倍的效果。
关键词:小学数学;抽象思想;渗透策略;引言在数学核心素养当中,数学抽象是非常重要的一个组成部分,要想让学生形成数学抽象能力,抽象思想的渗透则是非常必要的,这将对学生抽象思维和能力的发展产生良好的推动作用。
所以,在数学课程教学中,教师应该加大关注,多举并施,带动学生的抽象思维能力得到进一步的增强。
一、基于核心素养发展的小学数学抽象思想渗透的必要性(一)满足课标要求新课改大力的倡导,在当前数学课程教学开展的过程当中,教师一定要对教育方式方法积极地进行改革,不要将教学的关注点只是局限在知识本位上,而是应该给予学生更多的空间,推动学生的思维和能力得到良好的发展。
而在现阶段数学教学开展的过程当中,通过抽象思想在课堂教学当中的渗透,就能够使课标要求得到良好地满足和落实。
(二)助力全面发展在新时期的背景下,核心素养已经成为课程教学开展过程当中非常重要的一个概念,能够对学生的全面和综合发展产生良好的推动作用。
而在现阶段,在核心素养的导向下,小学教师在数学教学开展过程当中,加大抽象思想的渗透,就能够助力学生的全面发展,让学生在接触抽象思想的过程当中运转思维、提高能力,让学生在数学知识探索的过程当中做到自主、合作和探究,让学生的数学能力和综合素质得到不断增强。
这样能够与新课改和素质教育的要求相符合,实现对学生全面发展的推动,让学生可以在课程教学当中有更多的收获。
二、小学数学教学中抽象思想的渗透策略(一)充分挖掘教材内容,渗透抽象思想将客观的数学知识作为彰显数学思想的根基,充分挖掘数学教材中的内容,实现抽象思想的渗透和加强。
例如,在教学《比较数的大小》一课时,首先,教师为学生列4组数字:12和56;45和43;78和10;98和68,教师告诉学生12比56小,56比12大,让学生将剩余三组数字的大小说出来。
小学数学课堂如何培养学生的抽象概括能力数学是一门充满逻辑和思维的学科,对于小学生来说,培养他们的抽象概括能力是数学学习中的重要任务。
抽象概括能力不仅有助于学生更好地理解数学知识,还能为他们未来的学习和生活打下坚实的基础。
那么,在小学数学课堂中,如何有效地培养学生的抽象概括能力呢?一、利用直观教具和生活实例,帮助学生建立抽象思维小学生的思维主要以形象思维为主,他们对于直观、具体的事物更容易理解和接受。
因此,在教学过程中,教师可以充分利用直观教具,如实物、模型、图片等,帮助学生将抽象的数学概念与具体的形象联系起来。
例如,在教授“长方体和正方体”这一内容时,教师可以拿出长方体和正方体的实物模型,让学生观察它们的面、棱、顶点等特征,然后引导学生自己动手摸一摸、数一数,从而对长方体和正方体的概念有一个直观的认识。
此外,教师还可以结合生活中的实例,如教室中的桌椅、书本、粉笔盒等,让学生找出哪些是长方体,哪些是正方体,进一步加深他们对这两种立体图形的理解。
通过直观教具和生活实例的展示,学生能够从具体的事物中抽象出数学概念的本质特征,逐渐建立起抽象思维。
二、引导学生进行观察和比较,培养概括能力观察和比较是培养抽象概括能力的重要方法。
在数学课堂中,教师要引导学生仔细观察数学对象的特点,发现它们之间的相同点和不同点,并进行比较和分析。
比如,在学习“整数的加减法”时,教师可以给出一些算式,如 5 +3、8 2、7 + 1 等,让学生观察这些算式中数字的特点和运算符号,然后引导他们比较这些算式的计算方法,概括出整数加减法的计算法则。
再如,在学习“三角形的分类”时,教师可以展示不同形状、大小的三角形,让学生观察它们的角的特点,然后将三角形按照角的大小进行分类,并概括出锐角三角形、直角三角形和钝角三角形的定义。
通过观察和比较,学生能够发现事物的本质特征和规律,从而提高概括能力。
三、组织小组合作学习,促进学生交流与思考小组合作学习是一种有效的教学方式,能够充分发挥学生的主体作用,促进学生之间的交流与合作。
