2010年中考模拟试卷 数学试题卷
- 格式:doc
- 大小:373.00 KB
- 文档页数:7
2010年中考模拟卷 数学卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取 正确答案1. 下列计算正确的是【 】 (原创)A .624a a a -= B.62()a -= 12a C.623a a a ÷= D.1226a a a =⋅2. 据初步统计,2009年,中央企业房地产业务销售收入为2209亿元,这个数用科学记数法表示为【 】元. (原创) A. 92.20910⨯ B.102.20910⨯ C.112.20910⨯ D.122.20910⨯3. 某学校有800名九年级学生,要知道他们在学业水平考试中成绩为优秀、良好、合格、 不合格的人数各是多少,需要做的工作是【 】 (原创) A .求平均成绩 B. 进行频数分布 C. 求极差 D.计算方差4. 下列是某同学在一次测验中解答的填空题,其中填错.了的是【 】. (原创) A.-2的相反数是 2 B. 2-= 2C.∠α=32.7°,∠β=32°42′,则∠α-∠β= 0 度D.函数1x y x-=的自变量x的取值范围是 x<15. 已知(,)p x y 在函数21y x x =---的图象上,那么点P 应在平面直角坐标系中的 ( ) (原创)A 、第一象限B 、第二象限C 、第三象限D 、第四象限6. 若一个图形绕着一个定点旋转一个角α(0180α<≤)后能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如图所示),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋FEDABC转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形个数有【 】 (原创)A. 1 B.2 C.3 D. 4 7. 如图,将一个矩形纸片ABCD ,沿着BE 折叠,使C 、D 点分别落在 点11,C D 处.若150C BA ∠=,则1AED ∠的度数为【 】 (原创) A.20 B. 30 C . 40 D. 508.观察下列正方形的四个顶点所标的数字规律,那么2010这个数标在【 】(原创)A. 第502个正方形的左上角B. 第502个正方形的右上角C. 第503个正方形的左上角D. 第503个正方形的右上角9.如图,PA 、PB 是⊙O 的切线,A 、 B 为切点,OP 交AB 于点D ,交⊙O 于点C , 在线段AB 、PA 、PB 、PC 、CD 中,已知其中两条线段的长,但还无法..计算出⊙O 直径的两条线段是【 】(原创) A. AB 、CD B. PA 、PC C. PA 、AB D. PA 、PB10. 如图,△ABC 是等腰直角三角形,且∠ACB=90°,AC=1,分别以A ,B ,C为圆心做弧,得到曲线CDEF ,那么图中阴影部分的面积为【 】(根据2010年初中毕业学业考试模拟考数学试卷第10题改编)第7题第10题第6题A .(1272)π4+B .(952)π+24+ C .(1272)π+24+ D .(952)π4+二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.计算:()=⎪⎭⎫⎝⎛+---2322328 。
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 4 。
12. X=5 。
13. x(xy+2)(xy-2) 。
14. x <-1或x >3 。
15. 232-+或。
16. 517 。
三. 解答题(8小题共66分) 17. (本题6分) 解:(1)15x =,215x =; ·························································································· 2分(2)21a a+(或1a a+); ··························································································· 2分(3)二次项系数化为1,得22615x x -=-,得2222613131555x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭,213144525x ⎛⎫-= ⎪⎝⎭. 开方,得131255x -=±.解得15x =,215x =. ···························································································· 2分18. (本题6分)(1)作A E ⊥BC 于点E BE=BC-AD=4-1=332tan ==∠BEAE ABC ∴AE=DC=2 ……………(1分)设),1(1y A -),4(2y B -∴k y -=1,42k y -= 221==-CD y y ∴2)4(=---k k∴38-=k ……………(3分)(2) 38-=k ∴xy 38-=E∴当4-=x 时32)4(38=-⨯-=y ∴32=BH ……………(5分)∴BHOC ABCD ABHODS S S 矩形梯形五边形=+32424121⨯+⨯+⨯)(=323385==+… (6分)19. (本题6分)(1)连接BC 由作图可知:AC=BC=DC 易证:︒=∠90ABD …………… (3分)(2)略 …………… (3分) 20. (本题8分) 解:解:(1)12············································································································ 1分(2)13························································································································ 3分(3)根据题意,画树状图: ························································································· 6分由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)41164==. ··············································································· 8分或根据题意,画表格:·································································································· 6分第一次第二次1 2 3 4 1 11 12 13 14 2 21 22 23 24 3 31 32 33 34 441424344由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)41164==.·························································································· 8分21. (本题8分)(1)200;……………………………………2分(2)a = 0.45, b = 70 ……………………4分(每空1分) (3)126;……………………………………6分 (4)900. ……………………………………8分 22. (本题10分)1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 44开始解:(1)在R t AEB △中,A C B C = ,12C E A B ∴=,C B C E ∴=,C E B C B E ∴∠=∠. 90CEF CBF ∠=∠=,BEF EBF ∴∠=∠,EF BF ∴=.90BEF FED ∠+∠= ,90EBD EDB ∠+∠=,FED ED F ∴∠=∠.EF FD = .BF FD ∴=. ······································································································· (3分) (2)由(1)BF FD =,而B C C A =,C F A D ∴∥,即AE C F ∥.若A C E F ∥,则A C E F =,BC B F ∴=.BA BD ∴=,45A ∠= .∴当045A <∠< 或4590A <∠<时,四边形A C F E 为梯形. ························ (6分) (3)作G H B D ⊥,垂足为H ,则G H A B ∥.14D G D A =,14D H D B ∴=.