实例matlab非线性规划作业
- 格式:docx
- 大小:19.09 KB
- 文档页数:3
MATLAB优化应用非线性规划非线性规划是一类数学优化问题,其中目标函数和约束条件都是非线性的。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具和函数,可以用于解决非线性规划问题。
本文将介绍如何使用MATLAB进行非线性规划的优化应用,并提供一个具体的案例来演示。
一、MATLAB中的非线性规划函数MATLAB提供了几个用于解决非线性规划问题的函数,其中最常用的是fmincon函数。
fmincon函数可以用于求解具有等式约束和不等式约束的非线性规划问题。
其基本语法如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是目标函数,x0是变量的初始值,A和b是不等式约束的系数矩阵和右端向量,Aeq和beq是等式约束的系数矩阵和右端向量,lb和ub是变量的上下界,nonlcon是非线性约束函数,options是优化选项。
二、非线性规划的优化应用案例假设我们有一个工厂,需要生产两种产品A和B,目标是最大化利润。
产品A 和B的生产成本分别为c1和c2,售价分别为p1和p2。
同时,我们需要考虑两种资源的限制,分别是资源1和资源2。
资源1在生产产品A和B时的消耗分别为a11和a12,资源2的消耗分别为a21和a22。
此外,产品A和B的生产量有上下限限制。
我们可以建立以下数学模型来描述这个问题:目标函数:maximize profit = p1 * x1 + p2 * x2约束条件:c1 * x1 + c2 * x2 <= budgeta11 * x1 + a12 * x2 <= resource1a21 * x1 + a22 * x2 <= resource2x1 >= min_production_Ax2 >= min_production_Bx1 <= max_production_Ax2 <= max_production_B其中,x1和x2分别表示产品A和B的生产量,budget是预算,min_production_A和min_production_B是产品A和B的最小生产量,max_production_A和max_production_B是产品A和B的最大生产量。
题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划是20世纪50年代才开始形成的一门新兴学科。
70年代又得到进一步的发展。
非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。
在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。
例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。
对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。
具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
本实验就是用matlab 软件来解决非线性规划问题。
(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。
题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
用Matlab 解无约束优化问题一元函数无约束优化问题21),(min x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
函数fminbnd 的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。
例1 求x e f x sin 2-=在0<x<8中的最小值与最大值主程序为wliti1.m:f='2*exp(-x).*sin(x)';fplot(f,[0,8]); %作图语句[xmin,ymin]=fminbnd (f, 0,8)f1='-2*exp(-x).*sin(x)';[xmax,ymax]=fminbnd (f1, 0,8)运行结果:xmin = 3.9270 ymin = -0.0279xmax = 0.7854 ymax = 0.6448例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?先编写M 文件fun0.m 如下:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.2、多元函数无约束优化问题标准型为:min F(X)命令格式为:(1)x= fminunc (fun,X0 );或x=fminsearch (fun,X0 )(2)x= fminunc (fun,X0 ,options );或x=fminsearch (fun,X0 ,options )解 设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5(3)[x,fval]= fminunc(...);或[x,fval]= fminsearch(...)(4)[x,fval,exitflag]= fminunc(...);或[x,fval,exitflag]= fminsearch(5)[x,fval,exitflag,output]= fminunc(...);或[x,fval,exitflag,output]= fminsearch(...)说明:•fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明:[1] fminunc为无约束优化提供了大型优化和中型优化算法。
遗传算法解决非线性规划问题的Matlab程序首先,让我们来了解一下什么是非线性规划问题。
非线性规划问题是指目标函数或约束条件中至少有一个是非线性函数的规划问题。
与线性规划问题不同,非线性规划问题的求解往往没有通用的解析方法,需要借助数值优化算法来找到最优解或近似最优解。
遗传算法是一种基于自然选择和遗传机制的随机搜索算法。
它模拟了生物进化的过程,通过对种群中个体的选择、交叉和变异操作,逐步优化个体,从而找到问题的最优解。
在解决非线性规划问题时,遗传算法将问题的解编码为染色体,通过适应度函数来评估染色体的优劣,然后通过遗传操作不断进化种群,直到找到满意的解。
接下来,我们开始介绍如何在 Matlab 中实现遗传算法来解决非线性规划问题。
首先,我们需要定义问题的目标函数和约束条件。
