用牛顿运动定律解决问题一练习题及答案解析
- 格式:docx
- 大小:51.93 KB
- 文档页数:5
(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。
【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
用牛顿运动定律解决问题(一)组题人:一、两类动力学问题(1)已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
(2)已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:(3)在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。
在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。
运动学和动力学中公共的物理量是加速度a。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。
二、应用牛顿第二定律解题的一般步骤:1确定研究对象:依据题意正确选取研究对象2分析:对研究对象进行受力情况和运动情况的分析,画出受力示意图和运动情景图3列方程:选取正方向,通常选加速度的方向为正方向。
方向与正方向相同的力为正值,方向与正方向相反的力为负值,建立方程4解方程:用国际单位制,解的过程要清楚,写出方程式和相应的文字说明,必要时对结果进行讨论三、整体法与隔离法处理连接体问题1.连接体问题所谓连接体就是指多个相互关联的物体,它们一般具有相同的运动情况(有相同的速度、加速度),如:几个物体或叠放在一起,或并排挤放在一起,或用绳子、细杆联系在一起的物体组(又叫物体系).2.隔离法与整体法(1)隔离法:在求解系统内物体间的相互作用力时,从研究的方便性出发,将物体系统中的某部分分隔出来,单独研究的方法.(2)整体法:整个系统或系统中的几个物体有共同的加速度,且不涉及相互作用时,将其作为一个整体研究的方法.3.对连接体的一般处理思路(1)先隔离,后整体.(2)先整体,后隔离典例剖析典例一、由受力情况确定运动情况【例1】将质量为0.5 kg的小球以14 m/s的初速度竖直上抛,运动中球受到的空气阻力大小恒为2.1 N,则球能上升的最大高度是多少?解析通过对小球受力分析求出其上升的加速度及上升的最大高度.以小球为研究对象,受力分析如右图所示.在应用牛顿第二定律时通常默认合力方向为正方向,题目中求得的加速度为正值,而在运动学公式中一般默认初速度方向为正方向,因而代入公式时由于加速度方向与初速度方向相反而代入负值.根据牛顿第二定律得mg +Ff =ma ,a =mg +Ff m=0.5×9.8+2.10.5m/s2=14m/s2上升至最大高度时末速度为0,由运动学公式0-v20=2ax 得最大高度x =02-v202a =0-1422×(-14) m =7 m.答案 7 m 1.受力情况决定了运动的性质,物体具体的运动状况由所受合外力决定,同时还与物体运动的初始条件有关. 2.受力情况决定了加速度,但与速度没有任何关系.【例2】如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m =1kg 的物体,物体与斜面间动摩擦因数μ=0.25.现用轻细绳将物体由静止沿斜面向上拉动,拉力F =10N ,方向平行斜面向上,经时间t =4s 绳子突然断了,求:(1)绳断时物体的速度大小.(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(sin 37°=0.60,cos 37°=0.80,g =10 m/s2)解析 (1)物体受拉力向上运动过程中,受拉力F 、斜面的支持力FN 、重力mg 和摩擦力Ff ,如右图所示,设物体向上运动的加速度为a1,根据牛顿第二定律有:F-mgsin θ-Ff=ma1因Ff=μFN ,FN=mgcos θ 解得a1=2 m/s2t=4 s 时物体的速度大小为v1=a1t=8 m/s.(2)绳断时物体距斜面底端的位移m t a x 1621211==绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a2,受力如上图所示,则根据牛顿第二定律,对物体沿斜面向上运动的过程有:mgsin θ+Ff=ma2 Ff=μmgcos θ 解得a2=8 m/s2物体做减速运动的时间s t a v1212==减速运动的位移m t a x 4222212==此后物体将沿着斜面匀加速下滑,设物体下滑的加速度为a3,受力如右图所示,根据牛顿第二定律对物体加速下滑的过程有:mgsin θ-Ff=ma3 Ff=μmgcos θ解得a3=4 m/s2设物体由最高点到斜面底端的时间为t3,所以物体向下匀加速运动的位移:2332121t a x x =+解得s t 2.3103≈= 所以物体返回到斜面底端的时间为t 总=t2+t3=4.2 s典例二、由运动情况确定受力情况【例3】民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4m ,构成斜面的气囊长度为5 m .要求紧急疏散时乘客从气囊上由静止下滑到达地面的时间不超过2 s ,则(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?(g =10 m/s2) 解析(1)设h =4 m ,L =5 m ,t =2 s ,斜面倾角为θ,则Lh=θsin .乘客在气囊上下滑过程,由221at L = 解得: a =2.5 m/s2(2)乘客下滑过程受力分析如右图则有:FN=mgcos θ ,Ff =μFN = μmgcos θ 由牛顿第二定律可得:mgsin θ- Ff=ma代入数据解得:1211=μ规律总结:物体的加速度由物体所受的合力决定,两者大小、方向及变化一一对应;速度大小的变化情况取决于加速度的方向与速度方向的关系,当两者同向时,速度变大,当两者反向时,速度变小。
一、选择题1、用3N的水平恒力,在水平面上拉一个质量为2kg的木块,从静止开始运动,2s内的位移为2m,则木块的加速度为() A.0.5m/s2 B.1m/s2 C.1.5m/s2 D.2m/s22、据《新消息》报道,在北塔公园门前,李师傅用牙齿死死咬住长绳的一端,将停放着的一辆卡车缓慢拉动。
小华同学看完表演后做了如下思考,其中正确的是()A.李师傅选择斜向上拉可以减少车对地面的正压力,从而减少车与地面间的摩擦力B.若将绳系在车顶斜向下拉,要拉动汽车将更容易C.车被拉动的过程中,绳对车的拉力大于车对绳的拉力D.当车由静止被拉动时,绳对车的拉力大于车受到的摩擦阻力3、行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害。
为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带。
假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车闸到车完全停止需要的时间为5s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( )A.450NB.400NC.350ND.300N4、粗糙水平面上的物体在水平拉力F作用下做匀加速直线运动,现使F不断减小,则在滑动过程中( )A.物体的加速度不断减小,速度不断增大B.物体的加速度不断增大,速度不断减小C.物体的加速度先变大再变小,速度先变小再变大D.物体的加速度先变小再变大,速度先变大再变小6、有种自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转。
