变压器运行特性分析资料重点
- 格式:pptx
- 大小:366.95 KB
- 文档页数:18
课程设计名称:电机与拖动课程设计题目:变压器运行特性分析计算专业:班级:姓名:学号:课程设计成绩评定表变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。
虽然这些变压器有所不同,但是它们的基本原理是相同的。
本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。
为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。
通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。
关键词:变压器;基本方程式;折算;等值电路;MATLAB计算1 变压器结构及其组成部分 (1)1.1变压器的基本结构 (1)1.1.1铁芯 (1)1.1.2绕组 (1)1.1.3油箱和冷却装置 (2)1.1.4绝缘套管 (2)1.1.5其他构件 (2)1.2变压器的额定值 (2)2变压器的变换关系 (4)2.1电压变换 (4)2.2电流变换 (4)2.3阻抗变换 (5)3变压器等值电路及其折算关系 (6)4变压器空载时的分析与计算 (8)5变压器负载运行时的分析与计算 (9)6变压器副边突然短路时分析计算 (10)7结论 (11)8心得体会 (12)参考文献 (13)1 变压器结构及其组成部分1.1 变压器的基本结构电力变压器主要由铁芯、绕组、变压器油、油箱、绝缘套管组成组成。
铁芯和绕组是变压器的主要部分,二者装配到一起称为变压器的器身。
图1-1为油浸式变压部结构示意图。
图1-1 油浸式变压部结构示意图1.1.1 铁芯铁芯是变压器的主磁路,又是变压器器身的骨架。
实验二单相变压器运行特性的研究一、任务目标1、测定单相变压器的空载特性、短路特性。
2、测定单相变压器变比和参数。
2、测定单相变压器的运行特性。
三、实训过程1、单相变压器空载试验的接线及测取空载试验数据4-5单相变压器空载试验接线图按图4-5接线。
图中单相变压器选用MEC11,其额定值P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A,变压器的低压线圈a、x接电源,高压线圈A、X开路;交流电压表V1、V2选用MEC23;交流电流表A选用MEC22;功率、功率因数W选用MEC24。
(1)检查按图4-5的接线是否正确,交流电压、电流表、单相功率表及变压器的接法是否正确。
确认MEC01电源总开关处于断开状态,将控制屏左侧的三相调压器逆时针方向旋转到底。
(2)开启控制屏上的电源总开关,按下“启动”按钮,顺时针调节控制屏左侧的三相调压器,逐渐升高交流输出电压(用V1表观察),使交流输出电压U O=1.2U N。
(3)从U O=1.2U N开始,逆时针调节控制屏左侧的三相调压器,逐次降低交流电源输出电压U O,直至降至U O=0.2U N,在1.2U N~0.2U N的范围内,测取变压器的空载电压U0、空载电流I0、空载功率P0、功率因数cosφ0(按下MEC24的“功能”键,显示单元显示cos时,按下“确认”键即可读取电动机M的当前功率因数,返回功率测试状态时只需按下“复位”键即可)及高压绕组AX端电压U AX,共测取数据7-9组。
记录于表4-3中,其中U O=U N点必须测,并在该点附近多测几点。
(4)试验结束后,将控制屏左侧的三相调压器逆时针方向旋转到底,按下“停止”按钮。
2、单相变压器短路试验的接线及测取短路试验数据图4-6 单相变压器短路试验接线图按图4-6接线。
图中单相变压器选用MEC11,变压器的高压线圈A、X接电源,低压线圈a、x短路;交流电压表V1选用MEC23;交流电流表A选用MEC22;功率、功率因数W选用MEC24。
一、变压器的运行特征变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。
1、电压变化率1)外特性变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。
变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。