又F 为B D 中点,H ∴为D F 的中点.G H ∴为D F 的中垂线.G D F G F D ∴∠=∠. 点G 在E D h 上,E F D G F D ∴∠∠≥.180EFD FDE DEF ∠+∠+∠=,180GFD FDE DEF ∴∠+∠+∠≤. 3180EDF ∴∠≤.60EDF ∴∠≤.又90A EDF ∠+∠=,3090A ∴∠<≤.∴当3090A ∠<≤时,D E 上存在点G ,满足条件14D G D A =. ···················(10分)23. (本题10分)解:(1)购进C 种玩具套数为:50-x -y (或47-54x -1011y )……2分(2)由题意得405550()2350x y x y ++-= 整理得230y x =-……5分 (3)①利润=销售收入-进价-其它费用(5040)(8055)(6550)(50)200p x y x y =-+-+----又∵230y x =- ∴整理得15250p x =+……7分②购进C 种电动玩具的套数为:5050(230)803x y x x x --=---=-据题意列不等式组102301080310x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得70203x ≤≤ ∴x 的范围为70203x ≤≤,且x 为整数 x 的最大值是23 ……9分∵在15250p x =+中,15k =>0 ∴P 随x 的增大而增大∴当x 取最大值23时,P 有最大值,最大值为595元.此时购进A 、B 、C 种玩具分别为23套、16套、11套.……10分AB CD F EMGH24. (本题12分) 解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ;………………………1分 在21410189y x x =--中,令0x =得10y =即(0,10)B -;………………2分由于B C ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x =即(8,10)C -且易求出顶点坐标为98(4,)9-……………………………………3分于是,(18,0),(0,10),(8,10)A B C --,顶点坐标为98(4,)9-。
2010年初三中考模拟(一)数学试卷时间:120分钟 总分:120一、选择题(本大题共有5小题,每小题3分,共15分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1、平面直角坐标系内,点A (-2,-3)在( )A.第一象限 B 第二象限 C.第三象限 D 。
第四象限 2.下列图形中,既是..轴对称图形又是..中心对称图形的是( )3.下列事件中最适合使用普查方式收集数据的是( )A .了解某班同学的身高情况B .了解全国每天丢弃的废旧电池数C .了解一批炮弹的杀伤半径D .了解我国农民的年人均收入情况 4.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )5、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )二、填空题(共12小题,每小题2分,共24分。
请将答案写在答题卡相应位置.......上)1 2 3 412ys O 1 2 3 4 1 2 y s O s 1 2 3 4 1 2 y sO 1 2 3 4 1 2 y O A B .C .D . DC B A A B C DABC DE 第16题图6计算:2332x x ∙ ,()322x。
7、分解因式:228x -= 。
8、已知数据:2,1-,3,5,6,5,则这组数据的众数是 ,极差是 。
9 函数21+=x y 中,自变量x 的取值范围是 .10.如图5,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是_________________ .第10题 第12题 第13题 11、已知双曲线xky =过点(-2,3),则k = 。
12、AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度。
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。
2010年中考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分) 11. -- 2 ,例如 12.6,2.5 13.231a14. -2<a ≤ -1 15.3 16.),(24245--P ,),(2010201020P ,2512三、解答题(6+6+6+8+8+10+10+12=66分)17(本题6分)解:(1).原式233133--+=-1 ················································ (3分) (2)原式=()()21222---+a a a a ··················································································· (1分) =()()()2222-++-a a a a =()()222-+-a a a ························································································· (1分) =21+a ····················································································································· (1分) 18(本题6分)解:(1)S=πrl=50×20π=1000π ……..……………………….(2分)(2)θ=0001443605020360.=⨯=lr…………………………………………………(2分) 剪去的扇形纸片的圆心角=360°-2×144°=72°………………………………………(2分)19(本题6分)解:(1)当射线BA 绕点B 按顺时针方向旋转45度时与⊙O 相切……(1分) 理由如下:如图,设切点为F ,连OF.则OF ⊥BF ,在直角三角形OBF 中,︒=∠=∠∴==45,4,22BOF OBF OB OF ∴∠ABF=45°..(2分)(2)(2)过O 画OH ⊥MN 于H ,易知∠AOB=30°,∴OH=21OB=2 在直角三角形OMH 中,OM ︒=∠︒=∠∴=90,45,22MON MOH …………………(1分)()()422221224122-=⨯-⨯=-=∴∆ππMON MON S S S 扇形弓形∴线段MN 与⌒MN 所围成图形的面积为2π-4………………………………………………(2分) 20. (本题8分)(1)用直尺和圆规作△ABC ………………… (4分) (2)① 作ACB ∠的平分线交AB 于D ; ……………………(1分)② 过D 点作DE ⊥BC ,垂足为E .……………................(1分)(3)△ ADC ≌△ EDC ;△ ACD ∽△ ABC .(每写对一对得1分)21.(本题8分)(1)80 ,25%、40%、30%································· 4分(2)补全条形图(如右图)………2分(3)520…………………………….2分22.(本题10分)(1) 1 , 2 。
2010年中考模拟试卷 数学参考答案及评分标准一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11、36b a 12、 2.5 13、a=0或a=2 14、1:5 15、(3,2);(55,358) 16、①②④三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)212(2212010))(-+-----π=221211+--+…………………分=227-……………………………2分18.(本小题满分6分)解:原式=x-1 …………………………………4分(从33x -<<的范围内选取一个合适的整数x 代入求值。
