系统辨识与自适应控制
- 格式:ppt
- 大小:7.75 MB
- 文档页数:433
模糊系统的辨识与自适应控制在现代控制理论研究中,模糊控制是一种重要的控制方法。
模糊控制是对非线性系统的一种解决方案,这种控制方法利用模糊逻辑来处理不确定性和信息丢失问题,从而提高了控制的效率和精度,因此在自适应控制中得到了广泛的应用。
一、模糊系统辨识模糊系统辨识是指对模糊控制系统进行参数辨识和模型识别,目的是为了找到最佳的控制方案。
模糊系统的辨识过程也是确定模糊控制系统结构和参数的过程。
模糊控制系统需要依赖于模糊规则库和隶属函数来完成参数辨识和模型识别。
模糊规则库是一个包含了各种规则的数据库,其中每个规则由一组条件和一组相应的控制动作组成。
隶属函数用来描述输入变量和输出变量之间的映射关系。
在模糊系统辨识的过程中,需要收集大量的数据来分析和处理,以便从中提取有用的信息。
这里的数据包括输入数据和输出数据,输入数据包括控制输入和环境输入,输出数据包括控制输出和系统响应。
通过对这些数据进行分析、模型识别和参数辨识,可以得到一个模糊控制系统的模型,并对其进行优化调整,以使其更好地适应所需的控制任务。
二、自适应控制模糊系统的自适应控制是利用模糊控制系统的动态特性,不断根据控制系统的变化自动调整控制参数,以达到最优的控制效果。
因此,自适应控制算法是一种重要的控制算法,它可以自动调整控制参数以快速响应外部变化。
自适应控制有多种方法,包括自适应模糊控制、自适应神经网络控制、自适应PID控制、自适应模型预测控制等。
其中,自适应模糊控制是一种广泛应用的控制方法,它可以自动调整模糊规则库、隶属函数以及控制输出,以适应不同的控制任务和环境条件。
三、结论总之,在现代控制领域中,模糊控制方法是一种重要的控制方法之一,具有较高的鲁棒性和鲁棒性。
模糊控制方法除了能够处理非线性系统,还可以处理模糊系统,因此在实际控制中被广泛应用。
模糊系统的辨识和自适应控制是模糊控制方法的两个基本方面,它们为模糊控制的优化和应用提供了基础和保障。
系统辨识与自适应控制教材
系统辨识与自适应控制是一门涉及自动化控制、信号处理、人工智能等多个领域的交叉学科。
这门学科主要研究如何从系统的输入输出数据中,通过一定的方法和技术,辨识出系统的数学模型,进而实现对系统的有效控制。
系统辨识的主要方法包括:基于频率响应的方法、基于时间序列的方法、基于状态空间的方法等。
这些方法可以通过对系统的输入输出数据进行处理和分析,提取出系统的模型参数和结构。
自适应控制是一种特殊的控制系统,它可以根据环境的变化或者系统参数的变化,自动调整控制参数,以实现最优的控制效果。
自适应控制的主要方法包括:模型参考自适应控制、自校正控制、多变量自适应控制等。
系统辨识与自适应控制教材有很多种,以下是一些经典的教材:
1. 《System Identification and Adaptive Control》(第二版)- John H. Holland
2. 《Adaptive Control of Linear Systems》- Michael C. Corsini
3. 《Nonlinear System Identification and Control》- Massimo Ippolito
4. 《System Identification: Theory for the User》- Jack W. Newbold
5. 《Introduction to System Identification》- Mark H. Sager
这些教材都是系统辨识与自适应控制的经典之作,它们详细介绍了系统辨识与自适应控制的基本概念、方法和技术,以及它们在各个领域的应用。
如果您想深入学习系统辨识与自适应控制,建议阅读这些教材。
自动控制系统中的模型辨识与自适应控制策略引言自动控制系统是现代工程领域中很重要的一个研究方向,它涉及到各种各样的应用,如工业自动化、航天技术、机器人技术等。