一顾客乘扶梯上楼,正好经历了这两个过程,则能正确反映该乘客在这两个过程中的受力示意图的是()二、多项选择7、正在加速上升的气球,下面悬挂重物的绳子突然断开,此时( )A.重物的加速度立即发生改变 B.重物的速度立即发生改变C.气球的速度立即改变 D.气球的加速度立即增大三、计算题8、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s内速度由5.0m/s增加到15.0m/s.(1)求列车的加速度大小.(2)若列车的质量是1.0×106kg,机车对列车的牵引力是1.5×105N,求列车在运动中所受的阻力大小.9、质量为1000Kg的汽车在水平路面上从静止开始运动,经过4s速度达到10m/s,汽车受到的水平牵引力为3000N。
高一物理牛顿第一定律试题答案及解析1.(5分)推一辆自行车比推一辆小汽车更容易,是因为自行车的比小汽车小。
【答案】质量或惯性【解析】质量是惯性大小的量度,惯性越大,运动状态越难改变,因此推自行车比推小汽车更容易,是因为自行车的惯性小的原因。
【考点】惯性2.关于惯性,下列说法中正确的是()A.物体仅在静止和匀速直线运动状态时才具有惯性B.汽车速度越大越不容易停下来,是因为速度越大惯性越大C.在月球上举重比在地球上容易,所以质量相同的物体在月球上比在地球上惯性小D.歼击机战斗前抛掉副油箱是为了减小惯性【答案】D【解析】惯性是物体的固有属性,任何情况下都用惯性,与运动状态无关,所以A错误;惯性的大小由质量唯一量度,与速度无关,所以B错误;同一物体哎月球上与在地球上质量相同,故惯性相同,所以C错误;歼击机战斗前抛掉副油箱,减少质量,故减小惯性,所以D正确。
【考点】本题考查惯性3.一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论正确的是()A.质量越大,它的惯性越大B.车速越大,它的惯性越大C.车速越大,刹车后滑行的路程不一定越长D.刹车后滑行的路程越长,惯性越大【答案】A【解析】质量是衡量惯性大小的唯一因素,质量越大,惯性越大,惯性与物体的运动性质无关,只与物体的质量大小有关,A正确,BD错误;汽车刹车问题过程中末速度为零,根据可逆性可得可得车速越大,滑行距离越大,C错误【考点】考查了惯性,匀变速直线运动规律的应用4.下面是摘自上个世纪美国报纸上的一篇小文章:阿波罗登月火箭在脱离地球飞向月球的过程中,飞船内宇航员通过无线电与在家中上小学的儿子汤姆通话。
宇航员:“汤姆,我们现在已关闭火箭上所有发动机,正向月球飞去。
”汤姆:“你们关闭了所有发动机,那么靠什么力量推动火箭向前运动?”宇航员犹豫了半天,说:“我想大概是伽利略在推动火箭向前运动吧。
”若不计星球对火箭的作用力,由上述材料可知下列说法不正确的是()A.宇航员答话所体现的物理思想是“力是维持物体运动的原因”B.汤姆问话所体现的物理思想是“力是维持物体运动的原因”C.宇航员答话所体现的物理思想是“物体运动不需要力来维持”D.宇航员答话的真实意思是火箭正在依靠惯性飞行【答案】A【解析】汤姆的问话:“你们关闭了所有发动机,那么靠什么力量推动火箭向前运动飞向月球?”认为火箭运动一定要力推动,所体现的物理思想是“力是维持物体运动的原因”,故B正确;宇航员的回答:“我想大概是伽利略在推动火箭向前运动吧.”不可能是伽利略,只是一个玩笑,即认为物体的运动不需要力来维持,火箭靠惯性飞行,体现了伽利略的研究思想.故A错误,CD正确;让选错误的,故选A【考点】牛顿第一定律的理解5.关于惯性,下列哪些说法是正确的()A.惯性除了跟物体质量有关外,还跟物体速度有关B.物体只有在不受外力作用的情况下才能表现出惯性C.乒乓球可快速抽杀,是因为乒乓球的惯性小的缘故D.战斗机投入战斗时,必须丢掉副油箱,减小惯性以保证其运动的灵活性【答案】CD【解析】惯性是物体本身的属性,只由物体的质量决定,质量越大惯性越大,与物体的运动状态无关,A错;并且与物体的受力情况无关,B错;故选CD【考点】考查惯性的概念点评:惯性是物体本身的属性,只由物体的质量决定,质量越大惯性越大,与物体的运动状态和受力情况无关6.关于惯性的大小,下列叙述正确的是A.两个质量相同的物体,在阻力相同的情况下,速度大的不容易停下来,所以速度大的物体惯性大。
高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。
他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。
已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。
小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。
则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s 内由动能定理:,解得x2=39m所以小车在加速运动过程中位移的大小为3m+39m=42m,选项CD 错误。
【考点】v-t图线;牛顿定律的应用及动能定理。
2.洗车档的内、外地面均水平,门口的斜坡倾角为θ 。
质量为m的Jeep洗完车出来,空挡滑行经历了如图所示的三个位置。
忽略车轮的滚动摩擦,下列说法正确的是A.在三个位置Jeep都正在做加速运动B.在乙位置Jeep正在做匀速运动C.在甲位置Jeep受到的合力等于mgsinθD.在丙位置Jeep的加速度小于gsinθ【答案】BD【解析】甲图和丙图中Jeep的前轮和后轮分别在斜坡上,所以是加速运动,而乙图中Jeep的前后轮均在水平面上,所以做运动运动,选项B正确,A错误;在甲位置和丙位置Jeep受到的合力均小于mgsinθ ,加速度均小于gsinθ, D正确,C错误。
【考点】牛顿定律的应用。
3.如图1所示,质量为m=2kg的小滑块放在质量为M=1kg的长木板上,已知小滑块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,开始小滑块和长木板均处于静止状态,现对小滑块施加向右的水平拉力F,水平拉力F随时间的变化规律如图2所示,已知小滑块始终未从长木板上滑下且μ1=0.2,μ2=0.1,g=10m/s2。
高三物理牛顿第一定律试题答案及解析1.火车在平直轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回原处的原因是:A.人跳起后,车厢内空气给他以向前的推力,带着他随同火车一起向前运动;B.人跳起瞬间,车厢地板给他一向前的推力,推动他随同火车一起向前运动;C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后的距离不明显D.人跳起后直到落地,在水平方向上始终和车具有相同的速度。
【答案】D【解析】由牛顿第一定律可知,物体如果不受力的作用,将保持原来的运动状态不变。
火车上的人跳起后,在水平方向上不受力,将保持与车厢相同的速度向前运动,故落下时在车厢运动方向上与车厢具有相同的位移,会落回原处,D对。
【考点】牛顿运动定律的应用2.关于惯性的认识,以下说法正确的是A.物体受到力的作用后,运动状态发生改变,惯性也随之改变B.置于光滑水平面上的物体即使质量很大也能被拉动,说明惯性与物体的质量无关C.让物体的速度发生改变,无论多快,都需要一定时间,这是因为物体具有惯性D.同一物体沿同一水平面滑动,速度较大时停下的时间较长,说明惯性与速度有关【答案】C【解析】惯性是物体保持原来运动状态的性质,其唯一量度是质量,质量越大惯性越大,即改变状态越难,与物体的运动状态无关,与物体的受力状态无关,所以选项ABD错误C正确.【考点】考查对惯性的理解.3.汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是A.车速越大,它的惯性越大B.车速越大,刹车后滑行的路程越长C.质量越大,它的惯性越大D.车速越大,刹车后滑行的路程越长,所以惯性越大【答案】BC【解析】质量是物体惯性大小的唯一的量度,与物体的运动状态无关,所以A错误,C正确;车速越大,所需制动距离越大,与物体惯性的大小无关,所以B正确,D错误.故选BC.【考点】惯性的概念。