其中x ≠±1,0)……2分 19.(本小题满分6分)解:(1)如图所示:……………………………………4分(注:每正确画出1个图且痕迹清晰得2分,)(2)规律:若三角形为锐角三角形,则其最小覆盖圆为该三角形的 外接圆;……………1分 若三角形为直角或钝角三角形, 则其最小覆盖圆是以三角形 最长边(直角或钝角所对的边) 为直径的圆.……………1分20.(本小题满分8分)(1)如图(1).连结AC ,由∠1=∠2,∠APC =∠DPE∴△ACP ∽△DEP .…………………………………2分DEAC DP =∴P A 又AP 25=,∴DE=25221÷⨯=52………………2分(2)如图(2).当Rt Rt ADP QCP △∽△时有得:1QC =.∴Q 与B 重合,0BQ ∴=……………2分 如图(3),当Rt Rt ADP PCQ △∽△时,有QCPD PCAD =,得=QC 41,即43=BQ ………………………2分∴当0BQ =或43=BQ 时,三角形AD P 与以点Q C P ,,为顶点的三角形相似.21.(本小题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ······································ 1分初一学生总数:2010%200÷=(人). ······················································ 1分 (2)活动时间为5天的学生数:20025%50⨯=(人).活动时间为7天的学生数:2005%10⨯=(人). ········································· 2分频数分布直方图(如图)······················ 1分(3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ························· 1分(4)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ························································ 2分(第21题图)人数22.(本小题满分10分) (1)27……………..2分(2)△ABC 如图②所示 ……………2分S △ABC=2a ·4a-21a ·2a-21a ·4a-21×2a ·2a=23a……………….2分(3)构造△ABC 如图③所示(图没有但面积算对不扣分) S △ABC=3m ·4n-21m ·4n-213m ·2n-21×2m ·2n=5mn …………….2分23.(本小题满分10分)⑴ 图略。
2010年中考摸拟试卷数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二.认真填一填(本题有6个小题,每小题4分,共24分) 11. (a-1)(a+1) , x 2+y 2 12. 20 和560 13.52 14.3315.3421或、 16. (3,3);;(3,-2) ;(11,-26)三、解答题(本题有8小题,共66分) 17、(本题6分) (以下给出三种选择方案,其他方案从略) 解答一: Y + Z =(3a 2+3ab )+ (a 2+ab ) =4a 2+4ab ……3分 =4a (a +b ).…………3分 解答二: X- Z = (2a 2+3ab +b 2)-(a 2+ab ) =a 2+2ab +b 2…………3分=(a +b )2 ………3分解答三:Y- X =(3a 2+3ab )- (2a 2+3ab +b 2)=a 2- b 2 …………3分=(a +b )(a -b )……………3分说明:整式计算正确得3分,因式分解正确得3分. 18. (本题6分) 解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.(2分)解得0.4x = 或 2.4x =-(不合题意,舍去)(2分). 所以,A 市投资“改水工程”年平均增长率为40%. (2)600+600×1.4+1176=2616(万元). A 市三年共投资“改水工程”2616万元.(2分)19. (本题6分) 解: 如图:(1)画出△A 1B 1C 1…………..2分 (2)画出△A 2B 2C 2………………………………..2分连结OA ,OA 2,OA =.点A 旋转到A 2所经过的路线长为l=1802……2………….2分20. (本题8分)(1)作图如右---------------------- 4分(2)证明:根据作图知,PQ 是A C的垂直平分线, 所以AO C O =,且E F A C ⊥.因为A B C D是平行四边形,所以O A E O C F ∠=∠ 所以O A E O C F △≌△. 所以A E C F =---------------------- 4分21.(本小题满分8分)解:在R t AD B △中,30A B =米 60ABC ∠=°sin 30sin 6025.9826.0AD AB ABC =∠=⨯=≈≈·°(米) ……2分15D B =米连接BE ,过E 作EN BC ⊥于NAE BC∵∥ ∴四边形AEN D是矩形26N E AD =≈米 ……2分在R t EN B △中,由已知45EBN ∠°≤, 当45EBN ∠=°时26.0BN EN ==米 ……2分26.01511AE AD BN BD ==-=-=∴米 ……1分 答:AE 至少是11米. ……………… 1分22.(本小题满分10分)(1)60306060=-FC,30=FC ;……3分(2)在EF 上任取一点Q ,分别过点Q 作BC ,AB 的垂线,垂足分别是M ,N ,则 CN x +=606030,602-=x CN ,则x BN 2120-=。
2010年中考模拟试卷 数学卷数学参考答案及评分标准一、仔细选一选(每小题3分,共30分)说明:第1和10小题为原创题,其中2;3;5;7;8为课本习题的延伸;4;6;9为借鉴题。
(突出数学的时效性和大众化及生活中的应用) 二. 认真填一填(本题有6个小题,每小题4分,共24分)11、R=52 12.7313、b= -11 147 15、0360)2(⨯-=n S 16、20112010说明:14,16题自编题 ;11,12,13,15属于借鉴。
三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)解:(1)m=2-2---------------------------------2分(2 ︳2-2-1︱+(2-2+6)0=︱1-2︳+1=2-----------------4分 说明:此题想增加数学计算的趣味性而设置了本题。
从一般的计算演变而来。
属于改编。
18、(本题6分)解: 四边形BCFD 为平行四边形-------------1分首先△ADE 绕点E 旋转180︒得到△CFE 可得△AD E ≌△CFE----------1分 ∴DE=EF------------1分又∵D.E 分别为中点∴D E ∥BC 且DE=21BC-------1分 ∴DF=∥BC ----------1分∴四边形BCFD 为平行四边形---------1分说明:旨在考查学生能运用旋转的不变性来证明三角形全等,和应用三角形的中位线的性质来证明一个四边形是平行四边形的性质应用(属于改编)。
19、(本题6分)解: (1)512,51==X X ------------------2分 (2)aa 12+-----------------------------------2分(3)5x 2-26x=-5x 2-526x=-1 x 2-526x+25169=-1+25169(x-513)2=25144(x-513)=±512∴512,51==X X ------------------2分说明:通过观察,归纳,猜想得到第1和第2小题的结论。
2010年中考模拟试卷 数学参考答案及评分标准一.选择题(每题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案CDBCBBBABC二.填空题(每题4分) 11、x>3 12、4113、π270 14、1227 15、5 16、311x 31y +-=三.解答题 17.解得⎩⎨⎧-><分)(分)(1312x x ∴原不等式组的解为-3<x<2 (2分)数轴略(2分)18. (1) 10 , 0.100 ; (2分)评分说明:补全直方图1分(频数为10).(2)第三小组 1400~1600 (2分) (3)(0.060+0.240)×600=180 . (2分)19. 图略(评分说明:画出AC 的中垂线3分,全部正确6分)20.(1)A (0,4) C (3,1) (2分) (2)图略 (3分) (3)ππ2232318090=⨯(3分) 21. (1)证明:由题意可得:△ABD ≌△ABE ,△ACD ≌△ACF .∴∠DAB =∠EAB ,∠DAC =∠FAC ,又∠BAC =45°, ∴∠EAF =90°. 又∵AD ⊥BC∴∠E =∠ADB =90°∠F =∠ADC =90°. 又∵AE =AD ,AF =AD ∴AE =AF .∴四边形AEGF 是正方形. (4分)(2)解:设AD =x ,则AE =EG =GF =x .∵BD =2,DC =3 ∴BE =2 ,CF =3∴BG =x -2,CG =x -3.在Rt △BGC 中,BG 2+CG 2=BC 2 ∴( x -2)2+(x -3)2=52. (2分) 化简得,x 2-5x -6=0 解得x 1=6,x 2=-1(舍)所以AD =x =6. (2分)22. (1)分别作A C ⊥x 轴,BD ⊥x 轴,垂足分别是C 额D ,证明△ACO ≌△ODB ,(3分)OD =2AC =4,DB =2OA =2,所以点B (4,2)(2分)(2)设二次函数解析式为bx ax y 2+=,把A (-1,2)B (4,2)代入,得⎩⎨⎧b 4a 162ba 2+=-=(2分)解得⎪⎩⎪⎨⎧23b 21a =-=,(2分)所以解析式为x 23x 21y 2-=(1分) 23.