例谈小学数学教学中的抽数学思想是数学发生、发展的根本,是探索、研究数学所依赖的基础,也是数学教学的精髓。
提到数学思想,我们就会想到是转化、数形结合、对应、函数、分类等。
《课标》(2011年版)经过专家组讨论,明确了数学的“基本思想”主要有数学抽象的思想、数学推理的思想和数学模型的思想,因为这些思想既是数学产生与发展所依赖的思想,也是学习数学以后具有的思维能力。
本文想结合教学实践谈谈对数学抽象的理解。
一、对于数学抽象的理解——多角度数学是一门抽象的学科,无论概念、运算律还是公式等都是高度概括的结果。
数学抽象就是把与数学有关的知识引入数学内部。
人类通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科。
如1、2、3、4等数是从具体实物抽象的结果,a-1、a、a+1这三个连续的自然数(a∈N且a≥1)也是从大量确定的实例中抽象出来的结果,点、线、面、体也是抽象出来的。
那么对于数学抽象可以从哪几个维度去理解呢?我认为数学抽象从教学内容上分可以分为概念抽象、关系抽象、规律抽象和方法抽象等。
1.概念抽象概念抽象从教学内容分包括:数的抽象、图形的抽象、概念、法则、定律的抽象以及规律的抽象等。
经历数的抽象过程:“2”是由“2个苹果、2支笔、2粒扣子、2张桌子”等具体实物抽象出来的;分数是测量或者分东西得不到整数的情况下产生的;负数表示意义相反的量,从生活中的温度计中的零下5℃、电梯的地下2层、珠穆朗玛峰的海拔高度和吐鲁番盆地的海拔高度、工资卡收入和支出的钱数等实例抽象出负数和整数表示的量是一样的,只不过意思相反。
经历图形的抽象过程:空间观念主要是指根据物体特征抽象出几何图形,这句话中道出了几何图形也是抽象出来的。
如前面提到的点、线、面、体都是从生活中抽象出来的;像毛巾的形状、课桌的形状、窗户的形状,有四条边,对边相等,四个角都是直角就是长方形;而直角三角形、等边三角形、锐角三角形、等腰三角形、钝角三角形等都属于三角形,它们是三角形的其中一种情况。
小学数学中培养学生抽象思维能力的策略小学数学作为基础学科,对于学生的抽象思维能力有着重要的培养作用。
抽象思维能力是指将具体事物从具体情境中抽象出来,以符号和符号关系的形式予以表达、处理、运用和创造的能力。
抽象思维能力是现代社会重要的综合素质之一,而小学数学教育则是培养学生抽象思维能力的重要途径。
下面就介绍一些针对小学数学教育中如何培养学生抽象思维的策略。
一、通过实物、图片、动画等多媒体教育手段进行教学,让学生对数学概念动手操作,通过实物操作的方式把具体的概念抽象化,使学生通过实例来理解抽象思维。
例如,让学生在课堂上使用成组提供的木块砌成数学图形,这样可以让学生不仅了解数学图形的形状和结构,也在进行实际操作的过程中锻炼学生的抽象和空间思维能力。
让学生通过动手实验、调查研究等方式,将书本上的抽象知识更直观地呈现出来,进而促进学生抽象思维的提升。
二、通过拓宽学生的思路,让学生理解一些复杂的数学概念。
例如,在教学整数的概念时,通过寻找整数的间隔规律,让学生从实例中得出全体整数的定义或规律,学生将具体的规律理解成抽象的整数概念,从而让学生进一步扩展思维范围,提高想象力和创造力。
三、通过学生自主探究的方式,让学生尽可能地寻找规律和模式。
例如,在教学数学小技巧时,让学生多尝试,寻找规律和模式,可以提高学生思维的灵活性和抽象思维能力。
四、引导学生形成自主思考、合作学习和创造的习惯。
例如,在数学作业题上,可以设置开放性问题,鼓励学生创造性的思考和回答,可以让学生表现出自己的想象力和创造力,同时也可以培养学生互相合作的精神,促进学生彼此之间的协作和交流能力。
综上所述,小学数学教育可以通过多种方式来促进学生抽象思维的发展。
