MATLAB求解非线性规划
- 格式:ppt
- 大小:999.50 KB
- 文档页数:5
这个函数的基本形式为x = fminco n(fun,x0,A,b,Aeq,beq,lb,ub,nonlco n,option s)其中fun为你要求最小值的函数,可以单写一个文件设置函数,如以上给的例子中。
1.如果fun中有N个变量,如x y z, 或者是X1,X2,X3, 什么的,自己排个顺序,在fun中统一都是用x(1),x(2)....x(n) 表示的。
2. x0, 表示初始的猜测值,大小要与变量数目相同3. A b 为线性不等约束,A*x <= b, A应为n*n阶矩阵,学过线性代数应不难写出A和b4 Aeq beq为线性相等约束,A eq*x = beq。
Aeq beq同上可求5 lb ub为变量的上下边界,正负无穷用-Inf和In f表示, lb ub应为N阶数组6 nonlco n 为非线性约束,可分为两部分,非线性不等约束 c,非线性相等约束,ceq可按下面的例子设置functi on [c,ce] = nonlco n1(x)c = -x(1)+x(2)^2-4;ce = []; % no nonlin ear equali ty constr aints7,最后是opt ions,可以用OPT IMSET函数设置,见上例具体可见OP TIMSE T函数的帮助文件。
对于优化控制,MATLAB提供了18个参数,这些参数的具体意义为:option s(1)-参数显示控制(默认值为0)。
等于1时显示一些结果。
option s(2)-优化点x的精度控制(默认值为1e-4)。
option s = optims et('TolX',1e-8) option s(3)-优化函数F的精度控制(默认值为1e-4)。
用Matlab 解无约束优化问题一元函数无约束优化问题21),(min x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
函数fminbnd 的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。
例1 求x e f x sin 2-=在0<x<8中的最小值与最大值主程序为wliti1.m:f='2*exp(-x).*sin(x)';fplot(f,[0,8]); %作图语句[xmin,ymin]=fminbnd (f, 0,8)f1='-2*exp(-x).*sin(x)';[xmax,ymax]=fminbnd (f1, 0,8)运行结果:xmin = 3.9270 ymin = -0.0279xmax = 0.7854 ymax = 0.6448例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?先编写M 文件fun0.m 如下:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.2、多元函数无约束优化问题标准型为:min F(X)命令格式为:(1)x= fminunc (fun,X0 );或x=fminsearch (fun,X0 )(2)x= fminunc (fun,X0 ,options );或x=fminsearch (fun,X0 ,options )解 设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5(3)[x,fval]= fminunc(...);或[x,fval]= fminsearch(...)(4)[x,fval,exitflag]= fminunc(...);或[x,fval,exitflag]= fminsearch(5)[x,fval,exitflag,output]= fminunc(...);或[x,fval,exitflag,output]= fminsearch(...)说明:•fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明:[1] fminunc为无约束优化提供了大型优化和中型优化算法。