解:(1)横向甬道的面积为:()2120180150m 2x x +=(3分) (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯ 整理得:21557500x x -+=125150x x ==,(不符合题意,舍去)(3分)∴甬道的宽为5米.(3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦(2分)20.040.5240x x =-+当0.5 6.25220.04b x a =-==⨯时,y 的值最小. 因为根据设计的要求,甬道的宽不能超过6米,6x ∴=当米时,总费用最少.最少费用为:20.0460.56240238.44⨯-⨯+=万元(3分) 24.(12分)(1)设2,,132,OP t OB t PA t ===-要四边形PABO 为平行四边形,则132t t -=∴133t =.(4分) (2)不变..12QB OD OD OP DF DF =∴=. 12QE BD QD QBOB DE PA EF DO DF AF∴====∥∥∴AF=2QB=2t ,∴PF=OA=13(2分) ∴S △PQF78121321=⨯⨯(2分) (3)①QP=AP ,作O G ⊥x 轴于G ,则112213(11)t t t t --=+--32t ∴=(1分) ②PQ=FP ,22(113)121322t t t ∴-+=+-1623t ∴=或(2分) ③FQ=FP ,()22132********t t t t +--+=+-⎡⎤⎣⎦1t ∴=(1分)综上,当3162123t =或或或时,△PQF 是等腰三角形.2010年中考模拟试卷 数学卷考生须知:1.本科目试卷分试题卷和答题卷两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写姓名与准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.2010年3月5日,第十一届全国人大三次会议在北京人民大会堂开幕. 温家宝总理在政府工作报告中指出,2009年,我国国内生产总值达到33.5万亿元。
2)12(21-x2010考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11. 12.___12 或16或20_ 13.14.___26或28或34 15 16.三、解答题(6+6+6+8+8+10+10+12=66分)17.解:(1)若axy b 与-5xy 为同类项,∴b=1∵和为单项式 ∴⎩⎨⎧==15b a ……………………………………3分(2) 若 4xy 2与axy b 为同类项∴b=2 ∵axy b +4xy 2=0 ∴a=-4 ∴⎩⎨⎧=-=24b a ……………………………………3分18.解:2221121x x x x x x --⋅+-+=2)1()1)(1(1)1(--+∙+-x x x x x x ……………………………………2分=x ……………………………………1分解2320x x -+=得x 1=1,x 2=2 ……………………………………1分∵当x=1时原方程分母为零,无意义,∴x=2 ……………………………………1分 ∴原式=x=2 ……………………………………1分 19.(1)14、15、4.3(从左至右)(2) 图略;A 稳定,B 型受季节影响大。
建议略21.(8分)正确,半菱形ABCD ,它的对角线互相平分,而AB=AD,CB=CD ,两个等边 △ABD, △BCD 所以AC 垂直平分BD 。
假设AC 交BD 与O ,半菱形的面积=S △ABD+S △BCD=1/2AO*BD+1/2CO*BD=1/2BD*(AO+CO)=1/2BD*AC. 所以 半菱形的面积等于两条对角线乘积的一半 22.(10分)1223-∙n解:(1)将194t m =⎧⎨=⎩,和390t m =⎧⎨=⎩,代入一次函数m kt b =+中,有94903k b k b =+⎧⎨=+⎩,.296k b =-⎧∴⎨=⎩,.296m t ∴=-+. 经检验,其它点的坐标均适合以上解析式, 故所求函数解析式为296m t =-+.(2)设前20天日销售利润为1p 元,后20天日销售利润为2p 元. 由221111(296)514480(14)578422p t t t t t ⎛⎫=-++=-++=--+ ⎪⎝⎭, 120t ≤≤,∴当14t =时,1p 有最大值578(元).由2221(296)20881920(44)162p t t t t t ⎛⎫=-+-+=-+=-- ⎪⎝⎭.2140t ≤≤且对称轴为44t =,∴函数2p 在2140t ≤≤上随t 的增大而减小.∴当21t =时,2p 有最大值为2(2144)1652916513--=-=(元).578513> ,故第14天时,销售利润最大,为578元.(3)2111(296)5(142)4809642p t t a t a t a ⎛⎫=-++-=-+++- ⎪⎝⎭对称轴为(142)142122a t a -+==+⎛⎫⨯- ⎪⎝⎭.120t ≤≤,∴当14220a +≥即3a ≥时,1p 随t 的增大而增大.又4a < ,34a ∴<≤. 23.(10分)解:阅读理解:m= 1 (填1m不扣分),最小值为 2 ; 思考验证:∵AB 是的直径,∴AC ⊥BC,又∵CD ⊥AB,∴∠CAD=∠BCD=90°-∠B, ∴Rt △CAD ∽Rt △BCD, CD 2=AD·DB, ∴若点D 与O 不重合,连OC ,在Rt △OCD 中,∵OC>CD,∴2a b +若点D 与O 重合时,OC=CD,∴2a b+=综上所述,2a ba b ++≥即,当CD 等于半径时,等号成立.探索应用:设12(,)P x x , 则12(,0),(0,)C x D x ,123,4CA x DB x∴=+=+, 1112(3)(4)22ABCD S CA DB x x∴=⨯=+⨯+四边形,化简得:92()12,S x x =++990,06x x x x >>∴+≥ ,只有当9,3x x x==即时,等号成立.∴S ≥2×6+12=24,∴S 四边形ABCD 有最小值24.此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD 是菱形.24.(12分)(1)①2AB = ……………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………4分 (2) 存在 ………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分萧山区南阳初中 刘东旭 金 凯。
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 1.58×1011 12. 5 13. (-1,1) 14. 7 15. X=-1 16. 6三. 解答题(8小题共66分) 17. (本题6分)计算:0(1)π--⋅sin 60°+321(2)()4-⋅解:原式=()⎪⎭⎫⎝⎛⋅-+⋅-16182331……………………………………… 3分 =21231--………………………………………………………… 2分=1-………………………………………………………………… 1分18. (本题6分)每个图2分19. (本题6分)解:(1)把(4,2)代入kx y =,得21=k ,所以x y 21=……………… 2分把(4,2)代入xm y =,得8=m ,所以xy 8=…………………2分(2) x y 21= 解得: 4=x 或 4-=x (1)xy 8=分 2=y 2-=y所以,还有一个交点为 (2,4--) …………………………… 1分20. (本题8分)(1)见表格 …………………………… 2分 (2)见图表 …………………………… 2分(3)视力在4.55~4.85内的学生最多。
……………………………… 2分 (4)2000500050416=⨯+答:约有2000名学生的视力不需要矫正。