只要有系统和具体的教学安排,结合教材中的例题和实例,注重细节,加强学生的实践锻炼和探索,使学生在不断的实践中,不断积累经验、提升能力,从而更好地发展抽象思维能力。
小学数学核心素养中抽象能力的培养一、抽象能力的重要性抽象能力是指人们运用概念和原理对事物进行概括、归纳和推理的能力,是人们思维的高级形式。
在数学学习中,抽象能力是十分重要的,它是数学思维的核心。
在小学阶段,培养抽象能力是为了让学生能够更好地理解和运用数学知识,培养学生的逻辑思维和组织能力。
只有具备了较强的抽象能力,学生才能更好地理解数学概念,运用数学知识解决实际问题。
在现代社会中,抽象能力也是一种非常重要的职业素养。
随着科技和信息的快速发展,需要具备较强抽象能力的人才越来越多。
培养学生的抽象能力,既是为了提高数学学科素养,也是为了帮助学生更好地适应未来社会的需求。
二、抽象能力的培养方式为了培养学生的抽象能力,教师需要采取一系列有效的培养方式。
需要注重启发式教学。
在启发式教学中,教师可以通过提出具体的问题、让学生找规律、归纳总结等方式,激发学生的抽象思维,培养学生的抽象能力。
教师需要注重培养学生的自主学习能力。
在学习过程中,学生需要不断地积累经验,从实际问题中总结和归纳规律,培养自己的抽象思维能力。
教师还需要注重培养学生的良好的逻辑思维能力,让学生能够进行合理的思考和分析,从而培养他们的抽象能力。
培养抽象能力还需要借助一些外部资源。
可以通过丰富多彩的数学游戏来激发学生的数学兴趣,通过数学实验来培养学生的观察、实验和推理能力,通过数学竞赛来锻炼学生的数学思维和解决问题的能力等。
这些都是培养学生抽象能力的有效途径。
在小学数学教学中,培养学生的抽象能力是数学核心素养的重要内容之一。
在数学教学中,需要注重让学生进行具体到抽象的转化。
在学习概念理解和数学公式推导过程中,教师可以通过具体的实例,让学生逐渐进行抽象的思维转化。
在学习乘法公式时,可以通过实际的物品,如桌子上有几排几个苹果,让学生逐步观察与思考,从具体到抽象,从而更好地理解乘法的概念。
数学教学中还需要注重培养学生的问题意识和解决问题的能力。
通过引导学生多解问题、不断举一反三、培养学生发现问题、解决问题的能力,从而培养学生的抽象思维和分析能力。
小学数学教学中抽象思想的渗透关键词:小学数学;抽象思想;策略引言数学具有抽象性、逻辑性,这就要求学生拥有抽象思想。
在小学数学教学中,教师要善于把握一切有利的时机,科学的设计教学,渗透抽象思想,稳步提升学生的抽象能力。
本文就如何在小学数学教学中渗透抽象思想进行探析。
一、数学抽象思维的意义首先,数学知识是对生活不断抽象的过程,而抽象过程又包括观察、比较、推理、归纳等基本思维过程,最终用数学语言与符号来表示数量关系。
《义务教育数学课程标准(2011年版)》亦指出,要让学生“经历运用数学符号与图形描述现实世界”,进而“发展抽象思维”。
所以,在小学数学教学中强调抽象思维的培养,有利于数学教学目标的实现。
其次,数学抽象思维的发展有利于数学学习的开展,能提高学生数学学习的质量。
小学阶段是学生数学思维发展的关键时期,而数学思维最大的特点即是抽象性,会直接影响学生的分析、判断、归纳能力,所以抽象能力的强弱直接影响学生数学学习质量,对学生发展是至关重要的。
最后,从小学生认知特点来看,知识的建构过程即是从已知到未知,再到已知的过程。
具体到数学知识的学习中亦是如此,只有让学生经历事物从具体到抽象的过程,才能更好地掌握数学知识。
从这个角度而言,抽象思维能力是进行数学学习的基础,是学习数学知识的关键。
二、小学数学教学中抽象思想的渗透策略(一)依据循序渐进原则,初识抽象思维数学是一门抽象、复杂的学科,如果教师始终采用灌输原则教学,不仅不利于小学生抽象思维的养成,还会降低教学效率。