在自动控制系统中,模型辨识和自适应控制策略是两个关键领域。
本文将讨论自动控制系统中的模型辨识和自适应控制策略的原理、方法和应用。
模型辨识模型辨识是自动控制系统中的一个重要研究领域,它旨在从系统的输入和输出数据中构建出一个有效的数学模型。
该数学模型能够描述和预测系统的动态行为,从而为系统设计和控制提供依据。
常用的模型辨识方法包括参数辨识、结构辨识和非参数辨识。
参数辨识方法是基于假设系统模型是已知结构的情况下进行的。
通过对系统的输入和输出数据进行拟合,参数辨识方法能够估计出系统模型中的参数。
这些参数可以被用于描述系统的动态性能,并且可以用于设计稳定的自适应控制器。
结构辨识方法是在没有先验知识的情况下,通过试探不同的系统结构来辨识系统模型。
这种方法常常使用组合算法和优化算法,通过对系统数据进行训练,筛选出最符合系统动态特性的模型结构。
结构辨识方法在辨识非线性系统和复杂系统方面具有很大的优势。
非参数辨识方法是一种基于经验分布函数和核函数的统计方法。
该方法不依赖于特定模型的假设,而是直接从数据中提取系统的动态信息。
非参数辨识方法可以用于辨识非线性系统和时变系统,适用范围广泛。
自适应控制策略自适应控制策略是一种可以根据系统的实时信息进行不断更新和优化的控制策略。
自适应控制器能够自动调整控制参数,以适应系统的变化和不确定性。
常用的自适应控制策略包括模型参考自适应控制和直接自适应控制。
模型参考自适应控制是一种基于模型参考思想的控制策略。
该策略通过引入一个参考模型来指导控制器的参数调整。
控制器的目标是使系统的输出与参考模型的输出保持一致。
模型参考自适应控制可以有效地抑制扰动和噪声的影响,提高系统的鲁棒性。
直接自适应控制是一种通过在线辨识系统模型的控制策略。
该策略通过对系统的输入和输出数据进行递归估计,不断更新模型参数。
中南大学系统辨识及自适应控制实验指导老师贺建军姓名史伟东专业班级测控1102班0909111814号实验日期2014年11月实验一 递推二乘法参数辨识设被辨识系统的数学模型由下式描述:2341231232.0 1.51()()()1 1.50.70.11 1.50.70.1z z z y k u k k z z z z z zξ---------++=+-++-++ 式中ξ(k )为方差为0.1的白噪声。
要求:(1) 当输入信号u (k )是方差为1的白噪声序列时,利用系统的输入输出值在线辨识上述模型的参数;(2) 当输入信号u (k )是幅值为1的逆M 序列时,利用系统的输入输出值在线辨识上述模型的参数;分析比较在不同输入信号作用下,对系统模型参数辨识精度的影响。
(1)clear all; close all;a=[1 -1.5 0.7 0.1]';b=[1 2 1.5]';d=3; %对象参数na=length(a)-1;nb=length(b)-1; %计算阶次L=500; %数据长度uk=zeros(d+nb,1);yk=zeros(na,1); %输入输出初值u=randn(L,1); %输入采用方差为1的白噪声序列xi=sqrt(0.1)*randn(L,1); % 方差为0.1的白噪声干扰序列theta=[a(2:na+1);b]; %对象参数真值thetae_1=zeros(na+nb+1,1); %参数初值P=10^6*eye(na+nb+1);for k=1:Lphi=[-yk;uk(d:d+nb)]; %此处phi为列向量y(k)=phi'*theta+xi(k); %采集输出数据%递推公式K=P*phi/(1+phi'*P*phi);thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1);P=(eye(na+nb+1)-K*phi')*P;%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endplot([1:L],thetae); %line([1:L],[theta,theta]); xlabel('k');ylabel('参数估计a,b');legend('a_1','a_2','a_3','b_0','b_1','b_2');axis([0 