4.下列说法中不正确的是()A.牛顿提出万有引力定律,并利用扭秤实验,巧妙地测出了万有引力常量B.牛顿第一定律、牛顿第二定律都可以通实验来验证C.单位m、kg、s是一组属于国际单位制的基本单位D.牛顿第一定律是牛顿第二定律在加速度等于零下的一个特例。
[随堂检测]1.(2019·陕西咸阳高一期中)图甲是某景点的山坡滑道图片,为了探究滑行者在滑道直线部分AE 滑行的时间,技术人员通过测量绘制出如图乙所示的示意图,AC 是滑道的竖直高度,D 点是AC 竖直线上的一点,且有AD =DE =15 m ,滑道AE 可视为光滑,滑行者从坡顶A 点由静止开始沿滑道AE 向下做直线滑动,g 取10 m/s 2,则滑行者在滑道AE 上滑行的时间为( )A. 2 s B .2 s C. 6 sD .2 2 s解析:选C.如图所示,设斜面坡角为θ,取AE 中点为F ,则:AE =2AF =30sinθ,物体做匀加速直线运动,对物体受力分析,受重力和支持力,将重力沿着平行斜面和垂直斜面正交分解,根据牛顿第二定律,有:mg sin θ=ma ,解得:a =g sin θ; 根据速度位移公式,有:AE =12at 2;解得:t = 6 s.2.用30 N 的水平外力F 拉一个静止在光滑水平面上的质量为20 kg 的物体,力F 作用3 s 后撤去,则第5 s 末物体的速度和加速度分别是( ) A .4.5 m/s ,1.5 m/s 2 B .7.5 m/s ,1.5 m/s 2 C .4.5 m/s ,0D .7.5 m/s ,0解析:选C.有力F 作用时,物体做匀加速直线运动,加速度a =Fm =1.5 m/s 2.力F 作用3 s 撤去之后,物体做匀速直线运动,速度大小为v =at =4.5 m/s ,而加速度为0.选项C 正确. 3.如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( ) A .2∶1 B .1∶1 C.3∶1D .1∶ 3解析:选B.设光滑斜槽轨道与水平面的夹角为θ,则重物下滑时的加速度为a =g sin θ,由几何关系,斜槽轨道的长度s =2(R +r )sin θ,由运动学公式s =12at 2,得t =2s a= 2×2(R +r )sin θg sin θ=2R +rg,即所用时间t 与倾角θ无关,所以t 1=t 2,B 项正确.4.(2019·济宁高一检测)民航客机都有紧急出口,发生意外情况时打开紧急出口,狭长的气囊会自动充气生成一条通向地面的斜面,乘客可沿斜面滑行到地面上.如图所示,某客机紧急出口离地面高度AB =3.0 m ,斜面气囊高度AC =5.0 m ,要求紧急疏散时乘客从气囊上由静止下滑到地面的时间不超过2 s ,g 取10 m/s 2,求:(1)乘客在气囊上滑下的加速度至少为多大?(2)乘客和气囊间的动摩擦因数不得超过多大?(忽略空气阻力) 解析:(1)根据运动学公式x =12at 2①得:a =2x t 2=2×5.022 m/s 2=2.5 m/s 2②故乘客在气囊上滑下的加速度至少为2.5 m/s 2. (2)乘客在斜面上受力情况如图所示. F f =μF N ③ F N =mg cos θ④ 根据牛顿第二定律: mg sin θ-F f =ma ⑤由几何关系可知sin θ=0.6,cos θ=0.8 由②~⑤式得:μ=g sin θ-a g cos θ=716=0.437 5 故乘客和气囊间的动摩擦因数不得超过0.437 5. ☆答案☆:(1)2.5 m/s 2 (2)0.437 5[课时作业]一、单项选择题1.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车闸到车完全停止需要的时间为5 s ,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( ) A .450 N B .400 N C .350 ND .300 N解析:选C.汽车的速度v 0=90 km/h =25 m/s ,设汽车匀减速的加速度大小为a ,则a =v 0t =5m/s 2,对乘客应用牛顿第二定律可得:F =ma =70×5 N =350 N ,所以C 正确.2.(2019·沈阳高一检测)A 、B 两物体以相同的初速度在一水平面上滑动,两个物体与水平面间的动摩擦因数相同,且m A =3m B ,则它们能滑动的最大距离x A 和x B 的关系为( ) A .x A =x B B .x A =3x B C .x A =13x BD .x A =9x B解析:选A.对物体受力分析,由牛顿第二定律μmg =ma 得a =μg .则a A =a B ,x A =v 202a A ,x B =v 202a B ,故x A =x B .3.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2ght +mgB.m 2gh t -mgC.m gh t+mgD.m gh t-mg解析:选A.设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma 又v =at解得F =m 2ght+mg .选项A 正确.4.(2019·黑龙江绥化高一期中)一条足够长的浅色水平传送带自左向右匀速运行,现将一块木炭无初速度地放在传送带的最左端,木炭在传送带上将会留下一段黑色的痕迹,下列说法正确的是( )A .黑色的痕迹将出现在木炭的左侧B .木炭的质量越大,痕迹的长度越短C .传送带运动的速度越大,痕迹的长度越短D .木炭与传送带间动摩擦因数越大,痕迹的长度越短解析:选D.刚放上木炭时,木炭的速度慢,传送带的速度快,木炭向后滑动,所以黑色的径迹将出现在木炭的右侧,所以A 错误;木炭在传送带上运动靠的是与传送带之间的摩擦力,摩擦力作为它的合力产生加速度,所以由牛顿第二定律知,μmg =ma ,所以a =μg ;当达到共同速度时,不再有相对滑动,由v 2=2ax得,木炭位移x 木=v 22μg,设相对滑动的时间为t ,由v =at ,得t =v μg ,此时传送带的位移为x 传=v t =v 2μg ,所以滑动的位移是Δx =x 传-x 木=v 22μg ,由此可以知道,黑色的径迹与木炭的质量无关,所以B 错误;由B 知,传送带运动的速度越大,径迹的长度越长,所以C 错误;木炭与传送带间动摩擦因数越大,径迹的长度越短,所以D 正确.5.(2019·成都高一检测)某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍解析:选B.由自由落体v 2=2gH ,缓冲减速v 2=2ah ,由牛顿第二定律F -mg =ma ,解得F =mg ⎝⎛⎭⎫1+Hh =5mg ,故B 正确. 6.为了使雨滴能尽快地淌离房顶,要设计好房顶的高度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么如图所示的四种情况中符合要求的是( )解析:选C.设屋檐的底角为θ,底边长为2L (不变).雨滴做初速度为零的匀加速直线运动,根据牛顿第二定律得加速度a =mg sin θm =g sin θ,位移大小x =12at 2,而x =L cos θ,2sin θcosθ=sin 2θ,联立以上各式得t =4Lg sin 2θ.当θ=45°时,sin 2θ=1为最大值,时间t 最短,故选项C 正确.7.(2019·太原高一测试)质量为m =3 kg 的木块放在倾角为θ=30°的足够长斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F 作用于木块上,使其由静止开始沿斜面向上加速运动,经过t =2 s 时间物体沿斜面上升4 m 的距离,则推力F 为(g 取10 m/s 2)( ) A .42 N B .6 N C .21 ND .36 N解析:选D.