为此教师要转变教学原则,将灌输原则转换循序渐进原则,在渗透抽象思想时要把握渗透进度,不可急于求成,要循序渐进,一点一点地渗透,引导学生反复体会和感悟,让学生对抽象思维有了初步的认识,渗透引导要有层次性,从低到高,从感性认识到理性认知,将每个教学细节扣详细,从而保证抽象思维能够有效渗透,将抽象的数学知识放大再放大,帮助学生用直观的眼光去看待抽象概括的形成,简化学习难度。
小学数学学习特点及方法对教学的影响一、小学数学学习的特点1. 抽象性强小学数学学习的内容主要围绕数字、符号、图形等进行,这些概念都具有一定的抽象性。
对于小学生来说,理解这些抽象的概念需要一定的时间和过程,因此需要老师通过具体的例子和情境进行引导,让学生能够更好地理解和掌握数学的知识。
2. 逻辑性强数学是一门逻辑性很强的学科,数学的每一个知识点都有其逻辑性和推理性。
小学生在学习数学的过程中,需要培养逻辑思维、分析问题和解决问题的能力。
教师在教学过程中要注意培养学生的逻辑思维能力,引导学生进行逻辑推理,培养学生的思维能力和解决问题的能力。
3. 实用性强小学数学学习的内容主要围绕生活和实际情境展开。
数学是一门实用性很强的学科,它与我们的日常生活息息相关。
教师在教学过程中要注重将数学知识与生活实际相结合,让学生能够体验到数学在日常生活中的应用和实用性,激发学生学习数学的兴趣。
1. 渐进法小学生数学学习的方法要注意采用渐进法,即从易到难,由浅入深地进行教学。
在引导学生学习新知识的过程中,要循序渐进,逐步拓展学生的数学知识面,避免学生对数学知识产生畏难情绪。
2. 具体化教学小学数学学习需要采用具体化教学的方法,通过具体的事例、实物和情境引导学生学习数学知识。
教师在教学中要善于利用实际生活中的例子和情境,让学生能够在具体的情境中感受数学知识,更好地理解和掌握知识点。
3. 启发式教学小学数学学习需要采用启发式教学的方法,引导学生进行思考和探究,通过提出问题、给予提示和引导让学生自己进行探索和发现,培养学生的主动学习能力和解决问题的能力。
通过启发式教学,可以激发学生学习数学的兴趣,提高学生的学习积极性。
1. 培养学生的学习兴趣3. 促进学生的学习发展小学数学学习的特点及方法对教学有着重要的影响。
教师在教学中要充分考虑小学数学学习的特点及方法,采取有效的教学策略和方法,引导学生进行数学学习,促进学生的全面发展。
希望通过教师的不断努力和指导,能够让学生更好地掌握数学知识,培养学生的数学兴趣和学习能力,为学生的未来发展打下坚实的数学基础。
小学数学教学中的抽象性
抽象性可以归纳为以下三点:
(1)不仅数学概念是抽象的,而且数学方法也是抽象的,并且大量使用抽象的符号。
(2)数学的抽象是逐级抽象的,下一次的抽象是以前一次的抽象材料为其具体背景。
(3)高度的抽象必然有高度的概括。
一抽象的意义与特征
1、抽象的意义
抽象是从复杂的事物中抽取一些事物的本质属性而舍弃非本质属性的思维方法。
数学中的概念、性质、法则、符号都是抽象的结果。
数学的抽象是具有其他学科所没有的特定的抽象特征,利用它能充分反应事物的本质属性。
2、抽象的特点
(1)概括性。
概括是在认识事物属性的过程中,把所研究各部分事物得到的一般的、本质的属性联系起来,整理推广到同类的全体事物,从而形成这类事物的普遍概念。
概括通常可分为经验概括和理论概括两种。
在数学的学习中,我们会经常遇到要将某一属性推广到同类对象中去的思维过程。
例如,从长方形面积公式的推导推广到平行四边形面积的推导,再扩展到三角形、梯形、圆的面积公式的推导中去。
数学可以说是具有高度概括性的学科,数学尽管是抽象的,但它的抽象与概括是相互联系,密不可分的。
(2)层次性。
数学是揭示事物的空间形式和数量关系的科学,这样的特点决定了数学的抽象是不同于其它学科的。