L -2 2]);(2)clear all;a=[1 -1.5 0.7 0.1]';b=[1 2 1.5]';d=2; %对象参数na=length(a)-1;nb=length(b)-1; %计算阶次L=20; %数据长度uk=zeros(d+nb,1);yk=zeros(na,1); %输入初值x1=1;x2=1;x3=1;x4=0;S=1;%移位寄存器初值,方波初值xi=rand(L,1);%白噪声序列theta=[a(2:na+1);b]; %对象参数真值for k=1:Lphi(k,:)=[-yk;uk(d:d+nb)]'; % phi(k,:)为行向量,便于组成phi矩阵y(k)=phi(k,:)*theta+xi(k); %采集输出数据IM=xor(S,x4);if IM==0u(k)=-1;elseu(k)=1;endS=not(S);M=xor(x3,x4); %产生M序列%更新数据x4=x3;x3=x2;x2=x1;x1=M;for i=nb+d:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);End实验二 最小方差自校正控制实验设二阶纯滞后被控对象的数学模型参数未知或慢时变,仿真实验时用下列模型:34112122.5 1.510.5()()()1 1.50.71 1.50.7z z z y k u k k z z z zξ-------++=+-+-+ 式中ξ(k )为方差为0.1的白噪声。
Harbin Institute of Technology系统辨识与自适应控制实验报告题目:渐消记忆最小二乘法、MIT方案与卫星振动抑制仿真实验专业:控制科学与工程姓名:学号: 15S******指导老师:日期: 2015.12.06哈尔滨工业大学2015年11月本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用;第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响;第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。
针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。
一、系统辨识1. 最小二乘法的引出在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。
设单输入-单输出线性定长系统的差分方程为:()()()()()101123n n x k a x k a k n b u k b u x k n k +-+⋯+-=+⋯+-=,,,, (1.1) 错误!未找到引用源。
式中:()u k 错误!未找到引用源。
为控制量;错误!未找到引用源。
为理论上的输出值。
错误!未找到引用源。
只有通过观测才能得到,在观测过程中往往附加有随机干扰。
错误!未找到引用源。
的观测值错误!未找到引用源。
可表示为: 错误!未找到引用源。
(1.2)式中:()n k 为随机干扰。
由式(1.2)得错误!未找到引用源。
()()()x k y k n k =- (1.3)将式(1.3)带入式(1.1)得()()()()()()()101111()nn n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+⋯+-=+-+⋯+-++-∑ (1.4)我们可能不知道()n k 错误!未找到引用源。
控制系统中的系统辨识与自适应控制在控制系统中,系统辨识与自适应控制是两个关键的方面。
系统辨识是指通过实验或推理的方法,从输入和输出的数据中提取模型的参数和结构信息,以便更好地理解和控制系统的行为。