因木块能沿斜面匀速下滑,由平衡条件知:mg sin θ=μmg cos θ,所以μ=tan θ;当在推力作用下加速上滑时,由运动学公式x =12at 2得a =2 m/s 2,由牛顿第二定律得:F -mg sinθ-μmg cos θ=ma ,得F =36 N ,故选D.8.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10 m/s 2,则汽车刹车前的速度为( )A.7 m/s B.14 m/sC.10 m/s D.20 m/s解析:选B.设汽车刹车后滑动的加速度大小为a,由牛顿第二定律得:μmg=ma,解得:a=μg.由匀变速直线运动的速度位移关系式v20=2ax,可得汽车刹车前的速度为v0=2ax=2μgx=2×0.7×10×14 m/s=14 m/s,因此B正确.二、多项选择题9.(2019·江苏镇江高一月考)如图所示,在一无限长的水平小车上,在质量分别为m1和m2的两个滑块(m1>m2)随车一起向右匀速运动,设两滑块与小车间的动摩擦因数均为μ,其他阻力不计,当车突然停止时,以下说法中正确的是()A.若μ=0,两滑块一定相碰B.若μ=0,两滑块一定不相碰C.若μ≠0,两滑块一定相碰D.若μ≠0,两滑块一定不相碰解析:选BD.若μ=0,当车突然停止时,两物块所受的合力为零,将以相同的速度做匀速直线运动,一定不会相撞,故A错误,B正确;若μ≠0,当车突然停止时,两物块做匀减速运动,加速度a=μg,因为初速度相同,所以两滑块一定不相撞,故C错误,D正确.10.(2019·天津高一检测)如图所示,光滑斜面CA、DA、EA都以AB为底边.三个斜面的倾角分别为75°、45°、30°.物体分别沿三个斜面由顶端从静止滑到底端,下面说法中正确的是()A.物体沿DA滑到底端时具有最大速率B.物体沿EA滑到底端所需时间最短C.物体沿CA下滑,加速度最大D.物体沿DA滑到底端所需时间最短解析:选CD.设AB=l,当斜面的倾角为θ时,斜面的长度x=lcos θ;由牛顿第二定律得,物体沿光滑斜面下滑时加速度a=g sin θ,当θ=75°时加速度最大,选项C正确;由v2=2ax可得,物体沿斜面滑到底端时的速度v=2ax=2g sin θlcos θ=2gl tan θ,当θ=75°时速度最大,选项A错误;由x=12at2可得t=2xa=2lcos θg sin θ=2lg sin θcos θ=4lg sin 2θ,当θ=45°时t最小,故选项B错误,选项D正确.11.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F推第1块木块使它们共同加速运动时,下列说法中正确的是()A.由右向左,两块木块之间的相互作用力依次变小B.由右向左,两块木块之间的相互作用力依次变大C.第2块木块与第3块木块之间的弹力大小为0.6FD.第3块木块与第4块木块之间的弹力大小为0.6F解析:选BC.取整体为研究对象,由牛顿第二定律得F-5μmg=5ma.再选取1、2两块木块为研究对象,由牛顿第二定律得F-2μmg-F N=2ma,两式联立解得F N=0.6F,进一步分析可得,从右向左,木块间的相互作用力是依次变大的.选项B、C正确.12.(2019·江西吉安高一诊断)绷紧的传送带长L=32 m,铁块与带间动摩擦因数μ=0.1,g=10 m/s2,下列正确的是()A.若皮带静止,A处小铁块以v0=10 m/s向B运动,则铁块到达B处的速度为6 m/s B.若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,铁块到达B 处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B处的速度为8 m/s解析:选ABD.若传送带不动,物体做匀减速直线运动,根据牛顿第二定律得,匀减速直线运动的加速度大小a=μg=1 m/s2,根据v2B-v20=-2aL,解得:v B=6 m/s,故A正确;若皮带始终以4 m/s的速度向左运动,而铁块从A处以v0=10 m/s向B运动,物块滑上传送带做匀减速直线运动,到达B点的速度大小一定等于6 m/s,故B正确;若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块先向右做匀加速运动,加速到4 m/s经历的位移x=v22a=422×1m=8 m<32 m,之后随皮带一起做匀速运动,C错误;若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,若铁块一直向右做匀加速运动,铁块到达B 处的速度:v B=2aL=2×1×32 m/s=8 m/s<10 m/s,则铁块到达B处的速度为8 m/s,故D正确.三、非选择题13.公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s.当汽车在晴天干燥沥青路面上以108 km/h的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.解析:设路面干燥时,汽车与地面间的动摩擦因数为μ0,刹车时汽车的加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得μ0mg =ma 0①s =v 0t 0+v 202a 0②式中,m 和v 0分别为汽车的质量和刹车前的速度.设在雨天行驶时,汽车与地面间的动摩擦因数为μ,依题意有μ=25μ0③设在雨天行驶时汽车刹车的加速度大小为a ,安全行驶的最大速度为v ,由牛顿第二定律和运动学公式得μmg =ma ④s =v t 0+v 22a⑤联立①②③④⑤式并代入题给数据得 v =20 m/s(72 km/h). ☆答案☆:20 m/s14.(2019·宁波高一检测)风洞实验室中可产生方向、大小都可以调节控制的各种风力.如图所示为某风洞里模拟做实验的示意图.一质量为1 kg 的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°.现小球在F =20 N 的竖直向上的风力作用下,从A 点静止出发沿直杆向上运动,已知杆与球间的动摩擦因数μ=36.试求: (1)小球运动的加速度a 1;(2)若风力F 作用1.2 s 后撤去,求小球上滑过程中距A 点的最大距离x m ;(3)在上一问的基础上若从撤去风力F 开始计时,小球经多长时间将经过距A 点上方为2.25 m 的B 点.解析:(1)在力F 作用时有:(F -mg )sin 30°-μ(F -mg )cos 30°=ma 1, 解得a 1=2.5 m/s 2.(2)刚撤去F 时,小球的速度v 1=a 1t 1=3 m/s 小球的位移x 1=v 12t 1=1.8 m.撤去力F 后,小球上滑时有:mg sin 30°+μmg cos 30°=ma 2,a 2=7.5 m/s 2. 因此小球上滑时间t 2=v 1a 2=0.4 s.上滑位移x 2=v 12t 2=0.6 m.则小球上滑的最大距离为x m =x 1+x 2=2.4 m. (3)在上滑阶段通过B 点: x AB -x 1=v 1t 3-12a 2t 23.经过B 点时的时间为t 3=0.2 s ,另t 3=0.6 s(舍去) 小球返回时有:mg sin 30°-μmg cos 30°=ma 3,a 3=2.5 m/s 2. 因此小球由顶端返回B 点时有: x m -x AB =12a 3t 24,t 4=35 s. 经过B 点时的时间为t 2+t 4=2+35s ≈0.75 s. ☆答案☆:(1)2.5 m/s 2 (2)2.4 m (3)0.2 s 和0.75 s。
高考物理牛顿运动定律(一)解题方法和技巧及练习题及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
物理牛顿运动定律的应用专项习题及答案解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