……………………………… 2分21. (本题8分) 解:(1)2108686=++⨯=r ……………………………… 2分(2)dc b a s r +++=2 ……………………………… 3分证明:四边形ABCD 的周长为l ,内切圆O 的半径为r,连结OA 、OB 、OC 、OD , 四边形ABCD 被划分为四个小三角形,用S 四边形ABCD 表示四边形ABCD 的面积 ……………………………… 1分∵ S 四边形ABCD =S △OAB +S △OBC +S △OCD +S △ODA 又∵S △OAB =r AB ⋅21,S △OBC =r BC ⋅21,S △OCD =r CD ⋅21, S △OAD =r AD ⋅21∴S 四边形ABCD =r AB ⋅21+r BC ⋅21+r CD ⋅21+r AD ⋅21=r l ⋅21∴dc b a s r +++=2 ……………………………… 6分(3)na a a sr +++=212 ……………………………… 8分O22. (本题8分)解: 解:(1)在抛物线y =215222x x -+-上,令y =0时,即215222x x -+-=0,得x 1=1,x 2=4令x =0时,y =-2∴ A (1,0),B (4,0),C (0,-2) ………………………2分 ∴OA =1,OB =4,OC =2 ∴12O A O C=,2142O C O B==∴O A O C O CO B=………………………1分又∵∠AOC =∠BOC ∴△AOC ∽△COB .………………………1分(2)设经过t 秒后,PQ =AC .由题意得:AP =DQ = t , ……………1分∵A (1,0)、B (4,0) ∴AB =3∴BP =3-t…………………………………1分∵CD ∥x 轴,点C (0,-2) ∴点D 的纵坐标为-2 ∵点D 在抛物线y =215222x x -+-上∴D (5,-2) ∴CD =5………………………2分23. (本题12分)解:(1)报销数额为4500×65%+(5600-5000)×75%=3375(元),所以刘老汉可以报销3375元.·············································································· 4分 (2)由题意,得y=(5000-500)×65%+(20000-5000)×75%+(x-20000)×65%=0.65x+1175 ∴所求函数关系式为y=0.65x+1175.(x >20000) ················································ 4分 (注:不写x 的取值范围不扣分) (3)由题意,得14825=0.65x+1175. 解得x=21000(元).所以刘老汉这次住院花去医疗费21000元. ··························································· 4分24. (本题12分)解:(1)在Rt △AOB 中,可求得AB =332 ………………………………1分∵∠OAB =∠BAC ,∠AOB =∠ABC=Rt ∠ ,∴△ABO ∽△ABC ……………………………2分∴ACAB ABAO=,由此可求得:AC =34………………………………3分(2)当B 不与O 重合时,延长CB 交y 轴于点D ,过C 作CH ⊥x 轴,交x 轴于点H ,则可证得AC =AD ,BD =BC …………………4分 ∵AO ⊥OB ,AB ⊥BD ,∴△ABO ∽△BDO ,则OB2=AO ×OD----6′,即yx -⨯=⎪⎭⎫ ⎝⎛122化简得:y=42x,当O 、B 、C 三点重合时,y=x=0,∴y 与x 的函数关系式为:y=42x………………………………7分(3)设直线的解析式为y=kx+b ,则由题意可得:⎪⎩⎪⎨⎧=+=241x y b kx y ,消去y 得:x 2-4kx-4b=0,则有⎩⎨⎧-=⨯=+bx x kx x 442121, ……………………………… 8分由题设知:x 12+x 22-6(x 1+x 2)=8,即(4k)2+8b-24k=8,且b=-1,则16k 2-24k -16=0,解之得:k 1=2,k 2=21-,……………………………… 10分当k 1=2、b=-1时,△=16k2+16b=64-16>0,符合题意 当k 2=21-,b=-1时,△=16k2+16b=4-16<0,不合题意(舍去),∴所求的直线l 的解析式为:y=2x-1 ……………………………… 12分。
2010年中考模拟试卷参考答案一、选择题 (每题3分共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBCBDBBAB二、填空题(每题4分,共24分)11. X(X+3)(X-3) 12. 3+3 13. 414. 25 15.(21 ,23)(0,33 )(2,3 )(3-1,1 )16.2365a三、解答题(满分66分)17、 (本小题满分6分) 解:作PC ⊥AB设PC=x ,∵060=∠PBC 则CB=,33X ……………… 2分X AC PAC 330=∴=∠……………… 2分32333=∴=-∴X X X ……………… 2分18、 (本小题满分6分)(1)过F 作FH ∥AB,交AD 于H,连结EH,EF,G 为DC 上一点,连结GH,GF, 则四边形EFGH 就是所求四边形.(3分)①(2)作MN ∥AB,交AD 于N,P 为AB 上一点,连结PN,过M 作MQ ∥PN,交CD 于Q,连结PM,NQ,则梯形PMQN 就是所求四边形.(3分)PAB CA B C D HFG E MA BCD N P Q②(工具不限,画得有理就给满分,画图正确但无画法每个扣一分) 19、(本小题满分8分) (1)A (2,2);B(-2,-2);C (23,23)-.………………3分(2)作AD ⊥x 轴于D ,连结AC 、BD 和OC 。
∵A 的坐标为(2,2), ∴∠AOD=45°,AO=22………………1分∵C 在O 的东南45°方向上, ∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC , 又∵∠BAC=60°,∴△ABC 为正三角形………………2分∴AC=BC=AB=2AO=42. ∴OC=3·42262=………………1分由条件设:教练船的速度为3m,A 、B 两船的速度均为4m.则教练船所用的时间为: 263m ,A 、B 两船所用的时间均为:424m =2m .∵263m =243m ,2m =183m ,∴263m >2m ,所以教练船不是最先赶到。
AG DBCOEF初三中考模拟考试数学试卷 2010.6注意事项:1.本试卷满分150分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 3.请将所有答案答写在答卷纸规定的地方.一、精心选一选(本大题共8小题,每小题3分,共24分.) 1.下列运算正确的是( ▲ )A .523a a a =⋅ B .236a a a =÷ C .222)(b a b a +=+ D .ab b a 532=+ 2▲ )3.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是( ▲ )A .B .C .D .4.为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各选取了50株量出每株的长度.经计算,所抽取的甲、乙两种水稻秧苗长度的平均数都是13cm ,方差2S 甲=3.6cm 2,2S 乙=2cm 2,因此水稻秧苗出苗更整齐的是( ▲ )A .一样整齐B .甲C .乙D .无法确定5.已知⊙1O 与⊙2O 的半径分别为5和2,12O O =3,则⊙1O 与⊙2O 的位置关系是( ▲ ) A .内含 B .外切 C .相交 D .内切6.如图,用一块直径为1m 的圆桌布平铺在对角线长为1m 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( ▲ )A 1B .12C .24D . 27.如图所示,一只蚂蚁以均匀的速度沿台阶1A 2345A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( ▲ )A .B .C .D .8.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠 正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连接GF .A 1A 2A 3A 4A 5第7题A .B . D .C .ADCB E下列结论 ①∠ADG =22.5°;②tan ∠AED =2;③AGD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE =2OG .其中正确的结论有( ▲ ) A .①④⑤ B .①②④ C .③④⑤ D .②③④二、细心填一填(本题共有10小题,每小题3分,共30分.) 9.9的平方根是 ▲ .10.因式分解:32a ab -= ▲ .11.2008年北京奥运会火炬在全球传递里程约为137000km ,该数用科学记数法表示为 ▲ km . 12.函数y =x 的取值范围为 ▲ .13.如图,点A 、B 、C 都在⊙O 上,若∠C =35°,则∠AOB = ▲ °. 14.如果点(3,―4)在反比例函数ky x=的图象上,则k = ▲ . 15.已知圆锥的底面半径为9cm ,母线长为30cm ,则圆锥的侧面积为 ▲ cm 2. 16.如图,在四边形ABCD 中,若∠A=∠C =90°,∠B =62°,则∠D = ▲ °. 17.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =1cm ,EF =2cm ,则边AD 的长是 ▲ cm .18.