而自适应控制是指根据系统辨识得到的模型参数和结构信息,实时地调整控制器的参数以适应系统变化,以提高控制性能。
一、系统辨识1.1 参数辨识参数辨识是指确定系统动态模型中的参数。
常用的方法包括最小二乘法、极大似然估计法等。
最小二乘法是一种常见的参数辨识方法,通过最小化实际输出与模型输出之间的误差平方和来确定参数。
1.2 结构辨识结构辨识是指确定系统动态模型的结构,包括确定系统的阶数、输入输出关系等。
常用的结构辨识方法有ARX模型、ARMA模型等。
ARX模型是指自回归外部输入模型,适用于输入输出具有线性关系的系统。
ARMA模型是指自回归滑动平均模型,适用于输入输出关系存在滞后效应的系统。
二、自适应控制自适应控制是根据系统辨识得到的模型参数和结构信息,动态地调整控制器的参数以适应系统的变化。
常用的自适应控制方法有模型参考自适应控制、模型预测控制等。
2.1 模型参考自适应控制模型参考自适应控制是建立在系统辨识模型基础上的控制方法。
通过将系统输出与参考模型输出进行比较,通过调整控制器参数来减小误差。
常见的模型参考自适应控制方法有自适应PID控制、自适应模糊控制等。
2.2 模型预测控制模型预测控制是一种基于系统辨识模型的控制策略,通过对系统未来的状态进行预测,以求得最优控制输入。
模型预测控制可以同时考虑系统的多个输入和多个输出,具有较好的控制性能。
三、应用案例3.1 机械控制系统在机械控制系统中,系统辨识和自适应控制可以被应用于伺服控制系统。
通过系统辨识可以得到伺服电机的动态模型,然后利用自适应控制方法调整PID控制器的参数,以提高伺服系统的响应速度和稳定性。
3.2 化工控制系统在化工控制系统中,系统辨识和自适应控制可以被应用于控制某个反应器的温度。
系统辨识与自适应控制结课论文目录一、自适应控制系统的由来二、自适应控制系统的定义三、自适应控制系统的组成和特点四、自适应控制的方案五、自适应控制方法在工业生产等领域的应用六、发展前景自适应控制系统一、自适应控制系统的由来在控制工程中,控制的目标是设计控制器使被控对象满足某种性能指标,或使系统运动轨迹按某种理想的轨迹运行,达到一种最优的运行状态。
在线性系统理论和最优控制理论中,人们对这些问题进行了深入的研究,得到了非常丰富的成果,形成了完整的理论体系。
不过,这里要求被控对象的模型都是已知的,并且在多数情况下还要求被控对象具有线性是不变的特征。
在实际的控制过程中,控制对象往往存在不确定性。
有时人们对被控对象的数学模型了解并不完全,模型结构存在某种不确定性;或者是对模型结构(如模型的阶数、传递函数零极点的个数等)已经了解,但是由于环境、工况的影响,被控对象模型的参数可能在很大范围内发生变化。
当系统存在不确定性时,按照确定性数学模型所涉及的控制器就不可能得到良好的控制性能,有时系统会出现不稳定的现象。
因此,需要一种新的控制系统,她能够自动补偿系统由于过程对象的参数,环境的不定性而造成的系统性能的变化,自适应控制系统应运而生。
自适应控制最初(20世纪50年代末期)主要应用于航天航空领域,此时相应的理论和方法还不成熟,应用上遇到一些失败,但部分人仍然坚持研究,并将其应用推广至其他工业部门;到七十年代随着控制理论和计算机技术的发展,自适应控制取得重大进展,在光学跟踪望远镜、化工、冶金、机加工和核电中的成功应用也充分证明了其有效性;此后,自适应控制技术的应用更得到大幅度扩展;目前从美国新的登月计划到临床医学领域,自适应控制技术的应用都方兴未艾。
二、自适应控制系统的定义自适应控制系统尚没有公认的统一定义,一些学者针对比较具体的系统构成方式提出了自适应控制系统的定义。
有些定义得到了自适应控制研究领域广大学者的认同。
自适应控制应用0引言自从上世纪50年代末期由美国麻省理工学院W hitaker等人提出第一个自适应控制系统以来,已先后出现许多形式的自适应控制系统,特别到70}代在航天工业及计算机技术的推动下,自适应控制理论与技术迅速发展,到90年代初自适应控制理论设计方法实现条件已日趋成熟,特别是与模糊控制、神经网络相结合的自适应控制设计方法将使自适应控制技术成为现代工业生产过程及航天技术上的一种高性能、高效率、高可靠的有效控制方法及手段1自适应控制的应用领域自适应控制在数控机床中的应用之处很多。
