第六章 微生物代谢调控育种(4-29)
- 格式:ppt
- 大小:12.18 MB
- 文档页数:86
代谢调控及育种从工业微生物育种史来看,诱变育种曾取得了巨大的成就,使微生物有效产物成百倍、乃致成千倍的增加。
但是诱变育种工作量繁重,盲目性大。
近年来由于应用生物化学和遗传学原理,深入研究了生物合成代谢途径以及代谢调节控制的基础理论,人们不仅可进行外因控制,通过培养条件来解除反馈调节而使生物合成的途径朝着人们所希望的方向进行,即实现代谢控制发酵;同时还可进行内因改变,通过定向选育某种特定的突变型,以达到大量积累有益产物的目的,即所谓代谢控制育种。
内因是变化的根据,所以改变微生物的遗传型往往是控制代谢的更为有效的途径。
代谢控制育种可以大大减少传统育种的盲目性,提高了效率。
代谢控制育种很快在初级代谢产物的育种中得到广泛的应用,成就也十分显赫,几乎全部氨基酸和多种核苷酸生产菌株都被打上了抗性或缺陷型遗传标记。
代谢调节控制育种通过特定突变型的选育,达到改变代谢通路、降低支路代谢终产物的产生或切断支路代谢途径及提高细胞膜的透性,使代谢流向目的产物积累方向进行。
一、克服反馈抑制和反馈阻遏的调控克服反馈调节,可从以下两方面着手:降低末端产物浓度;应用抗反馈突变株1、降低末端产物浓度(1)营养缺陷型的利用A、在直线式生物合成途径中营养缺陷型突变株的代谢流受阻,末端产物减少,解除了末端产物参与的反馈调节,可使代谢途径中的某一中间产物积累。
一个典型的例子是谷氨酸棒状杆菌的精氨酸缺陷型突变株进行鸟氨酸发酵(,由于合成途径中酶6(氨基酸甲酰转移酶)的缺陷,必须供应精氨酸和瓜氨酸,菌株才能生长,但是这种供应要维持在亚适量水平,使菌体达到最高生长,又不引起终产物对酶② (N—乙酰谷氨酸激酶)的反馈抑制,从而使鸟氨酸得以大量分泌累积。
B、利用营养缺陷型积累分支代谢途径中的中间产物营养缺陷型突变导致协同反馈调节某一分支途径的代谢阻断,使这一分支途径的终产物不能合成。
若控制供应适量的这一终产物,满足微生物生长,将使合成代谢流向另一分支途径,有利于另一终产物的大量积累。
目录1.绪论 (2)1.1.微生物的代谢 (2)1.2.微生物代谢的调节 (2)2.微生物的初级代谢 (2)2.1.能量代谢 (2)2.1.1.能量代谢的载体ATP (2)2.1.2.ATP的代谢方式 (2)2.2.分解代谢 (3)2.2.1.糖的代谢 (3)2.2.2.脂肪和脂肪酸的代谢 (3)2.2.3.氨基酸的代谢 (4)2.2.4.核酸的代谢 (4)2.3.合成代谢 (4)2.3.1.糖类的合成 (4)2.3.2.脂类的合成 (5)2.3.3.氨基酸的合成 (5)2.3.4.蛋白质的合成 (6)2.3.5.核苷酸与核酸的合成 (7)3.微生物的次级代谢 (7)3.1.次级代谢概述 (7)3.2.次级代谢的意义 (8)3.3.次级代谢的生物合成 (8)3.4.次级代谢的特点 (8)4.微生物代谢的调节 (9)4.1.代谢调节的部位 (9)4.1.1.原核微生物细胞的代谢调节部位 (9)4.1.2.真核微生物细胞的代谢调节部位 (9)4.2.代谢调节的方式 (9)4.3.酶活性的调节 (9)4.3.1.酶活性调节的调节机制 (9)4.3.2.前馈与反馈 (10)4.3.3.反馈抑制 (10)4.4.酶合成的调节 (10)4.4.1.酶合成的诱导 (10)4.4.2.酶合成的阻遏 (10)4.4.3.酶合成诱导和阻遏的机制 (10)5.总结 (11)微生物代谢及其调节1.绪论1.1.微生物的代谢微生物代谢包括在微生物细胞中进行的所有生物化学反应的总和。
在代谢过程中,凡是能释放能量的物质分解过程称为分解代谢;吸收能量的物质合成过程称为合成代谢,因其导致新物质的生化合成也称为生物合成。
通过代谢,细胞吸收营养物质,并把它们转化为细胞成分,同时将废物排泄到体外。
无论是分解代谢还是合成代谢,代谢途径都是由一系列连续的酶促反应构成,其前一步反应的产物是后续反应的底物。
细胞通过各种方式有效的调节相关的酶促反应来保证整个代谢途径的协调性与完整性,从而使微生物细胞的生命活动的以正常进行。