Matlab求解⾮线性规划,fmincon函数的⽤法总结Matlab求解⾮线性规划,fmincon函数的⽤法总结1.简介在matlab中,fmincon函数可以求解带约束的⾮线性多变量函数(Constrained nonlinear multivariable function)的最⼩值,即可以⽤来求解⾮线性规划问题matlab中,⾮线性规划模型的写法如下min\ f(x) \\ s.t. \begin{equation} \left\{ \begin{array}{**lr**} A \cdot x \leq b \\ Aeq\cdot x =beq\\ c(x)\leq0 \\ ceq(x)=0 \\ lb \leq x \leq ub\end{array} \right. \end{equation} \\ ~\\ f(x)是标量函数,x,b,beq是向量,A,Aeq是矩阵 \\ c(x)和ceq(x)是向量函数2.基本语法[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)x的返回值是决策向量x的取值,fval的返回值是⽬标函数f(x)的取值fun是⽤M⽂件定义的函数f(x),代表了(⾮)线性⽬标函数x0是x的初始值A,b,Aeq,beq定义了线性约束 ,如果没有线性约束,则A=[],b=[],Aeq=[],beq=[]lb和ub是变量x的下界和上界,如果下界和上界没有约束,则lb=[],ub=[],也可以写成lb的各分量都为 -inf,ub的各分量都为infnonlcon是⽤M⽂件定义的⾮线性向量函数约束options定义了优化参数,不填写表⽰使⽤Matlab默认的参数设置3.实例⽰例,求下列⾮线性规划:min\ f(x)=x_1^2+x_2^2+x_3^2+8\\ s.t. \begin{equation} \left\{ \begin{array}{**lr**} x_1^2-x_2+x_3^2\geq0\\ x_1+x_2^2+x_3^2\leq20\\ -x_1-x_2^2+2=0\\ x_2+2x_3^2=3\\ x_1,x_2,x_3\geq0 \end{array} \right. \end{equation}(1)编写M函数fun1.m 定义⽬标函数:function f=fun1(x);f=x(1).^2+x(2).^2+x(3).^2+8;(2)编写M函数fun2.m定义⾮线性约束条件:function [g,h]=fun2(x);g=[-x(1).^2+x(2)-x(3).^2x(1)+x(2).^2+x(3).^3-20];h=[-x(1)-x(2).^2+2x(2)+2*x(3).^2-3];(3)编写主程序函数[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fun2')所得结果为:x_1=0.5522,x_2=1.2033,x_3=0.9478\\ 最⼩值y=10.651Processing math: 0%。
Matlab中的数学优化与非线性规划方法数学优化和非线性规划是数学领域中的重要分支,广泛应用于各个科学领域和工程实践中。
Matlab作为一种常用的数学建模和计算软件,对于解决优化和非线性规划问题具有强大的功能和丰富的工具包。
本文将介绍Matlab中的数学优化和非线性规划方法,探讨其原理和应用。
一、Matlab中的数学优化方法数学优化方法旨在寻找一个函数的最大值或最小值,常用的方法包括线性规划、整数规划和非线性规划等。
在Matlab中,优化问题可以通过建立目标函数和约束条件的数学模型来求解。
1.1 线性规划线性规划是一种求解带有线性约束条件的优化问题的有效方法。
在Matlab中,可以使用linprog函数来求解线性规划问题。
该函数采用单纯形法或者内点法等算法,在给定线性约束条件下,寻找目标函数的最小值。
例如,我们考虑一个简单的线性规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:-5 <= x1 <= 5-3 <= x2 <= 32x1 + 3x2 >= 6首先,我们需要将目标函数和约束条件表示为Matlab中的向量和矩阵形式。
然后,使用linprog函数求解最小值。
1.2 整数规划整数规划是一种求解带有整数变量的优化问题的方法。
在Matlab中,可以使用intlinprog函数来求解整数规划问题。
该函数使用分支定界法或者割平面法等算法,在给定整数约束条件下,寻找目标函数的最小值。
例如,我们考虑一个简单的整数规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:0 <= x1 <= 50 <= x2 <= 5x1 + x2 = 5在Matlab中,我们可以定义目标函数和约束条件,并使用intlinprog函数求解最小值。
1.3 非线性规划非线性规划是一类求解带有非线性约束条件的优化问题的方法。
在Matlab中,可以使用fmincon函数来求解非线性规划问题。
佛山科学技术学院上 机 报 告课程名称 数学应用软件上机项目 用MATLAB 求解非线性规划问题 专业班级 姓 名 学 号一. 上机目的1.了解非线性规划的基本理论知识。