像自动换刀报警技术,自动磨损补偿加工技术,自动热误差补偿加工技术等都有用到自适应控制技术。
数控机床的工作原理是通过外界输入控制指令的程序代码,机床中的数控系统自动译码翻译,将其转化为各种控制指令,驱动机床对作用对象进行加工。
正是由于自适应控制在机床加工中的应用,使得机床轮廓铣削和铣槽用时都节省超过1/3;铣面和钻孔省时也都超过20%以上。
除此之外,应用了自适应控制技术的机床还具有许多保护功能加前面提到的自动换刀报警技术,可以危机报警并自动停止加工工作,以免坏的刀具破坏工件以及后续刀具的损毁,这种技术在铣刀加工和钻刀打孔中都有应用到,同时刀具磨损过大,主轴过载等情况系统也有相应的检测和自适应控制的功能。
自适应策略在电力系统控制中的应用主要包括:锅炉蒸汽温度和压力控制、锅炉燃烧效率的优化控制、互连电力系统发电量控制等方面。
针对电厂主蒸汽温度调节的大时滞和不确定性,我国东北电力大学的顾俊杰等采用自适应PSD控制方法,并结合运用内模控制器。
与传统的PID控制系统相比,自适应PSD控制算法简单、计算量小,并且能减少超调量、加快相应速度、缩短稳定时间!。
东南大学的胡一倩等对PID模糊控制器的参数进行自适应调整,并将其用于锅炉过热蒸汽温度的控制,取得了满意的效果。
哈尔滨工业大学的徐立新等结合专家经验得出燃气轮机模糊PI控制规律,并据此设计了透平转速和排气温度的模糊自适应PI控制器,提高了燃气轮机的性能且实先非常方便。
控制系统参数辨识及自适应控制技术研究摘要:控制系统参数辨识及自适应控制技术是当今控制领域中的热门研究方向之一。
本文旨在探讨控制系统参数辨识及自适应控制技术的研究现状、应用领域以及未来的发展方向。
我们将从理论基础、方法和算法、应用案例以及挑战与前景等方面进行论述,以期对读者深入理解和掌握相关的知识。
1. 引言控制系统参数辨识及自适应控制技术是指通过对控制系统内部参数进行辨识和实时调整的方法,实现对系统动态性能的优化和改进。
该技术在工业控制、机器人控制、智能交通等领域具有广泛的应用前景。
2.理论基础控制系统参数辨识及自适应控制技术的理论基础主要包括系统辨识和自适应控制两个方面。
系统辨识涉及参数辨识的方法和模型的建立,可以通过频域分析、时域分析、最小二乘法等方法来完成。
自适应控制则是指通过对系统参数的实时调整,使得系统能够自动跟踪和抑制外部扰动,提高系统性能。
3. 方法与算法控制系统参数辨识及自适应控制技术的方法和算法繁多。
其中,模型参考自适应控制、模型预测控制、直接自适应控制等是常用的自适应控制方法。
而广义最小二乘法、神经网络、遗传算法等则是常用的参数辨识算法。
4. 应用案例控制系统参数辨识及自适应控制技术在工业、交通、机器人等领域都有广泛的应用。
在工业领域中,该技术可以应用于控制系统的优化和提升,实现生产效率的最大化。
在交通领域中,自适应控制可以用于智能交通信号灯的优化调度和交通流量的控制。
而在机器人领域中,该技术可以应用于机器人路径规划和运动控制,提高机器人的精确度和灵活性。
5. 挑战与前景尽管控制系统参数辨识及自适应控制技术已经取得了很大的进展,但仍然存在一些挑战。
首先,参数辨识需要大量的实验数据,而现实系统中往往很难获取充足的数据。
其次,自适应控制算法的设计和实现复杂,需要解决多变量、非线性以及时变系统的控制问题。
未来的发展方向主要包括改进参数辨识算法、研究更高级的自适应控制方法以及跨学科领域的合作。
系统辨识与自适应控制matlab仿真概述说明1. 引言1.1 概述在控制系统中,系统辨识与自适应控制是两个重要的研究领域。
系统辨识是指通过实验数据来推断和建立数学模型,以揭示被控对象的动态特性和行为规律。
而自适应控制则是基于辨识模型预测,并根据外部环境变化及时调整控制策略,以实现对系统稳定性、鲁棒性和性能的优化。