高一物理牛顿运动定律试题答案及解析1.如图所示,台秤上放有一杯水,杯内底部处用线系着一小木球浮在水中,若细线突然断开,试分析在小木球上浮的过程中,台秤的示数如何变化?A.增大B.减小C.不变D.以上三种情况都有可能【答案】B【解析】若细线突然断开,小木球上浮的过程中,水向下运动,有向下的加速度,系统处于失重状态,台秤的示数减小,B正确。
2.关于力和运动的关系,下列选项中正确的是A.若物体的速度不断增大,则物体所受的合力一定不为0B.若物体的位移不断增大,则物体所受的合力一定不为0C.若物体的位移与时间的平方成正比,则物体所受的合力一定为0D.若物体的加速度不变,则物体所受合力一定为0【答案】A【解析】只要物体速度变化,则一定存在加速度,所以合外力一定不为零;A对,D错。
位移增大,不一定速度变化,可以是匀速运动,所以合力可以为零,B错;位移与时间的平方成正比,则物体肯定不是做匀速运动,所以加速度一定不为零,合力一定不为零,C错;3.如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L =0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.【答案】(1)正(2)(3)0.625 m【解析】(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v,对该过程由动能定理有,①在最高点对小球进行受力分析,由圆周运动和牛顿第二定律得,②由①②式解得,(3)小球在细线断裂后,在竖直方向的加速度设为a,则③设小球在水平方向运动位移为L的过程中,所经历的时间为t,则④设竖直方向上的位移为x,则⑤由①③④⑤解得x=0.125 m所以小球距O点的高度为x+L=0.625 m【考点】考查了牛顿第二定律,圆周运动,动能定理4.如图所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()A.小球对细绳的拉力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力【答案】AC【解析】解:对小球受力分析,受地球对其的重力,细线对其向上的拉力,小球保持静止状态,加速度为零,合力为零,故重力和拉力是一对平衡力;细线对小球的拉力的反作用力是小球对细线的向下的拉力,这两个力是一对相互作用力,故AC正确,BD错误故选:AC.【考点】作用力和反作用力.分析:一对平衡力与“作用力与反作用力“的共同的特点:二力都是大小相等,方向相反,作用在同一条直线上.一对平衡力与“作用力与反作用力“的区别:作用力与反作用力描述的是两个物体间相互作用的规律,二力平衡描述的是一个物体在二力作用下处在平衡状态.点评:本题涉及三力,重力、细线对小球的拉力和小球对细线的拉力,其中重力和细线对小球的拉力是平衡力(因为小球处于平衡状态),细线对小球的拉力和小球对细线的拉力是相互作用力;平衡力和相互作用力是很容易混淆的,要注意其最明显的区别在于是否同体.5.(12分)如图所示为某高楼电梯上升的速度-时间图像,试求:(1)在t1=5s、t2=8s时刻的速度;(2)求出各段的加速度;(3)画出电梯上升的加速度-时间图像.【答案】(1)v1=10m/s;v2=5m/s(2)0s~2s :5m/s2;2s~5s :0m/s2;5s~8s :-1.7m/s2;(3)图线如图:【解析】(1)由图线可知在t1=5s时的速度是10m/s;在t2=8s时刻的速度是5m/s;(2)0s~2s :5m/s2;2s~5s :a2=0m/s2;5s~8s :;(3)电梯上升的加速度-时间图像:【考点】v-t图线.【名师】此题考查了v-t图线在实际生活中的应用问题;要了解图线的物理意义:斜率大小等于物体的加速度大小,斜率的符号反映加速度的方向;图线与坐标轴围成的面积等于物体的位移;做题时要会分段处理;此题难度不大.6.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.分析:根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.点评:解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.7.如图所示,为做直线运动质点的v﹣t图象,则下列说法正确的是()A.质点在0~2s内做匀加速直线运动B.质点在2~6s内处于静止状态C.质点t=8s时的位移为零D.质点在8~10s内做匀加速直线运动【答案】AD【解析】解:A、质点在0~2s内速度均匀增大,做匀加速直线运动.故A正确.B、质点在2~6s内速度不变,做匀速直线运动,故B错误.C、根据面积表示位移,可知质点t=8s时的位移为 x=m=36m,故C错误.D、质点在8~10s内沿负方向做匀加速直线运动,故D错误.故选:AD【考点】匀变速直线运动的图像.【分析】v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.图象与坐标轴所围的面积表示位移.由此分析.【点评】本题的解题关键是抓住两个数学意义来分析和理解图象的物理意义:速度图象的斜率等于加速度、速度图象与坐标轴所围“面积”大小等于位移.明确v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.8.一物体以20m/s的速度沿光滑斜面向上做匀变速直线运动,加速度大小为a=5m/s2.如果斜面足够长,那么当速度大小变为10m/s时物体所通过的路程可能是多少?【答案】物体通过路程可能为30m,可能为50m.【解析】解:当末速度的方向与初速度方向相同,根据速度位移公式得,物体通过的路程s=.若末速度的方向与初速度方向相反,则物体向上做匀减速运动的位移,向下做匀加速运动的位移,则路程s=x1+x2=40+10m=50m.答:物体通过路程可能为30m,可能为50m.【考点】匀变速直线运动的位移与时间的关系.【分析】当末速度的方向与初速度方向相同,直接结合匀变速直线运动的速度位移公式求出物体通过的路程.当末速度的方向与初速度方向相反,根据速度位移公式分别求出向上匀减速运动的位移和向下匀加速运动的位移,从而得出路程.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,注意末速度的方向可能与初速度方向相同,可能与初速度方向相反.9.跳伞运动员从300m高空无初速度跳伞下落,他自由下落4s后打开降落伞,以恒定的加速度做匀减速运动,到达地面时的速度为4.0m/s,g=10m/s2.求:(1)运动员打开降落伞处离地面的高度;(2)运动员打开伞后运动的加速度;(3)运动员在空中运动的总时间.【答案】(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【解析】解:竖直向下方向为正方向.(1)运动员自由下落4s的位移为运动员打开降落伞处离地面的高度为:h2=h﹣h1=300﹣80m=220m(2)运动员自由下落4s末的速度为:v1=gt1=10×4m/s=40m/s打开降落伞后做匀减速直线运动,根据速度位移关系有:2可得加速度==﹣3.6m/s2(3)打开降落伞后做匀减速时间达到地面的时间为:所以运动在空中下落的总时间为:t=t1+t2=4+10s=14s答:(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.【分析】(1)根据自由落体运动的规律求得物体下落4s的高度,从而求得离地面的高度;(2)根据匀减速运动的速度位移关系求得打开伞后的加速度;(3)求得匀减速下落的时间和自由落体运动的时间即为在空中下落的总时间.【点评】掌握匀变速直线运动的位移时间关系和速度时间关系是正确解题的关键,不难属于基础题.10.某研究性学习小组,为探究电梯起动和制动时的加速度大小,董趣同学站在体重计上乘电梯从1层到10层,之后又从10层返回到1层,并用照相机进行记录,请认真观察分析下列图片,得出正确的判断是()A.根据图乙和图丙,可估测电梯向上起动时的加速度B.根据图甲和图乙,可估测电梯向上制动时的加速度C.