2)电压变化率负载电流变化,变压器副边端电压将随着发生变化。
电压调整率是变压器负载时副边端电压变化程度的一种程度。
假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示即⊿U*=(U20-U2)/U2N式中U20—副边空载电压U2—时的副边端电压由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。
副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。
综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。
为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。
在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。
但采用最多、最普遍的还是变压器调压。
变压器的空载运行特性介绍一、电磁物理现象1、磁通:(1) 主磁通(Φ)----由一次绕组电流产生,同时交链一、二次绕组的磁通。
沿铁芯路径闭合,磁阻小、会饱和,由电磁转换传递功率。
(2) 一次漏磁通(Φ1σ)----由一次绕组电流产生,只交链一次绕组的磁通。
沿空气回路闭合,磁阻大、不会饱和,不传递功率。
2、其他:(1) 空载运行----运行时一次绕组加电压,二次绕组开路,输出电流为零。
(2) 空载电流(i0)----空载运行时,一次绕组所加电流(i1=i0)。
(3) 励磁电流(im)----空载时,不输出电流,则输入电流全部用于建立磁场,故im= i0 。
(4) 电磁关系:二、正方向的规定1、目的:对交变的量,规定了正方向,才能列写电压方程。
2、应用:当求解出的电压、电流、磁势、磁通等为正值,代表实际方向同规定的正方向,为负,代表实际方向与规定的正方向相反。
3、选择:电流g磁通,右手螺旋;磁通g电势,也是右手螺旋。
三、感应电动势、电压变比1、电压平衡式:2、电势:3、变比:四、励磁电流引言:忽略电阻压降、漏电势有:,当外施电压大小、波形(正弦)一定,则磁通的大小和波形也一定,磁通Φ为“正弦基波”,产生磁通的励磁电流im(i0)如何?1、磁路饱和对励磁电流的影响(1) 当磁路未饱和时(Bm<0.8T),i0与Φ的关系曲线为线性,产生正弦波磁通,则励磁电流也按正弦变化。
(2) 当磁路饱和时(Bm>0.8T),i0与Φ的关系曲线为非线性,产生正弦波磁通,则励磁电流为对称的尖顶波变化,为便于矢量表达,取有效值相同的正弦波代之。
定义尖顶波电流(),为“磁化电流”,相位与磁通一致(同相位)。
2、磁滞现象对励磁电流的影响(1) 电流产生磁通,上升磁化曲线与下降不重合。
(2) 要产生正弦波磁通,励磁电流i0为不对称的尖顶波,可分解为一个对称尖顶波的磁化电流iμ和磁滞损耗电流ih 。
(3) 相位:,3、涡流现象对励磁电流的影响(1) 原因:交变磁通g在铁芯中感应电势g产生涡流(电流)g涡流损耗(有功损耗)。
变压器参数测定及运行特性变压器是电力系统中最常见的设备之一、它们用于变换电压和电流,以便在输电和配电系统中传递电能。
为了保证变压器的正确运行和高效性能,需要对其参数进行测定,并了解其运行特性。
变压器的参数包括额定功率、额定电压、短路阻抗和效率等。
额定功率是变压器能够稳定输出的电功率,一般以千瓦为单位;额定电压是指变压器的额定输入电压和输出电压,通常以伏特为单位。
短路阻抗是指变压器在短路状态下产生的电阻,它决定了变压器的能耗和发热量。
效率是指变压器输入和输出功率的比值,用来衡量变压器的能量转换效率。
变压器参数的测定可以通过实际测试和计算两种方法进行。
实际测试包括测量并记录变压器的额定功率、额定电压和短路阻抗等数值,并根据相关标准进行计算和分析。
计算方法可以使用变压器的等效电路图,根据其参数进行计算,包括基本电路参数、变压器的等效电阻和自感等。
变压器的运行特性是指变压器在不同工作状态下的性能表现。
主要包括负载特性、温升特性和电压调整特性等。
负载特性是指变压器在不同负载下输出电压的变化情况,通常以电压-电流曲线表示。
温升特性是指变压器在长时间运行过程中的温升情况,可以通过测量变压器的温度来评估。
电压调整特性是指变压器在负载变化时输出电压的稳定性,它通常用电压调整率表示,即单位电压变化时的输出电压变化。