本文将围绕系统辨识与自适应控制在Matlab仿真环境中的应用展开讨论。
首先,我们会介绍系统辨识和自适应控制的基本概念以及其在工程领域中的重要性。
然后,我们会详细介绍常用的系统辨识方法和自适应控制算法,并通过具体示例来说明它们的实际应用价值。
最后,我们会重点讲解如何利用Matlab进行仿真实验,并分享一些Matlab编程与仿真技巧。
1.2 文章结构本文共分为五个主要部分:引言、系统辨识、自适应控制、Matlab仿真以及结论与展望。
在引言部分,我们将介绍文章的背景和目的,以及整体结构安排。
接下来的三个部分将重点讨论系统辨识和自适应控制两个主题,并具体阐述各自的概念、方法、应用以及仿真结果分析。
最后一部分则是对全文进行总结回顾,并展望未来研究方向和发展趋势。
1.3 目的本文旨在通过对系统辨识与自适应控制在Matlab仿真环境中的研究与应用进行概述说明,帮助读者深入了解该领域的基本理论和实践技巧。
同时,在介绍相关概念和算法的同时,我们也希望能够启发读者思考并提出对未来研究方向和发展趋势的建议。
通过本文的阅读,读者将能够全面了解系统辨识与自适应控制在工程领域中的重要性,并学会利用Matlab进行仿真实验,从而加深对这一领域的理解与认知。
2. 系统辨识2.1 系统辨识概念系统辨识是指通过观测系统输入与输出之间的关系,以及对系统内部状态的估计,来建立数学模型以反映实际物理系统行为的过程。
在控制工程领域中,系统辨识是一种常用的方法,用于从已知输入与输出数据中推断出未知系统的特性和参数。
在系统辨识过程中,我们通常假设被研究的系统是线性、时不变且具有固定结构的。
系统辨识与自适应控制大四上的日子,课虽不多却有点蛋疼,全是带控制的,比如计算机控制啊,过程控制啊,运动控制啊,听起来晦涩、难懂的就是系统辨识与自适应控制了。
在此没有要诋毁谁谁谁的意思,只是强调这门课的难度系数,不过幸好不用考试,一份童言无忌的大作业就可以了,还是非常喜欢这样的形式的。
系统辨识与自适应控制,应该是两门课程,但是是密切联系的。
用马克思的话来说就是,辩证联系的,既有联系又有区别。
在自然和社会科学的许多领域,系统的设计、系统的定量分析、系统的综合及系统的控制,以及对其未来行为的预测,都需要知道系统的未来特性。
建立描述动态系统的数学模型及论述模型建立的理论与方法,即为系统辨识研究的内容。
而自适应控制研究的对象具有不确定性,如何设计一个高性能的控制系统,恰恰是一个自适应控制系统所要研究的问题。
20世纪60年代,自动控制理论发展到了很高的水平,经典控制论被更有前途的现代控制理论所超越,与此同时,工业大生产的发展,也要求将控制技术提到更高的水平。
现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。
现代控制理论的应用遇到了确定受控对象合适的数学模型的各种困难。
因此,建立系统数学模型的方法——系统辨识,就成为应用现代控制理论的重要前提。
在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。
在这样的背景下,系统辨识问题便愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。
什么是系统辨识?对于自动控制系统的分析和设计来说,建立受控对象的数学模型是必不可少的。
建立所研究的对象的数学模型,主要有两个途径:一个是借助于基本物理定律,即利用各个专门学科领域提出来的关于物质和能量的守恒性和连续性原理,以及系统结构数据,推导出系统的数学模型。
这种建立模型的方法称为数学建模法或称解析法。
但是,对很大一类工程系统,如化工过程,由于其复杂性,很难用解析法推导出数学模型。
系统辨识及自适应控制实验报告实验报告:系统辨识及自适应控制1.引言系统辨识和自适应控制是现代自动控制领域中的重要研究内容。
系统辨识是通过采集系统输入输出数据,建立数学模型描述系统的动态行为。