假设我们要解决的非线性规划问题是:\\begin{align}&\min f(x) = x_1^2 + x_2^2 2x_1x_2 + 2x_1 4x_2 + 5\\&\text{st } x_1 + x_2 \leq 5\\&-2 \leq x_1 \leq 2\\&-3 \leq x_2 \leq 3\end{align}\在 Matlab 中,我们可以定义目标函数如下:```matlabfunction f = objective(x)f = x(1)^2 + x(2)^2 2x(1)x(2) + 2x(1) 4x(2) + 5; end```约束条件可以通过定义一个函数来判断:```matlabfunction c, ceq = constraints(x)c =;ceq =;if x(1) + x(2) > 5c = x(1) + x(2) 5;endend```然后,我们需要设置遗传算法的参数。
这些参数包括种群大小、最大迭代次数、交叉概率、变异概率等。
```matlabpopSize = 50; %种群大小maxGen = 100; %最大迭代次数pc = 08; %交叉概率pm = 01; %变异概率```接下来,我们需要对个体进行编码。
佛山科学技术学院上 机 报 告课程名称 数学应用软件上机项目 用MATLAB 求解非线性规划问题专业班级 姓 名 学 号一。
上机目的1.了解非线性规划的基本理论知识。
2.对比Matlab 求解线性规划,学习用Matlab 求解非线性规划的问题。
二。
上机内容1、用quadprog 求解二次规划问题min f (x):2、求解优化问题:min 321)(x x x x f -=S 。
T.72220321≤++≤x x x注:取初值为(10,10,10)。
3、求表面积为常数150 m 2的体积最大的长方体体积及各边长。
注:取初值为(4,5,6)。
三.上机方法与步骤1、可用两种方法解题:方法一:Matlab程序:H=[1 -1;—1 2];c=[—2;—6];A=[1 1;-1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,z]=quadprog(H,c,A,b,Aeq,beq,vlb,vub)方法二:Matlab程序如下:先建立fun.m文件,程序为:function f=fun(x);f=1/2*x(1)^2+x(2)^2—x(1)*x(2)—2^x(1)-6*x(2);再建立chushi。
m文件,程序为:x0=[1;1];A=[1 1;—1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=fmincon(’fun',x0,A,b,Aeq,beq,vlb,vub)2、Matlab程序:先建立fun1.m文件,程序为:function f=fun1(x);f=-x(1)*x(2)*x(3);再建立chushi1.m文件,程序为:x0=[10;10;10];A=[1 2 2;—1 —2 -2];b=[72;0];Aeq=[];beq=[];vlb=[];vub=[];[x,fval]=fmincon(’fun1',x0,A,b,Aeq,beq,vlb,vub)3、假设长方形的长、宽、高分别为(1)x 、(2)x 、(3)x ,则长方形的体积为f ,则有max (1)(2)(3)2(1)(2)2(1)(3)3(2)(3)150.()0(1,2,3)f x x x x x x x x x s t x i i =++=⎧⎨≥=⎩四.上机结果1、结果:(1)方法一结果:x =0。
一.非线性规划课题实例1 表面积为36平方米的最大长方体体积。
建立数学模型:设x、y、z分别为长方体的三个棱长,f为长方体体积。
max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备用5000万元用于A、B两个项目的投资,设x1、x2分别表示配给项目A、B的投资。
预计项目A、B的年收益分别为20%和16%。
同时,投资后总的风险损失将随着总投资和单位投资的增加而增加,已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资金,才能使期望的收益最大,同时使风险损失为最小。
建立数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0目标函数中的λ≥0是权重系数。
由以上实例去掉实际背景,其目标函数与约束条件至少有一处是非线性的,称其为非线性问题。
非线性规划问题可分为无约束问题和有约束问题。
实例1为无约束问题,实例2为有约束问题。
二.无约束非线性规划问题:求解无约束最优化问题的方法主要有两类:直接搜索法(Search method)和梯度法(Gradient method),单变量用fminbnd,fminsearch,fminunc;多变量用fminsearch,fminnuc 1.fminunc函数调用格式:x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…)[x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明:fun为需最小化的目标函数,x0为给定的搜索的初始点。
一.非线性规划课题实例1 表面积为36平方米的最大长方体体积。
建立数学模型:设x、 y、 z分别为长方体的三个棱长, f为长方体体积。
max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备用5000万元用于A、 B两个项目的投资, 设x1、 x2分别表示配给项目A、 B的投资。
预计项目A、 B的年收益分别为20%和16%。
同时, 投资后总的风险损失将随着总投资和单位投资的增加而增加, 已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资金, 才能使期望的收益最大, 同时使风险损失为最小。
建立数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0目标函数中的λ≥0是权重系数。
由以上实例去掉实际背景, 其目标函数与约束条件至少有一处是非线性的, 称其为非线性问题。
非线性规划问题可分为无约束问题和有约束问题。
实例1为无约束问题, 实例2为有约束问题。
二.无约束非线性规划问题:求解无约束最优化问题的方法主要有两类: 直接搜索法(Search method)和梯度法(Gradient method), 单变量用fminbnd,fminsearch,fminunc;多变量用fminsearch,fminnuc1.fminunc函数调用格式: x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…) [x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明: fun 为需最小化的目标函数, x0为给定的搜索的初始点。
一.非线性规划课题实例1 表面积为36平方米的最大长方体体积。