为了保证变压器的正常运行和长寿命,需要对其运行特性进行监测和调整。
当变压器的负载发生变化时,应调整调压器或负载以确保输出电压的稳定性。
如果变压器的温升超过设计标准,需要采取措施降低负载或增加散热装置来散热。
此外,定期检查变压器的绝缘性能和湿度等环境因素也很重要。
总之,变压器的参数测定和运行特性的了解对于电力系统的正常运行至关重要。
只有通过科学的测量和监测,才能保证变压器的安全性、稳定性和高效性能。
关于城市配电房轻载配变经济运行分析为进一步挖掘降损空间,提升线损精益化管控水平,现对城地区1域内配电变压器运行状态进行分析。
城地区1域范围内尤其是新建小区等区域,由于土地空间有限,多采用配电房内安装变压器方式。
配电房中常见的为干式变压器,当变压器轻载时,可采用“一拖二”方式将两台轻载变压器负荷转移到一台变压器,从而降低损耗水平。
选取地区1、地区2、地区3和地区4四家单位的配电房内配变进行分析。
一、基本概况配电变压器的分类从绝缘材料上分干式或油浸式两种。
一般来说,箱变内变压器一般采用干变及在综合建筑内(地下室、楼层中、楼顶等)和人员密集场所需使用干变,干式变压器体积小、无油、消防安全级别高,但是造价高;油变采用在独立的变电场所,如变电站内或sh者户外临时用电,油变容量范围大、适用环境广泛、造价低。
配电室在一般情况下均为独立场所建设,一般配置双路电源、两台或者两台以上配电变压器,单台配变容量不超过800kVA。
选取地区1、地区2、地区3和地区4公用配电变压器进行分析,四家单位公用配变合计42693台,其中配电房中安装的变压器21045台,即城地区1域内以配电房内安装变压器方式较多。
根据《城市配电网运行水平和供电能力评估导则》(Q/GDW565—2010)规定,轻载配变是指年最大负载率小于等于20%的配变。
对四家单位2019年配电变压器的最大负载率情况进行分析,最大负载率在20%以下的轻载配电变压器12646台,占比60.1%。
其中年最大负载率在10%以下的变压器5845台,占比27.77%。
说明重庆公司配电房内配变的负载率不高,具备采用“一拖二”或“一拖多”方式进行节能降损的空间,对变压器经济运行状况进行分析具有一定的节能价值。
在配电房安装的变压器中,对其安装容量进行统计分析,容量以630kVA和800kVA的为主,分别占比36.01%和46.75%。
其余容量变压器包括315kVA、400kVA、500kVA、1000kVA等。
内容回顾§2-4 变压器的参数测定¾空载实验实验目的:求出变比k、空载损耗p0 和激磁阻抗Z m。
注意事项:为了试验安全和仪表选择方便,一般在低压边加电压,高压边开路。
实验步骤:进行试验时,高压边开路,低压边加上额定电压U1N,测量副边电压U20、空载电流I0及空载输入功率p0。
¾短路实验实验目的:求出负载损耗pk 、短路阻抗Zk和短路电压uk。
内容回顾注意事项:为了便于测量,稳态短路试验通常将高压绕组接到电源,低压绕组直接短路。
实验步骤:进行试验时,副边短路,原边通过调压器接到电源。
试验时所加电压必须比额定电压低得多,以原边电流达到或接近额定值为止。
测量这时的电压Uk ,原边电流Ik,和输入功率p k。
计算标幺值时应注意以下问题:1)在三相变压器中,实际值为相值,则基值也应是相值;实际值为线值,则基值也应是线值。
在对称三相电路中,线值和相值的标幺值是相等的。
在交流电路里,最大值和有效值的标幺值是相等的。
2)实际值与基值的单位必须一致。
采用标幺值具有下列缺点:标幺值的缺点是没有单位,因而物理概念不明确,而且失去了利用量纲关系来检查某些计算是否正确的可能性。
§2-6 变压器的运行性能¾电压调整率当原边接在额定频率和额定电压的电网上,空载时副边电压U20 与在给定负载功率因数下副边电压U2的算术差,用副边额定电压的百分数表示的数值,即:变压器的运行分析注:变压器带上负载之后,由于变压器内部的漏阻抗压降,导致副边电压U2 与空载电压U20不相等,通常用电压调整率来表示副边电压变化的程度。
电压调整率是表征变压器运行性能的重要数据之一,它反映了变压器供电电压的稳定性。
电压调整率ΔU与变压器的参数和负载性质有关,可用简化相量图求出。
变压器的运行分析§2-6 变压器的运行性能¾损耗与效率变压器产生的损耗:负载损耗和铁耗。
负载损耗基本负载损耗电流流过线圈所产生的电阻损耗。