根据图甲和图戊,可估测电梯向下制动时的加速度D.根据图丁和图戊,可估测电梯向下起动时的加速度【答案】C【解析】解:A、图2表示电梯加速上升时这位同学超重时的示数,图3,表示向上减速时的示数,由此两图不能够求出的是电梯向上起动时的加速度,所以A错误.B、图1表示电梯静止时的示数,图2显示加速上升时的示数,此时能够求出的是电梯向上加速时的加速度,所以B错误.C、图1表示电梯静止时的示数,图5表示电梯减速下降时的示数,此时能够求出的是电梯向下减速时的加速度,所以C正确.D、图4表示电梯加速下降时的示数,图5表示电梯减速下降时的示数,此时不能够求出电梯向下起动时的加速度,所以D错误.故选C【考点】加速度.【分析】图甲表示电梯静止时体重计的示数,乙图表示电梯加速上升时这位同学超重时的示数,丙图表示电梯减速上升时这位同学失重时的示数,丁图表示电梯加速下降时这位同学失重时的示数,戊图表示电梯减速下降时这位同学超重时的示数,根据牛顿第二定律可以应用图甲和另外某一图示求出相应状态的加速度.【点评】本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了.11.(20分)下列是《驾驶员守则》中的安全距离图示(如图)和部分安全距离表格.请根据图表计算:(1)如果驾驶员的反应时间一定,请求出表格中的A 的数据; (2)如果路面情况相同,请求出表格中的B 、C 的数据;(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m 处有一队学生正在横过马路,此时他的车速为72 km/h.而他的反应时间比正常时慢了0.1 s ,请问他能在50 m 内停下来吗? 【答案】(1)20;(2)40;60;(3)不能 【解析】(1)反应时间为,即解得A =20 m.因路面情况相同,故知刹车时的加速度相同, 由v 2 =2ax 得 对第一组刹车数据分析,加速度为分析第三组数据知,刹车距离为:所以停车距离为:C =A +B =60 m. 正常情况下司机的反应时间为而喝酒情况下司机的反应距离为 由v 2=2ax 知,此时司机的刹车距离为L =s +x =52.4 m,52.4 m>50 m ,故不能在50 m 内停下来. 【考点】匀变速直线运动的规律12. 物体由A 向B 做匀变速直线运动,所用时间为t ,在时到达D 点,C 为AB 的中点,以v C 和v D 分别表示物体在C 点和D 点时的速度,以下叙述中正确的是:( ) A .若物体做匀加速运动,则v C >v D B .若物体做匀减速运动,则v C >v DC .不论物体做匀加速运动,还是做匀减速运动,都有v C <v DD .如果不确定物体做匀加速运动或匀减速运动,则无法比较v C 和v D 的大小【答案】AB【解析】根据匀变速直线运动的规律,物体在中间时刻D 的速度为;物体在中间位置C 的速度为:;由数学知识可知,恒成立,则v C >v D ,故选项AB 正确,CD 错误;故选AB.【考点】匀变速直线运动的规律13. (8分)跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面120 m 时打开降落伞,开伞后运动员以大小为12.5 m/s 2的加速度做匀减速运动,到达地面时的速度为5 m/s ,求:(1)运动员离开飞机瞬间距地面的高度;(2)离开飞机后,经多长时间到达地面.(g 取10 m/s 2) 【答案】(1)271.25 m ;(2)9.5 s【解析】(1)由v12-v2=2ah2解出v=55 m/s. (2分)又因为v02=2gh1解出h1=151.25 m. (2分)所以h=h1+h2=271.25 m. (1分)(2)又因为t1==5.5 s, (1分)t2==4 s, (1分)所以t=t1+t2=9.5 s,(1分)【考点】匀变速直线运动的规律【名师】本题难度较小,自由落体运动其实就是初速度为零的匀加速直线运动,灵活应用匀变速运动规律求解本题。
高一物理牛顿运动定律试题答案及解析1.(8分)汽车发动机的额定功率为60kW,汽车质量为5t,汽车在水平路面上行驶时,阻力是车重的0.1倍,g取10m/s2,问:(1)汽车保持额定功率从静止起动后能达到的最大速度是多少?(2)若汽车保持0.5m/s2的加速度做匀加速运动,这一过程能维持多长时间?【答案】(1)12m/s;(2)16s。
【解析】(1)因为v=m/s=12m/s;(2)做匀加速运动的最大速度为v′=m/s=8m/s;故这一过程的时间为t==16s【考点】汽车启动问题。
2.如图所示,光滑水平面上放有质量均为m的滑块A和斜面体C,在C的斜面上又放有一质量也为m的滑块B,用力F推滑块A使三者无相对运动地向前加速运动,则各物体所受的合力()A.滑块A最大B.斜面体C最大C.同样大D.不能判断谁大谁小【答案】C【解析】由于三者无相对运动地向前共同加速运动,且质量均相同,根据牛顿第二定律F=ma可知,F均相同,故C正确。
【考点】牛顿第二定律3.一辆以12m/s的速度在水平路面上行驶的汽车,在关闭油门后刹车过程中以3m/s2的加速度做匀减速运动,那么汽车关闭油门后2s内的位移是多少米?关闭油门后5s内的位移是多少米?【答案】(1)18m(2)24m【解析】汽车停下来的时间为,汽车在关闭油门后2s内的位移是由于汽车在4s末停止运动,所以前4s的位移等于5s末的位移故有关闭油门后5s内的位移是【考点】考查了匀变速直线运动规律的应用4.一辆值勤的警车停在公路边,当警员发现在他前面9m处以7m/s的速度匀速向前行驶的货车有违章行为时,决定前去追赶,经3.0s,警车发动起来,以加速度a=2m/s2做匀加速运动.求:(1)警车发动后经多长时间能追上违章的货车,这时警车速度多大;(2)在警车追上货车之前,何时两车间的最大距离,最大距离是多少.【答案】(1)t=10s,20m/s(2)【解析】①得 t=10s v=at=20m/s②当两车速度相等时,两车间距最大【考点】追击相遇问题【名师】关键是抓住位移关系,结合运动学公式灵活求解,知道速度相等时,相距最远,(1)根据位移关系,结合运动学公式求出追及的时间,根据速度时间公式求出警车的速度.(2)当两车的速度相等时,相距最远,根据速度时间公式求出相距最远的时间,根据位移公式求出相距的最远距离5.(10分)如图所示,小球在较长的斜面顶端,以初速度v=2m/s,加速度a=2m/s2向下滑,在到达底端的前1s内,所滑过的距离为,其中L为斜面长,则(1)小球在斜面上滑行的时间为多少?(2)斜面的长度L是多少?【答案】(1)3s;(2)15m【解析】设小球在斜面上运动的总时间为t,则由题意和公式 x=vt+at2得:解上面两个方程得:t=3s;L=15m【考点】匀变速直线运动的规律6.(10分)一列车A的制动性能经测定:当它以标准速度V=20m/s在平直轨道上行驶时,制动后需tA =40s才停下。
物理牛顿运动定律练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
高考物理牛顿运动定律试题(有答案和解析)一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求: (1)t=0时刻木板的速度; (2)木板的长度。