如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P 为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 ▲ .三、认真答一答(本题共8小题,共72分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(本题共2小题,每题4分,满分8分)⑴计算: 101(1)4sin 602π-⎛⎫+︒- ⎪⎝⎭⑵解方程:213x x =-20.(本题满分8分)如图,在梯形ABCD 中,AD ∥BC ,∠D =90°,BE ⊥AC ,E 为垂足,AC =BC . ⑴求证:CD =BE . ⑵若AD =3,DC =4,求AE .OABC第13题A BD CH FE G 第17题P第18题第16题类别80 320报名参加排球项目 报名参加篮球项目 报名参加排球项目并在测试中没有达到满分的占20%⑴请在如图所示的网格图中,将△ABC 向上平移5格,再向右平移7格,得△A 1B 1C 1,再将△A 1B 1C 1绕点B 1按顺时针方向旋转90°,得△A 2B 1C 2;(在网格图中画出这两个三角形并标注相应的顶点字母) ⑵若在网格图的适当位置建立直角坐标系后,点A 、C 的坐标分别为(-5,1)、(-1,-3),则在这个直角坐标系中,点A 2、C 2的坐标分别为:A 2( )、C 2( ).22.(本题满分8分)我市对2009届初中毕业生体育考试报名参加篮、排球项目情况作了一个抽样测试,并根据收集到的数据绘制了如下的统计图,试解答以下问题:⑴本次测试调查了多少名学生?被调查的学生中,有多少人报名排球项目并得到了满分?⑵我市2009届初中毕业生共有42000名,请你估计目前报名排球项目但还不能拿满分23.(本题满分10分)有一个不透明的盒子,盒中有四张分别写有数字1、-2、3、4的卡片,卡片除数字外完全相同.小张从盒中随机取出两张卡片,并按照抽取的先后顺序依次将卡片上的数字作为点P 的横坐标和纵坐标.请你用画树状图或列表的方法解答下列问题:⑴求点P 落在第四象限的概率;⑵求点P 落在反比例函数3y x的图像上的概率. 24.(本题满分10分)某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.C B AAC B AC BAC BAC BACB在一条东西走向的公路的正南方A处,观测到公路上有一辆汽车正从位于点A北偏西60°方向上的B处,由西向东匀速行驶,15秒后,观测到该车已经行驶到位于点A北偏东45°方向上的C处.⑴请在图中标出点C的位置.(尺规作图,不必写作法,但要保留作图痕迹)⑵若该汽车行驶速度为60千米/时,试求出观测点A到公路的距离.(结果保留根号)26.(本题满分10分)现有一些形状为等腰直角三角形的边角料.如图1所示,测得∠C=90°,AC=BC=10cm.今要从这种三角形中裁剪出一种扇形,使扇形的半径都落在△ABC的边上,且扇形的弧与△ABC的其它边相切.⑴请设计出所有符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).⑵指出哪些方案中裁剪出的扇形的面积相等并求出该面积.(图1)(备用图)四、实践与探索(本题共2小题,满分24分)27.(本题满分12分)如图,已知二次函数图象的顶点坐标为C (1,0),直线y=x+b与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上.点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与该二次函数的图象交于点E.⑴求b的值及这个二次函数的关系式;⑵设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;⑶若点D为直线AB与该二次函数的图象对称轴的交点,则四边形DCEP能否构成平行四边形?如果能,请求出此时P点的坐标;如果不能,请说明理由.⑷以PE为直径的圆能否与y轴相切?如果能,请求出点P的坐标;如果不能,请说明理由.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°;四边形DEFG 为矩形,DE= cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合. ⑴求AC 的长度.⑵将Rt △ABC 以每秒1 cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止移动,设Rt △ABC 与矩形DEFG 重叠部分的面积为y ,请求出重叠面积y (cm 2)与移动时间x (s )的函数关系式(时间不包括起始与终止时刻); ⑶在⑵的基础上,当Rt △ABC 移动至重叠部分的面积323y 时,将Rt △ABC 沿边AB 向上翻折,并使点C 与点C ’重合,请求出翻折后Rt △ABC’与矩形DEFG 重叠部分的周长(可利用备用图).备用图1 备用图2A D G CFB(E)D G FED GFE数学参考答案一、精心选一选(每小题3分)1.A;2.B;3.B ;4.C;5.D;6.C;7.B ;8.A;二、细心填一填(每空3分)9.±3;10.a(a+b)(a-b);11.1.37⨯105;12.x≥-3;13.70︒;14.-12;15.270π;16.118︒;1718.2,4,7三、认真答一答19.⑴(π+1)0sin60︒-(12)1-⑵解方程:213x x=-=1-⨯-2…………(2分)解:x=3(x-2)……(1分)=1-2……………(3分)2x=6………………(2分)=-1 …………………………(4分)x=3………………(3分)经检验:x=3是原方程的解。
2010年中考模拟试卷 数学参考答案及评分标准仔细选一选(本题有10个小题,每小题3分,共30分)。
二.认真填一填(本题有6个小题,每小题4分,共24分)11. 36 12 . x(xy+2)(xy-2) 13 . 6 14.3215 .54 16 .20092010三.全面答一答(本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
17. (本小题满分6分)解 :原式=42+x 。
2分解不等式组得:23≤<-x , 。
2分若2=x 时,原式=8(x 为23≤<-x 中不为0、1、-1的任意数)。
2分 18.(本小题满分6分)略(1)由已知得Rt ⊿ABC ≌Rt ⊿DEF ∴∠A=∠D ∵AC ⊥BD ∴∠ACD=900又∠DNC=∠ANP ∴∠APN=900∴AB ⊥ED 。
3分 (2)⊿ABC ≌⊿DBP证明:由(1)得∠A=∠D ,∠BPD=∠ACB=900, 又PB=BC∴⊿ABC ≌⊿DBP 。
3分19(6分).解: ∵l ∥BC ∴∠ACB=α=8在Rt ⊿ABC 中,tan α=A B B C,∴BC=A B tan α≈617=42。
3分根据题意得h 2+422=(h+6)2,∴h=144。
3分20.(本小题满分8分)解:(1)5 。
2分(2)10% 。
2分40人 。
2分 (3) 设参加训练前的人均进球数为x 个,则x (1+25%)=5,所以x =4,即参加训练之前的人均进球数是4个.。
2分21.(本小题满分8) 解.(1)∵x,y 都是整数且6y x=,∴x=1,2,3,6,∴P 1(1,6), P 2(2,3),P 3(3,2),P 4(6,1);。
3分 (2)以P 1 ,P 2,,P 3,P 4中任取两点的直线有121314232434,,,,,pp p p p p p p p p p p共六条;。
2分 (3)∵只有直线2434,p p p p与抛物线有公共点,∴P=2163=。
2010年中考模拟考试数学试卷本试卷分卷I 和卷n 两部分;卷I 为选择题,卷n 为非选择题. 本试卷满分为120分,考试时间为120分钟.卷1(选择题,共24分)注意事项:1•答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考 试结束,监考人员将试卷和答题卡一并收回.2 •每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共 12个小题,每小题2分,共24分•在每小题给出的四个选项中, 只有一项是符合题目要求的) 31、( 3)等于( )A . 9B . 9 C. 27 D. 27 2、有一个铁制零件(正方体中间挖去一个圆柱形孔) 如图放置,它的左视图是A .B . C.3、5月18日某地的最低气温旦 变化范围正确的是( .是 11 C, )最高气温是 27C,下面用数轴表示这一天气温的 11 27 11 27 11 27 11D . 4、据报道,在4月20日中央电视台承办的《情系玉树大爱无疆 ——抗震救灾大型募 捐活动特别节目》中共募得善款 2175000000元,将2175000000元用科学记数法 表示为 ( ) 8 一 A . 21.75 X 10 兀A .B .C .5 一6 一 B . 