在对数学问题的抽象中我们会遇到很多的数量关系和空间
形式,它们无论从内容、形式、还是表达方式,都不是完全一致的过程,有些过程相对复杂,有些相对简单,有些抽象很简洁,有些却很复杂,甚至会出现在一而再,再而三抽象的特性。
有些具体一些,有些则更一般、更抽象一些。
从幼儿开始接触到具体的数,感受数的基本特点,再到低年级对数的认识、理解数的概念,再到高年级数的分类、自然数、奇数、偶数、素数、合数,逐渐抽象,概念的形成过程中层次性、阶段性非常明显。
针对不同年龄阶段的心理特点,抽象思维需要解决的问题、所要达到的能力也有所不同。
二抽象与具体的关系
1、具体以抽象为过程
作为与生活紧密联系的具体的知识是人们在社会存在
中应当掌握的必备的知识。
而现实世界是丰富多彩、千变万化的。
人们不可能在短时间内掌握大量的科学知识,只能通过把现实的生活知识抽象转化为可在短时间内学会的文化、技能知识,才能很快地掌握,抽象在这一转化中起到桥梁的
作用。
没有抽象性,知识就不可能形成系统性,在社会的传承中就容易缺失,更不便于人们去掌握。
2、抽象以具体为始点
讲到数学的抽象性,就离不开它的具体性。
很多数学概念,在它的产生过程中,就常常用到具体模型。
数学的抽象性必须以具体为出发点。
例如,体积、容积等概念,首先要从具体的空间让学生感受到体积、容积的意义,从直观上观察感受1立方米、1立方分米、1立方厘米、1毫升、1升的大小,从而感知体积、容积,并与实际生活联系起来。
再通过操作感受体积、容积的计算方法,如果直接讲解体积的计算公式,学生往往没有概念,最终只是学习的书本知识,培养的只是解题的工具。
3、抽象以具体为归宿
人们认识世界的目的是为了掌握世界。
数学中抽象出来的知识,包括我们抽象认识到的数、式、方程、图像等都需要回到实践中,经受实践的检验。
人们对客观世界的认识中更需要这些抽象性的理论的指导。
因而这些抽象性的东西都要以服务客观世界为主要目的。
抽象要以具体作为归宿,这样才能体现出抽象的意义,实现抽象的价值,否则,抽象就失去了它的现实意义。
我们在数学的教学和学习中,要充分挖掘那些能帮助我们阐述客观现象和解决实际问题的工具,
采用抽象和具体相结合的方法,定性、定量地去分析和解决实际问题。
4、抽象是相对于具体的抽象
教学内容具有高度的抽象性,这些抽象性的内容的认识和分析需要具体的素材加以表现,而对于那些相对复杂的问题,那些经过多次抽象而产生的问题的认识,我们往往可以在一次抽象完成时,产生一些能反应事物共同属性的具体内容,在此基础上再上升到更高一层的抽象,这更高一层的抽象是抽象中的再抽象,这时,第一次的抽象相对来说,也可以看作是具体的了。
三抽象在小学数学教学中的应用
新课程的总体目标指出:学生要能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其它学科学习中的问题。
特别从知识与技能,数学思考、解决问题、情感与态度四个方面对抽象性所要达到的要都作了明确的规定。
因而教师在教学中要关注学生抽象思维的形成过程,抽象能力的培养,用数学知识解决相关问题能力的提高。
1、现阶段教学中抽象性教学存在的问题
(1)教学目标不明确,忽视抽象性的培养或抽象性的定位不准确。
如基本数量关系的教学方面,从低年级一直延续到高年级。
而在实际的教学过程中,低年级比较重视,到中、高年级基本上不提。
教材给的许多基本题,特别是
有关计算时的例题,是教学数量关系的最好例子。
但教师往往重视计算教学的过程,而忽视抽象的数量、思维方法的训练。
学生只掌握计算的方法,而造成解决问题方法的缺失。
(2)概念知识讲解不清,概念的意义讲解不透。
由于对抽象性教学的淡化,学生对概念只具有形象性的知识,对于概念的名称及所包含的不清不透,甚至出现当用文字表述时不知所描述的是什么概念。