【答案】(1)05/v m s =(2)163l m = 【解析】 【详解】(1)对木板和物块:()()11M m g M m a μ+=+ 令初始时刻木板速度为0v 由运动学公式:101v v a t =+ 代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ=对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112vx t =对木板,由牛顿第二定律:()213mg M m g Ma μμ++= 对木板,经历时间t ,发生位移x 2221312x v t a t =-木板长度12l x x =+代入数据,16=m 3l2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v0=10m/s的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o ,求:()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J . 【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+= 动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.6.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.7.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+= 2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v v s a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=8.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+由机械能守恒得:()()222111122222B C m v m v mv =+解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤9.如图是利用传送带装运煤块的示意图.其中,传送带的从动轮与主动轮圆心之间的距离为3s m =,传送带与水平方向间的夹角37θ=o ,煤块与传送带间的动摩擦因数0.8μ=,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度1.8H m =,与运煤车车箱中心的水平距离0.6.x m =现在传送带底端由静止释放一煤块(可视为质点).煤块恰好在轮的最高点水平抛出并落在车箱中心,取210/g m s =,sin370.6=o ,cos370.8=o ,求:(1)主动轮的半径;(2)传送带匀速运动的速度;(3)煤块在传送带上直线部分运动的时间.【答案】(1)0.1m (2)1m/s ;(3)4.25s【解析】【分析】(1)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零,根据平抛运动的规律求出离开传送带最高点的速度,结合牛顿第二定律求出半径的大小. (2)根据牛顿第二定律,结合运动学公式确定传送带的速度.(3)煤块在传送带经历了匀加速运动和匀速运动,根据运动学公式分别求出两段时间,从而得出煤块在传送带上直线部分运动的时间.【详解】(1)由平抛运动的公式,得x vt = ,21H gt 2=代入数据解得v =1m/s要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零, 由牛顿第二定律,得 2v mg m R=, 代入数据得R =0.1m(2)由牛顿第二定律得mgcos mgsin ma μθθ=﹣ ,代入数据解得a =0.4m/s 2 由212v s a=得s 1=1.25m <s ,即煤块到达顶端之前已与传送带取得共同速度, 故传送带的速度为1m/s .(3)由v=at 1解得煤块加速运动的时间t 1=2.5s煤块匀速运动的位移为s 2=s ﹣s 1=1.75m ,可求得煤块匀速运动的时间t 2=1.75s煤块在传送带上直线部分运动的时间t =t 1+t 2代入数据解得t =4.25s10.如图所示,一个质量m =2 kg 的滑块在倾角为θ=37°的固定斜面上,受到一个大小为40 N 的水平推力F 作用,以v 0=20 m/s 的速度沿斜面匀速上滑.(sin 37°=0.6,取g =10 m/s 2)(1)求滑块与斜面间的动摩擦因数;(2)若滑块运动到A 点时立即撤去推力F ,求这以后滑块再返回A 点经过的时间.【答案】(1)0.5;(2)225s +()【解析】【分析】【详解】(1)滑块在水平推力作用下沿斜面向上匀速运动时,合力为零,则有Fcos37°=mgsin37°+μ(mgcos37°+Fsin37°)代入解得,μ=0.5(2)撤去F 后,滑块上滑过程:根据牛顿第二定律得:mgsin37°+μmgcos37°=ma 1, 得,a 1=g (sin37°+μcos37°) 上滑的时间为0112v t s a == 上滑的位移为01202v x t m == 滑块下滑过程:mgsin37°-μmgcos37°=ma 2,得,a 2=g (sin37°-μcos37°)由于下滑与上滑的位移大小相等,则有x=12a 2t 22 解得,22225x t s a == 故 t=t 1+t 2=(2+5s【点睛】本题分析滑块的受力情况和运动情况是关键,由牛顿第二定律和运动学公式结合是处理动力学问题的基本方法.。
人教版物理必修1第四章6:用牛顿运动定律解决问题(一)一、多选题。
1. 在水平地面上,A、B两物体叠放如图所示,在水平力F的作用下一起匀速运动,若将水平力F作用在A上,两物体可能发生的情况是()A.A、B一起匀速运动B.A加速运动,B匀速运动C.A加速运动,B静止D.A与B一起加速运动2. 如图所示,表示某小球所受的合力与时间关系,各段的合力大小相同,作用时间相同,设小球从静止开始运动,由此可以判定()A.小球向前运动,再返回停止B.小球向前运动,再返回不会停止C.小球始终向前运动D.小球在4秒末速度为0二、选择题。
如图甲所示,一质量为M的木板静止在光滑水平地面上,现有一质量为m的小滑块以一定的初速度v0从木板的左端开始向木板的右端滑行,滑块和木板的水平速度大小随时间变化的情况如图乙所示,根据图像作出如下判断,不正确的是()A.滑块始终与木板存在相对运动B.滑块未能滑出木板C.滑块的质量m大于木板的质量MD.在t1时刻滑块从木板上滑出一小球从空中由静止下落,已知下落过程中小球所受阻力与速度的平方成正比,设小球离地足够高,则()A.小球先加速后匀速B.小球一直在做加速运动C.小球在做减速运动D.小球先加速后减速在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10m/s2,不计空气阻力.则汽车刹车前的速度为()A.7m/sB.14m/sC.10m/sD.20m/s在行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带.假定乘客质量为70kg,汽车车速为90km/ℎ,从踩下刹车到车完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)()A.450NB.400NC.350ND.300N三、解答题。
用牛顿运动定律解决问题一练习题及答案解析
LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】
(本栏目内容,在学生用书中以活页形式分册装订!) 1.A、B两物体以相同的初速度在同一水平面上滑动,两物体与水平面间的动摩擦因数相同,且m A=3m B,则它们所能滑行的距离x A、x B的关系为() A.x A=x B B.x A=3x B
C.x A=1
3x B D.x A=9x B
解析:物体沿水平面滑动时做匀减速直线运动,加速度a=μmg
m
=μg与质量无
关,由0-v20=-2ax和题设条件知x A=x B.
答案: A
2.2009年8月31日,我国在西昌卫星发射中心用“长征三号乙”运载火箭发射印度尼西亚“帕拉帕-D”通信卫星.假设火箭在大气层竖直升空时,发动机的推力不变,空气阻力也认为不变,则在火箭冲出大气层前的这一过程中,其v-t图象是()
解析:燃料消耗的过程中,火箭的质量不断减小,对火箭有F-mg-F f=ma,
a=F-F f
m
-g,因推力F、空气阻力F f不变,火箭的质量m减小,所以火箭的加速度
不断增大,从A、B、C、D四个图象看,应选D项.