2175 X 10 兀 C. 2.175 X 10 兀 9 一 D. 2.175 X 10 兀 5、 )x()6、下列调查中,适合进行普查的是A .《新闻联播》电视栏目的收视率 B.我国中小学生喜欢上数学课的人数 C . 一批灯泡的使用寿命 7、如图,AB 为O0的直径, 贝UBAD 的值为 ( A . 30° B . 21o D. —个班级学生的体重 CD 为 O O 的弦,ACD 42°) C. 58° D . 48°1 0,则方程可变形为 ( ) &用配方法解方程3x2 6x B2A . (x 3)B . 3(x 1)213 2 C. (3x 1)2D . (x 1) 9、已知a b 3, ab 1,化简(a 2)(b 2)的结果为 A.1 B.2 C. 1 D. 2 10、小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上 学时经过每个路口都是绿灯,但实际这样的机会是( 1 1 A . B.- 2 8 3 c.— 8 )1 D.- 9 11、在平面直角坐标系中有两点 A(6,2) , B(6,0),以原点为位中心,位似比为1 : 3,把线段 例函数的解析式为 4A . y — x 12、如图,点 线b 上,若AB 缩小,则过 ( A 点对应点的反比 B . G 、 a //b, D 、 4 y 3x C 在直线 C.y 3x E 、F 、 A 、 18 y x B 在直 D . a 上,点 Rt AGEF 从如图所示的位置出发,沿直 线b 向右匀速运动,直到 EG 与BC 重合.运动过程中 △GEF 与矩形ABCD 重合部分的面积(S )随时间(t ) 变化的图象大致是 y3 - 2 - 1 _ 2 1O '1 -2■f A(6,2) B(6,0) 1 2 3 45 6 7 x第11题图aEF A( ) OOO OA.B .D .C .总分核分人2009-2010学年九年级第一次模拟考试数学试卷卷n (非选择题,共96分)注意事项:1.答卷n前,将密封线左侧的项目填写清楚.2 .题号二三1920212223242526得分二、填空题(本大题共6个小题,每小题3分,共18分•把答案写在题中横线上)_______ 13、I歼.y/X~114、函数y 中,自变量x的取值范围是_______________ .x15、分解因式3x3 6x2 3x ______________________ .16、等腰三角形的一个外角为100o,则这个等腰三角形的顶角的度数为________________ 度.17、如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形边长为1的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角2形纸板(即其边长为前一块被剪掉正三角形纸板边长的1)后,得图③,④,…,2记第n(n》3)块纸板的周长为P n,则P n P n 1= ________得分评卷人ABCD的周长为24,则OH的长等于______________三、解答题(本大题共8个小题,共78分.解答应写出文字说明、得分评卷人当x 2010时,求x x 1 x 1 x 2 12x ~~2x的值。
2010年中考数学模拟试题卷(满分:120分 考试时间:100分钟)一、选择题(共10道小题,每小题3分,共30分) 1、2-的倒数是( ) A .12B .12-C .2D .2-2、下列各式计算正确的是( )A .a 3+a 2=a 6B .(-a 2)3=-a 5C .a 2·a 4=a 8D .a 4÷a 3=a3、以1,1x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩C .02x y x y +=⎧⎨-=⎩D .02x y x y +=⎧⎨-=-⎩4、如图,把一种量角器放置在BAC ∠上面,请你根据量角器上的等分刻度判断BAC ∠的度数是( )A .15︒ B .20︒ C .30︒ D .45︒5、下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13 B .12 C .34 D .236、如图,数轴上点P 表示的数可能是( )AB.C . 3.2- D.7、一天,小王和爸爸去登山,已知山底到山顶的路程为300米,小王先走了一段路程,爸爸才开始出发,图中两条线段表示小王和爸爸离开山脚登山的路程S(米)与登山所用时间t(分钟)的关系(从爸爸开始登山时计时)根据图像,下列说法错误..的是( ) A .爸爸登山时,小王已走了50米B .爸爸走了5分钟时,小王仍在爸爸的前面 C .小王比爸爸晚到山顶 D .爸爸前10分钟登山的速度比小王慢,10分钟后登山的速度比小王快 8、已知:如图,△ABC 的面积为12,将△ABC 沿BC 方向移到△A ’B ’C ’的位置,使B ’与C 重合,连结AC ’交A ’C 于D ,则△C ’DC 的面积为( ) 10 B .8 C .6 D .4 9、已知,抛物线y=ax 2+bx+c 的部分图像如图,则下列说法 ①对称轴是直线x =1;②当-1<x <3时,y <0;第8题第4题第5题P第6题③a+b+c =-4;④方程ax 2+bx+c+5=0无实数根其中正确的有( )A .1个 B .2个 C .3个 D .4个10、在一平直河岸l 同侧有A 、B 两村庄,A 、B 到l 的距离AM 、BN 分别是3km ,2km ,且MN 为3km ,现计划在河岸上建一抽水站P ,用输水管向两个村庄A 、B 供水,则水管长度最少为( )km (精确到0.1km)A .4.8 B .5.2 C .5.8 D .6.2 二、填空题(共4道小题,每小题4分,共16分)11、2010年上海世界博览会即将举行,各项准备工作即将完成,其中中国馆计划投资1095600000元,将1095600000保留两个有效数字的近似数应为_________________.12、某一十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为________. 13、如图是圆锥的主视图(单位cm),则其表面积为_________cm 2. 14、某商店老板将一件进价为800元的商品先提价50%,再打8折卖出,则卖出这件商品所获利润是_______元.15、如图,正方形ABCD 的面积为1,M 是AB 的中点,连接AC 、DM ,则图中阴影部分的面积是 .16、如图,平面直角坐标系中,A(4,2)、B(3,0)将△ABC 绕OA 中点C逆时针旋转90°得到△A ’B ’O ’ 则A ’的坐标为_________. 三、解答题(共8道小题)17、(本题6分)()11cos 4533-⎛⎫+-- ⎪⎝⎭.18、(本题6分)先化简,再求值:xx x x x --÷---22)113(,其中x 是方程02=+x x 的解.19、(本题6分)已知:如图,在O 中,弦AB CD 、交于点E ,AD CB =. 求证:AE CE =.20、(本题8分)请阅读下列材料:我们规定一种运算:a b ad bc c d=-,例如:2325341012245=⨯-⨯=-=-. 按照这种运算的规定,请解答下列问题:l第10题第11题第16题第15题Dx(1)直接写出1220.5-- 的计算结果; (2)当x 取何值时,0.5012x xx-=;(3)若0.517830.51x y x y--==--,直接写出x 和y 的值.21、(本题8分)如图,在一旗杆AB 上系一活动旗帜C ,在某一时刻,旗杆的影子落在平地BD 和一坡度为1∶3的斜坡DF 上,拉动旗帜使其影子正好落在斜坡顶点D 处,若测得旗高BC =4m ,影长BD =8m ,影长DE =6m ,(假设旗杆AB 与地面垂直,B 、D 、G 三点共线,AB 、BG 、DF 在同一平面内)。
2010年中考模拟试卷 数学试题卷
满分为120分,考试时间100分钟
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)
下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的
字母在答题纸中相应的方框内涂黑. 注意可以用多种不同的方法来选取正确答案. 1.抛物线122
+-=x y 的对称轴是( )(原创) A. 直线21=
x B. 直线2
1
-=x C. y 轴 D. 直线2=x 2.如图所示的几何体的左视图是( )
3.一个形如圆锥的冰淇淋纸筒,其底面直径为6cm ,母线长为
5cm ,围成这样的冰淇淋纸筒所需纸片的面积是( )(原创) (A)16πcm 2
(B)30πcm 2
(C) 15πcm 2
(D)28πcm 2
4.将图1所示的图案通过平移后可以得到的图案是( )
5.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O 成中心对称的图形.若点A 的坐标是(1,3),则点M 和点N 的坐标分别是 ( )
A .)3,1(),3,1(--N M
B .)3,1()3,1(---N M
C .)3,1(),3,1(---N M
D .)3,1(),3
,1(--
-N M
第
2题图
A .