2.对比Matlab 求解线性规划,学习用Matlab 求解非线性规划的问题。
二. 上机内容1、用quadprog 求解二次规划问题min f(x):2、求解优化问题:min 321)(x x x x f -= S.T.72220321≤++≤x x x注:取初值为(10,10,10)。
3、求表面积为常数150 m 2的体积最大的长方体体积及各边长。
注:取初值为(4,5,6)。
三. 上机方法与步骤 1、可用两种方法解题: 方法一:Matlab 程序:H=[1 -1;-1 2]; c=[-2;-6];A=[1 1;-1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,z]=quadprog(H,c,A,b,Aeq,beq,vlb,vub)方法二:Matlab程序如下:先建立fun.m文件,程序为:function f=fun(x);f=1/2*x(1)^2+x(2)^2-x(1)*x(2)-2^x(1)-6*x(2);再建立chushi.m文件,程序为:x0=[1;1];A=[1 1;-1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=fmincon('fun',x0,A,b,Aeq,beq,vlb,vub)2、Matlab程序:先建立fun1.m文件,程序为:function f=fun1(x);f=-x(1)*x(2)*x(3);再建立chushi1.m文件,程序为:x0=[10;10;10];A=[1 2 2;-1 -2 -2];b=[72;0];Aeq=[];beq=[];vlb=[];vub=[];[x,fval]=fmincon('fun1',x0,A,b,Aeq,beq,vlb,vub)四.上机结果1、结果:(1)方法一结果:x =0.66671.3333z =-8.2222(2)方法二结果:x =0.66671.3333fval =-8.47632、结果:x =24.000012.000012.0000fval =-3.4560e+0033、结果:x =5.00005.00005.0000 fval =-125.0000 f =125.0000。
MATLAB求解非线性规划非线性规划是一类涉及非线性目标函数或非线性约束条件的数学规划问题。
MATLAB是一种强大的数学计算软件,可以用来求解非线性规划问题。
本文将介绍MATLAB中求解非线性规划问题的方法。
1. 目标函数和约束条件在MATLAB中,非线性规划问题可以表示为以下形式:minimize f(x)subject to c(x)≤0ceq(x)=0lb≤x≤ub其中f(x)是目标函数,c(x)和ceq(x)是不等式和等式约束条件,lb和ub是变量的下限和上限。
2. 求解器MATLAB提供了多种求解器可以用来求解非线性规划问题。
其中常用的有fmincon和lsqnonlin。
lsqnonlin可以用来求解非线性最小二乘问题。
它使用的是Levenberg-Marquardt算法,能够有效地求解非线性最小二乘问题,并且具有较好的收敛性。
3. 示例下面我们来看一个求解非线性规划问题的示例。
假设我们要求解以下非线性规划问题:首先,我们需要定义目标函数和约束条件。
在MATLAB中,我们可以使用anonymous function来定义目标函数和约束条件。
代码如下:f = @(x)x(1)^2+2*x(2)^2+3*x(3)^2;c = @(x)[x(1)+x(2)+x(3)-4, x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-3];ceq = [];lb = [0,0,0];接下来,我们使用fmincon求解非线性规划问题。
代码如下:[x,fval,exitflag,output] = fmincon(f,[1,1,1],[],[],[],[],lb,[],@(x)c(x));其中,第一个参数是目标函数,第二个参数是变量的初值,第三个参数是不等式约束条件,第四个参数是等式约束条件,第五个参数是变量的下限,第六个参数是变量的上限,第七个参数是非线性约束条件,最后一个参数是opts,可以设置其他求解参数。
本科毕业论文(设计)论文题目:非线性规划问题的建模与Matlab求解实现的案例分析学生:许富豪学号:1204180137专业:信息与计算科学班级:计科1201指导教师:王培勋完成日期:2015年6月25日非线性规划问题的建模与Matlab求解实现的案例分析容摘要非线性规划问题通常极其抽象,并且求解计算极其复杂,本文举个别非线性规划问题案例,通过对抽象的非线性规划问题先建立数学模型,再利用Matlab软件高效快捷的实现非线性规划问题的求解,最后分析利用Matlab软件得出的案例结果。