答案: D
3.如右图所示,圆柱形的仓库内有三块长度不同的滑板aO、bO、cO,其下端都固定于底部圆心O,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a、b、c处开始下滑(忽略阻力),则() A.a处小孩最先到O点
B.b处小孩最后到O点
C.c处小孩最先到O点
D.a、c处小孩同时到O点
答案: D
4.
如右图所示某小球所受的合力与时间的关系,各段的合力大小相同,作用时间相同,设小球从静止开始运动.由此可判定()
A.小球向前运动,再返回停止
B.小球向前运动,再返回不会停止
C.小球始终向前运动
D.小球向前运动一段时间后停止
解析:由F-t图象知:第1 s,F向前;第2 s,F向后.以后重复该变化,所以小球先加速1 s,再减速1 s,2 s末速度刚好减为零,以后重复该过程,所以小球始终向前运动.
答案: C
5.竖直上抛物体受到的空气阻力F f大小恒定,物体上升到最高点时间为t1,从最高点再落回抛出点所需时间为t2,上升时加速度大小为a1,下降时加速度大小为a2,则()
A.a1>a2,t1<t2B.a1>a2,t1>t2
C .a 1<a 2,t 1<t 2
D .a 1<a 2,t 1>t 2
解析: 物体上升时所受合力F =mg +F f =ma 1,下降时所受合力F ′=mg -F f =
ma 2,故a 1>a 2.又因为h =12a 1t 21=12
a 2t 22,则t 1<t 2. 答案: A
6.一个原来静止的物体,质量是7 kg ,在14 N 的恒力作用下,则 5 s 末的速度及5 s 内通过的路程为( )
A .8 m/s 25 m
B .2 m/s 25 m
C .10 m/s 25 m
D .10 m/s m
解析: 物体受力情况已知,由静止开始运动,在恒力的作用下产生恒定的加速度,所以它做初速度为零的匀加速直线运动.已知物体的质量和所受的恒力,根据牛顿第二定律公式,求出加速度,然后根据初速度为零的匀加速直线运动的公式,就可以求出5 s 末的速度和5 s 内通过的位移.
a =F m =147 m/s 2=2 m/s 2,v =at =2×5 m/s =10 m /s ,
x =12at 2=12×2×25 m =25 m.
答案: C
7.如右图所示,ad 、bd 、cd 是竖直平面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速度为0).用t 1、t 2、t 3依次表示各滑环到达d 所用的时间,则( )
A .t 1<t 2<t 3
B .t 1>t 2>t 3
C .t 3>t 1>t 2
D .t 1=t 2=t 3
解析: 设圆的半径为R ,任取一根滑杆ed ,如右图所示.设∠ade =θ,由直角三角形得x =ed =2R ·cos θ;在斜线ed 上,a =g sin α=g sin(90°-θ)=g cos θ;由位移公式得t =2x
a =2×2R cos θ
g cos θ=2R
g 与倾斜角度无关,所以环以任何途径下滑时间是
相等的.
答案: D
8.如果水平力F 在时间t 内能使质量为m ,原来静止在粗糙水平面上的物体产生位移x ,那么( )
A .相同的力在相同的时间内使质量是一半的原来静止的物体移动2x 的距离
B .相同的力在一半的时间内使质量是一半的原来静止的物体移动相同距离的1/4
C .相同的力在2倍的时间内使质量是两倍的原来静止的物体移动相同的距离
D .一半的力在相同时间内使质量一半的原来静止的物体移动相同的距离
解析: 物体在粗糙水平面上运动时的加速度为a =F -μmg m =F m -μg .从静止开始
经时间t 的位移为x =12at 2,则x =12⎝ ⎛⎭
⎪⎫F m -μg t 2.再通过选项条件判断可知只有选项D 正确.
答案: D
9.
如右图所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v、a、F f和x分别表示物体速度大小、加速度大小、摩擦力大小和路程.其中正确的是() 解析:物体在斜面上受重力、支持力、摩擦力作用,其摩擦力大小为Ff1=
μmg cos θ,做初速度为零的匀加速直线运动,其v-t图象为过原点的倾斜直线,A 错,加速度大小不变,B错,其x-t图象应为一段曲线,D错;物体到达水平面后,所受摩擦力Ff2=μmg>Ff1,做匀减速直线运动,所以正确选项为C.
答案: C
10.(2010·海南卷)雨滴下落时所受到的空气阻力与雨滴的速度有关,雨滴速度越大,它受到的空气阻力越大;此外,当雨滴速度一定时,雨滴下落时所受到的空气阻力还与雨滴半径的α次方成正比(1≤α≤2).假设一个大雨滴和一个小雨滴从同一云层同时下落,最终它们都________(填“加速”或“减速”或“匀速”)下
落.________(填“大”或“小”)雨滴先落到地面;接近地面时,________(填“大”或“小”)雨滴的速度较小.
答案:匀速大小
11.
如右图所示,在水平地面上有一个质量为5 kg的物体,它受到与水平方向成53°角斜向上的25 N的拉力时,恰好做匀速直线运动,g取10 m/s2,问:当拉力为50 N 时,物体的加速度多大物体由静止开始运动时,2 s末物体的位移多大解析:由题意知,物体受力如下图甲所示,由牛顿第二定律可得:
F1cos 53°=F f1①
F N+F1sin 53°=mg②
F f1=μF N③
由①②③式得μ=F1cos 53°
mg-F1sin 53°
=错误!=
当拉力F2=50 N时,物体受力如乙图所示,由牛顿第二定律得:
F2cos 53°-F f2=ma④
F N′+F2sin 53°-mg=0⑤
F f2=μF N′⑥
由④⑤⑥式得:
a=F2cos 53°-μmg-F2sin 53°
m
=5 m/s2
2 s内位移x=1
2at
2=10 m.
答案: 5 m/s210 m
12.
如右图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B点后,沿水平的滑道再滑行一段距离到C点停下来.如果人和滑板的总质量m=60 kg,滑板与斜坡滑道和水平滑道间的动摩擦因数均
为μ=,斜坡的倾角θ=37°(sin 37°=,cos 37°=,斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g取10 m/s2.求:
(1)人从斜坡上滑下的加速度为多大
(2)若由于场地的限制,水平滑道的最大距离BC为L= m,则人在斜坡上滑下的距离AB应不超过多少
解析:(1)人在斜坡上受力如图所示,建立如图所示的坐标系,设人在斜坡上滑下的加速度为a1,由牛顿第二定律得mg sin θ-F f1=ma1,F N1-mg cos θ=0,由摩擦力计算公式得F f1=μF N1,联立解得人滑下的加速度为a1=g(sin θ-μcos θ)=10×-×m/s2=2 m/s2
(2)人在水平滑道上受力如下图所示,由牛顿第二定律得
F f2=ma2,F N2-mg=0
由摩擦力计算公式得F f2=μF N2,联立解得人在水平滑道上运动的加速度大小为a2=μg=5 m/s2
设从斜坡上滑下的距离为L AB,对AB段和BC段分别由匀变速运动的公式得v2B-0=2a1L AB,0-v2B=-2a2L
联立解得L AB=50 m.
答案:(1)2 m/s2(2)50 m。