建立数学模型:设x、 y、 z分别为长方体的三个棱长, f为长方体体积。
max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备用5000万元用于A、 B两个项目的投资, 设x1、 x2分别表示配给项目A、 B的投资。
预计项目A、 B的年收益分别为20%和16%。
同时, 投资后总的风险损失将随着总投资和单位投资的增加而增加, 已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资金, 才能使期望的收益最大, 同时使风险损失为最小。
建立数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0目标函数中的λ≥0是权重系数。
由以上实例去掉实际背景, 其目标函数与约束条件至少有一处是非线性的, 称其为非线性问题。
非线性规划问题可分为无约束问题和有约束问题。
实例1为无约束问题, 实例2为有约束问题。
二.无约束非线性规划问题:求解无约束最优化问题的方法主要有两类: 直接搜索法(Search method)和梯度法(Gradient method), 单变量用fminbnd,fminsearch,fminunc;多变量用fminsearch,fminnuc1.fminunc函数调用格式: x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…) [x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明: fun 为需最小化的目标函数, x0为给定的搜索的初始点。
matlab解决⾮线性规划问题(凸优化问题)当⽬标函数含有⾮线性函数或者含有⾮线性约束的时候该规划问题变为⾮线性规划问题,⾮线性规划问题的最优解不⼀定在定义域的边界,可能在定义域内部,这点与线性规划不同;例如:编写⽬标函数,定义放在⼀个m⽂件中;编写⾮线性约束条件函数矩阵,放在另⼀个m⽂件中;function f = optf(x);f = sum(x.^2)+8;function [g, h] = limf(x);g = [-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束h = [-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束options = optimset('largescale','off');[x y] = fmincon('optf',rand(3,1),[],[],[],[],zeros(3,1),[],...'limf',options)输出为:最速下降法(求最⼩值):代码如下:function [f df] = detaf(x);f = x(1)^2+25*x(2)^2;df = [2*x(1)50*x(2)];clc,clear;x = [2;2];[f0 g] = detaf(x);while norm(g)>1e-6 %收敛条件为⼀阶导数趋近于0p = -g/norm(g);t = 1.0; %设置初始步长为1个单位f = detaf(x+t*p);while f>f0t = t/2;f = detaf(x+t*p);end %这⼀步很重要,为了保证最后收敛,保持f序列为⼀个单调递减的序列,否则很有可能在极值点两端来回震荡,最后⽆法收敛到最优值。
x = x+t*p;[f0,g] = detaf(x);endx,f0所得到的最优值为近似解。
1 绪论1.1 课题的背景1.1.1 Matlab简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB 成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++,JA VA 的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
MATLAB的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
附加的工具箱(单独提供的专用MATLAB 函数集)扩展了MATLAB环境,以解决这些应用领域内特定类型的问题。
1.1.2 非线性规划(nonlinear programming)非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
用Matlab 求解非线性规划1.无约束优化问题)(min x f n Rx ∈,其中向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数。
用Matlab 求解:先建立函数文件mbhs.m ,内容是)(x f 的表达式;再回到Matlab 命令区输入决策变量初值数据x0,再命令[x,fmin]=fminunc(@mbhs,x0) 如:)32(m in 22212x x R x +∈的最优解是.)0,0(T x = 用Matlab 计算,函数文件为 function f=mbhs(x)f=2*x(1)^2+3*x(2)^2;再输入初值 x0=[1;1]; 并执行上述命令,结果输出为 x =? fmin =? 略。
2.约束优化问题.),,...,2,1(,0)(),,...,2,1(,0)(..)(min U x L m i x h p i x g t s x f i i Rx n ≤≤===≤∈其中:向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数、)(x g i 等式约束函数、)(x h i 不等式约束函数、L 下界、U 上界。
用Matlab 求解:先把模型写成适用于Matlab 的标准形式.,0)(,0)(,,..)(min U x L x h x g beq x Aeq b Ax t s x f n Rx ≤≤=≤=≤∈ 约束条件中:把线性的式子提炼出来得前两个式子;后三个式子都是列向量。
(如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===⨯⨯)()()([],[],,,11262x g x g x g beq Aeq b A p )再建立两个函数文件:目标函数mbhs.m ;约束函数yshs.m再回到Matlab 命令区,输入各项数据及决策变量初值数据x0,执行命令[x,fmin]=fmincon(@mbhs,x0,A,b,Aeq,beq,L,U,@yshs)例:单位球1222≤++z y x 内,曲面xy y x z 1.05.022--+=的上方,平面008.0=-++z y x 之上(不是上面),满足上述三个条件的区域记为D ,求函数)1cos()sin(2-+-+-z e z y x e xy xyz 在D 上的最大值、最大值点。