如同一平面内两条直线的位置关系,如果呈现图,学生能正确区分平行与相交,而问两条直线位置关系时,许多学生就不能正确回答出平行与相交。
再比如,平行四边形这一概念。
什么是平行四边形,教材中并没有给出明确的表述,而是通过观察图形,形成平行四边形的概念。
至于什么是平行四边形,平行四边形的特点并没有完整的认识,学到梯形时,学生对这两个概念就容易混淆。
(3)知识系统的缺失。
知识点要形成一个系统必须通过抽象的手段。
杂而繁多的知识点分部于各册教材中,就每一个知识点而言都是具体的知识。
就具体讲只是个别的知识。
,只有通过抽象将具体的知识点转化为抽象的知识并与其它的抽象知识相联系,才能形成系统的知识,也更便于学生的掌握。
如整数乘法计算的教学,从表内乘法到两位数乘一位数、两位数乘多位数、多位数乘多位数,计算
方法是统一的,也是抽象的,但更主要的还是乘法意义的理解。
乘法的意义是乘法计算的一根主线,去掉主线就很难形成系统性的知识。
特别是乘法分配律的应用,以及相关的应用题教学时就会遇到较大的困难。
(4)形而上的现象比较突出。
为了突出数学学习的生活性、趣味性、教师在教学过程中往往注重设计生活化与趣味化的情境,以提高学生的学习兴趣。
但忽视了现代儿童的心理特点与社会经验,造成了形而上的现象。
如低年级教学中常用些小动物创设情境,但现代儿童已不满足于小动物的表演,他们接触多的并不是小动物,对此类的情景并没有过多的兴趣。
再比如平面图形的计算中经常通过设计房间的情境,但现代的孩子又有多少关心过家庭的房间呢?
2、教学抽象性缺失的解决策略。
(1)提高教师的教学能力。
教师要有对系统知识把握的能力,有足够的知识储备,有广汲并蓄的能力。
教师只有对所教知识有整体的把握,才能知道各知识点的前后联系,有针对性地设计富有生活性、趣味性、挑战性的情境,让学生在解决问题中得到发展。
接受学习并不过时,上位学习影响下位学习,下位学习要综合成上位学习,这样才能形成知识的系统性。
同时教师的教学能力强,才能用易于学生接受的方式表述各知识点,从而提高课堂教学的效率。
(2)帮助学生积累生活经验与社会经验。
学生已具有的生活经验与社会经验是学习的基础,也是形成抽象思维的系统性知识面的基础。
因而让学生参与社会活动,帮助学生在活动中积累生活经验,提高学生解决问题的能力。
小学教学中的抽象知识,特别是一些概念性的知识,要通过具体的形象联系学生的实际形成概念,并纳入知识系统,帮助学生牢固地掌握。
否则淡化概念教学会造成学生不知概念名称的现象,更谈不上形成系统性知识。
(3)抽象思维训练要注重时效性与连续性。
抽象思维能力的形成非一朝一夕能培养出来的。
思维的发展随着学生年龄的增长与生活经验的丰富而逐步提高。
而在现实的教学中,教师是变换的,但教材是不变的。
这就要求教师在教学过程中深入挖掘教材,要注意抽象思维训练的衔接,逐步提高学生的抽象思维能力。
如小学数学常用的分析方法,由条件探求问题与由问题寻找条件,即平常说的综合法与分析法,这两种解决问题的方法贯穿小学数学学习的始终。
这就要求教师在平时的教学过程中时时注意到两种方法的训练,让学生养成用两种方法分析与解决问题的习惯。
(4)让学生在学习过程中感受抽象的意义与作用,提高学习数学的兴趣。
数学知识比较抽象是不争的事实。
因而,许多学生对数学不感兴趣也不足为奇。
如何转变这种现象,
让学生对学习数学感兴趣是数学教师需解决的问题。
在教学过程中要让学生感受到抽象性思维的优点,体验抽象过程中的成功,与学生的具体经验紧密切联系,从而提高学习数学的兴趣。
总之,小学数学教学过程中的抽象思维的教学是枯燥的,但教师要时刻关注学生抽象思维的形成与发展,掌握学生抽象思维发展的规律,灵活设计教法,变抽象为形象,提高学生的学习兴趣,从而达到我们的教学目标。