B .
C .
D .
6.现给出以下几个命题:(1)长度相等的两条弧是等弧;(2)相等的弧所对的弦相等;(3)垂直于弦的直线平分这条弦并且平分弦所对的两条弧;(4)钝角三角形的外接圆圆心在三角形外面;(5)矩形的四个顶点必在同一个圆上;其中真命题的个数有( )(原创) A 、1 个 B 、2个 C 、 3个 D 、4个
7.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低, 且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放 入瓶中,水位上升后,乌鸦喝到了水。
在这则乌鸦喝水的故事中,从乌鸦看 到瓶的那刻起开始计时并设时间为x ,瓶中水高度为y ,下列图象中最符合 故事情景的是( )
8.已知在△ABC 中,P 是边AB 上的一点,连结CP
△ACP 与△ABC 相似的是( )(原创) A .∠ACP=∠B B .∠APC=∠ACB C .AC 2=AP·AB D . BC
AB CP AC =
9为t (t>0)的P 1点开始按点的横坐标依次增加1的规律,在抛物线2
y ax =上向右跳动,得到P 1,P 2,P 3,这时△P 1 P 2 P 3面积为 ( ) A 、a B 、2a C 、 3a D 、4a
10.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中正确结论的个数为( ) ①OH ∥BF ;②∠CHF =45°; ③GH =41
BC ;④FH2=HE ·HB
A. 1个
B. 2个
C. 3个
D. 4个 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)
要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.
第10题图
A
B
C D F
O
G H E
第7题图
11.2010年2月8日,上海世博会标志性建筑中国馆 竣工,其设计理念为“东方之冠,鼎盛中华,天下粮仓, 富庶百姓.”中国馆总建筑面积16.01万平方米,用 科学记数法表示为 平方米.(原创) 12.在1,2,3,4,5中任意选一个数,恰好小于
7的概率是 (原创)
13.顶角为36°的等腰三角形称为黄金三角形,如图,△ABC ,
△DEC 都是黄金三角形,己知AB =2cm 则DE= cm .(原创) 14.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ; ③当2<x 时,函数值y 随x 的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可).(原创) 15、如图,已知双曲线x
k
y =
()0>x 经过矩形OABC 边AB 的 中点F ,交BC 于点E ,且四边形OEBF 的面积2,则k= 16.已知2
1
(123...)(1)n a n n =
=+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,
122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =
_______ .(用含n 的代数式表示) (09四川成都改编) 三. 全面答一答 (本题有8个小题, 共66分)
解答应写出文字说明, 证明过程或推演步骤. 如果觉得有 的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分) (1) 01
45cos 2)
3
1()2008(-+--π
(2)当13x =-时,求11132
-÷⎪⎭
⎫ ⎝⎛+--x x x x x x 的值.(原创) 第13题
图 a
18. (本小题满分题6分)
已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40. (1)请你借助图a 画出一个满足题设条件的三角形;
(2)你是否还能画出既满足题设条件,又与图a 中所画的三角形不全等的三角形?若能,请你在图a 的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.
(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40”,那么满足这一条件,且彼此不全等的三角形共有
个.(原创)
友情提醒:请在你画的图中标出已知角的度数和已知边的 长度,“尺规作图”不要求写作法,但要保留作图痕迹.
19.(本小题满分6分)
某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距 3 米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度(结果精确到0.1米,参考数据:
73.13,41.12≈≈)。
(09山东烟台改编)
20. (本小题满分8分)
杭州某中学准备举行一次球类运动会,在举行运动会之前,同学们就该校学生最喜欢那种球类运动问题进行了一次调查,并将调查结果制成了表格、条形图和扇形统计图,请你根据图表信息完成下列各题:
(1)此次共调查了多少位学生?
(2)请将表格和条形统计图补充完整. (3)请你结合上述调查结果,对于此次球类
运动会向学校提出一条建设性的建议。
(原创)
球
20%
21. (本题8分)
如图,△ABC 中,30C ∠=︒,以AB 为直径的圆O 经过BC 边上的点D , 且120AOD ∠=︒.
(1)求证:AC 是圆O 的切线.
(2)若CD=6,点E 是半圆上一点, 且1
sin 4
BAE ∠= ,求线段AE 的长.
22.(本题10分)
“旱灾无情人有情”.我国西南地区的旱情牵动全国人民的心,杭州市民政局将全市为云南旱灾地区捐赠的物资打包成件,其中纯净水和输水管共320件,纯净水比输水管多80件.
(1)求打包成件的纯净水和输水管各多少件? (2)现计划租用甲、乙两种货车共8辆,一次性 将这批纯净水和输水管全部..
运往受灾地区.已知 甲种货车最多可装纯净水40件和输水管10件,乙种货车最多可装纯净水和输水管各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?(原创)
23.(本题满分10分)
在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图23-1,倍角△ABC 中,∠A=2∠B ,∠A 、∠B 、∠C 的对边分别记为a,b,c ,倍角三角形的三边a,b,c 有什么关系呢?让我们一起来探索.
(图23-1) (图23-2) (图23-3) (图23-4) (1
)我们先从特殊的倍角三角形入手研究。
请你结合图形填空: (2)如图23-4,对于一般的倍角△ABC ,若∠CAB=2∠CBA ,∠CAB 、∠CBA 、∠C 的对边分别记为a,b,c ,a,b,c ,三边有什么关系呢?请你作出猜测,并结合图23-4给出的辅助线提示加以证明.
(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长. (直接写出结论即可)(原创)
24.(本小题满分12分)
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx x过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时
刻使得△CEQ是等腰三角形?请直接写出相应的t值.
出卷人:瓜沥一中赵桂清。