自适应控制则是根据系统辨识得到的模型,调整控制器参数以适应系统的变化和外部干扰。
本实验旨在通过实际操作,掌握系统辨识和自适应控制的基本原理和方法。
2.实验目的1)了解系统辨识的基本原理和方法;2)掌握常见的系统辨识方法,包括参数辨识和频域辨识;3)理解自适应控制的基本原理和方法;4)熟悉自适应控制的实现过程;5)通过实验验证系统辨识和自适应控制的有效性。
3.实验原理3.1系统辨识原理系统辨识的目标是通过采集系统输入输出数据,建立数学模型来描述系统的动态特性。
常见的系统辨识方法包括参数辨识和频域辨识两种。
参数辨识是通过拟合实际测量数据,找到最佳的模型参数。
常用的参数辨识方法有最小二乘法、极大似然法和最小误差平方等。
频域辨识则是通过对输入输出信号的频谱分析,得到系统的频率响应特性。
常用的频域辨识方法有傅里叶变换法、相关分析法和谱估计法等。
3.2自适应控制原理自适应控制是根据系统辨识得到的模型,调整控制器参数以适应系统的变化和外部干扰。
自适应控制分为基于模型的自适应控制和模型无关的自适应控制。
基于模型的自适应控制利用系统辨识得到的模型参数,设计相应的控制器来实现自适应控制。
常见的基于模型的自适应控制方法有模型参考自适应控制和模型预测自适应控制等。
模型无关的自适应控制则不依赖于系统辨识的模型,而是根据实际测量数据直接调整控制器参数。
常见的模型无关的自适应控制方法有自适应滑模控制和神经网络控制等。
4.实验内容4.1系统辨识实验在实验中,我们通过采集系统输入输出数据,根据最小二乘法进行参数辨识。
首先设置系统的输入信号,如阶跃信号或正弦信号,并记录对应的输出数据。
然后根据采集到的数据,选取适当的模型结构,通过最小二乘法求解最佳的模型参数。
1.白噪声(white noise )系统辨识中所用到的数据通常都含有噪声。
从工程实际出发,这种噪声往往可以视为具有有理谱密度的平稳随机过程,是由一系列不相关的随机变量组成的理想化随机过程。
白噪声的数学描述如下:如果随机过程()t ξ均值为0、自相关函数为2()σδτ,即2()()R ξτσδτ=式中,()δτ为单位脉冲函数(亦称为Dirac 函数),即,0(),0,τδττ∞ =⎧=⎨ ≠0⎩且()1d δττ∞-∞=⎰ 则称该随机过程为白噪声。
2.白噪声序列白噪声序列是白噪声过程的一种离散形式,可以描述如下:如果随机序列{}()k ξ均值为0,且两两不相关,对应的自相关函数为2()(),0,1,2,R k k k ξσδ= =±±⋅⋅⋅式中,()k δ为Kronecker 函数,即1,0()0,k k k δ =⎧=⎨ ≠0⎩ 则称随机序列{}()k ξ为白噪声序列。
可以将标量白噪声序列的概念推广到向量的情况,向量白噪声序列{}()k ξ定义如下:{}{}{}()0(),()()()()T E k Cov k k l E k k l R l ξξξξξδ=⎧⎪⎨+=+=⎪⎩ 式中,R 为正定常数矩阵,()l δ为Kronecker 函数。
3.有色噪声(colored noise )从上述定义可知,理想白噪声只是一种理论上的抽象,在物理上是不能实现的,现实中并不存在这样的噪声。
因而,工程实际中测量数据所包含的噪声往往是有色噪声。
所谓有色噪声(或相关噪声)是指噪声序列中每一时刻的噪声和另一时刻的噪声相关。
“表示定理”表明,有色噪声序列可以看成由白噪声序列驱动的线性环节的输出,如图2.6所示。
{}{}1()()()k e k G z ξ-−−−→−−−−→白噪声有色噪声图2.6有色噪声图2.6中,1()G z -为线性传递函数,也称为成形滤波器,可写成111()()()C z G z D z ---= 式中1121211212()1()1c c d d n n n n C z c z c z c z D z d z d z d z--------⎧=+++⋅⋅⋅⎪⎨=+++⋅⋅⋅⎪⎩ 且1()C z -、1()D z -均为稳定多项式,即其根均在z 平面的单位圆内。