工业微生物育种复习题解析第一章绪论1.什么是工业微生物?作为工业微生物应具备哪些特征?答:工业微生物:对自然环境中的微生物经过改造,用于发酵工业生产的微生物。
具备特征:(1)菌种要纯(2)遗传稳定且对诱变剂敏感(3)成长快,易繁殖(4)抗杂菌和噬菌体的能力强(5)生产目的产物的时间短且产量高(6)目的产物易分离提纯2.工业微生物育种的基础是什么?答:工业微生物育种的基础是遗传和变异。
3.常用的工业微生物育种技术有哪些?答:常用技术:(1)自然选育【选择育种】(2)诱变育种(3)代谢控制育种(4)杂交育种(5)基因工程育种第二章微生物育种的遗传基础1.基因突变的类型有哪些?答:有碱基突变,染色体畸变2.叙述紫外线诱变的原理?答:原理:紫外线对微生物诱变作用,主要引起DNA的分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。
3.基因修复的种类有哪些?答:种类:(1)光复活修复(2)切除修复(3)重组修复(4)SOS修复4.真核微生物基因重组的方式有哪些?答:方式:(1)有性杂交(2)准性生殖(3)原生质体融合第三章出发菌株的分离与筛选1.什么是富集培养?答:富集培养:指在目的微生物含量较少时,根据微生物的生理特点,设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下的劣势种变成人工环境中的优势种,以利于分离到所需要的菌株。
2.哪些分离方法能达到“菌落纯”?哪些分离方法能达到“细胞纯(菌株纯)”?答:菌落纯:稀释分离法、划线法、组织法细胞纯:单细胞或单孢子的分离法3.分离好氧微生物常用的方法有哪些?答:(1)稀释涂布法(2)划线分离法(3)平皿生化反应分离法4.平皿生化反应分离法有哪些?分别用来筛选哪些菌?各自原理如何?答:(1)透明圈法原理:在平板培养基中加入溶解性较差的底物,使培养基混浊,能分解底物的微生物便会在菌落周围产生透明圈,圈的大小可以放映该菌株利用底物的能力。
微生物的代谢动力学与调控微生物是指在自然界中广泛存在的微小生物,它们以最简单的单细胞体形存在,却能发挥出惊人的代谢威力。
微生物的代谢动力学与调控是微生物学领域中一个重要的研究方向,这也是微生物学家们在研究微生物生理学、微生物分子生物学等方面所必须掌握的知识。
本文将从动力学与调控两方面进行探讨。
一、微生物的代谢动力学微生物的代谢是指微生物在细胞内进行的各种物质的合成和分解过程。
代谢的过程中,化合物被酶催化,转化成其他化合物,释放出能量和产生废物。
微生物的代谢可以分为两类,即产生能量的代谢和物质合成的代谢。
1. 产生能量的代谢产生能量的代谢一般采取碳源、氮源、磷源等无机盐离子作为基础物质,利用某些能量源(例如阳光、有机物、无机物)将基础物质转化成生物分子。
产生能量的代谢过程可以主要分为三种子过程:(1)酵解:酵解是微生物在缺氧环境中利用碳源和无机盐离子进行分解代谢的过程。
酵解的终产物一般是有机酸、醇或其他有机物。
(2)呼吸作用:呼吸作用是微生物在氧气存在的环境下,通过三大能量子过程——糖酵解、三羧酸循环和呼吸链途径,从而获得 ATP 的过程。
呼吸作用的终产物是二氧化碳和水。
(3)光合作用:光合作用是微生物通过吸收光能将 CO2 转化成有机物的过程。
对于非光合体系的微生物,可以依靠其他能量源来获得能量。
2. 物质合成的代谢物质合成的代谢是指微生物在合成生物大分子的过程中,从基础物质中提取必需的小分子化合物,加以重组,从而形成新的生物大分子的过程。
微生物的物质合成代谢包括氮源代谢、磷源代谢、硫源代谢、生物素代谢等多种类型。
氨基酸、核酸和细胞膜等细胞重要化合物的合成是微生物物质合成代谢的主要任务。
具体而言,微生物的物质合成代谢可以分为几大过程,如:(1)核酸合成:核酸合成是微生物物质合成代谢中的重要部分,它涉及AGCT四种核苷酸的合成和连接。
(2)类固醇合成:类固醇是一类重要的生物分子,它是生命体中分子的基石。