关键词:非线性规划建立数学模型Matlab目录(三号黑体居中)空一行空一行一、※※※※※※ (1)(一)※※※※※※ (1)1.※※※※※※※※※※※※※ (1)2.※※※※※※※ (4)(二)※※※※ (7)(三)※※※※※※※※ (12)二、※※※※ (16)(一)※※※※※ (16)(二)※※※※※ (24)1.※※※※ (24)2.※※※※※ (30)3.※※※※ (31)(三)※※※※ (33)三、※※※※ (36)(一)※※※※※ (38)(二)※※※※ (43)四、※※※※ (45)参考文献 (48)附录 (50)(标题顺序号、容及其开始页码均为四号宋体,一级标题为黑体四号)序 言非线性规划问题通常难以用人力计算,所以我们一般利用Matlab 软件代替人去计算抽象的非线性规划问题,解决了耗费时间、耗费精力的问题,快速准确的得出计算结果。
因此,善于利用Matlab 实现非线性规划问题的求解非常重要,而求解非线性规划问题之前必须先对问题进行建立数学模型,才能准确的理解题意并快速的运用Matlab 求解。
一、非现性规划的基本概念(一)定义如果目标函数或约束条件中至少有一个是非线性函数,则最优化问题就叫做非线性规划问题,简记为NP 。
(二)一般形式min (),n f x x E ∈,()=0(=1,2,..()0(j=1,2i jh x j m s t g x l ⋯≤⎩⋯⎧⎨),,)其中:1,2,n =()Tx x x x ⋯称为模型(NP )的决策变量,f 称为目标函数,(=1,...,)i h i m 和(=1,...,)j g j l 称为约束函数;()=0(=1,...,)i h x i m 称为等式约束;()0(=1,...,)j g x j l ≤称为不等式约束。
在matlab 中非线性规划的数学模型可写成一下形式:minf(X)s.t. Ax ≪B Aeq .x =Beq C (x )≪0Ceq x =0其中,f(x)是标量函数;A,B,Aeq,Beq 是相应维数的矩阵和向量;C(x),Ceq(x)是非线性向量函数。
Matlab 中的命令是X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)它的返回值是向量x 。
其中,FUN 是用M 文件定义的函数f(x)。
X0是X 的初始值。
A ,B ,Aeq ,Beq 定义了线性约束AX ≪B ,Aeq*X=Beq ,如果没有线性约束,则A=[],B=[],Aeq=[],Beq=[]。
LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[];如果X 无下界,则LB=-inf;如果X 无上界,则UB=inf 。
NONLCON 是用M 文件定义的非线性向量函数C(x),Ceq(x)。
OPTIONS 定义了优化函数,可以使用MATLAB 默认的参数设置。
例求解下列非线性规划问题:max z= X 1+ X 2+ X 3+ X 4 s.t.x 1≪4001.1x 1+x 2≪4401.21x 1+1.1x 2+x 3≪4841.331x 1+1.21x 2+1.1x 3+x 4≪532.4X i≫0,i =1,2,3,4(1)编写M 文件,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)) );(2)编写M 文件,定义约束条件function[g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0(3)编写主程序x0=[1;1;1;1];lb=[0;0;0;0];ub=[];A=[];b=[];Aeq=[];beq=[];[x,fval] = fmincon('fun44',x0,A,b,Aeq,beq,lb,ub,'mycon1')输出结果x =86.1883104.2879 126.1883 152.6879fval =-43.0860。
佛山科学技术学院上 机 报 告课程名称 数学应用软件上机项目 Matlab 求解非线性规划问题 专业班级 姓名 学号一. 上机目的本节课我们学习了Matlab 求解非线性规划问题,主要有以下内容: 1. 了解非线性规划的基本理论知识。
2. 学习了Matlab 中fmincon 及guaqprog 命令格式,注意把规划中的目标函数及约束条件化为矩阵或向量的形式。
掌握用matlab 编写程序解决非线性规划模型的问题。
二. 上机内容1、用quadprog 和fmincon 求解二次规划问题min f(x):初始值为(1,1)2、求解优化问题:min 321)(x x x x f -= S.T.72220321≤++≤x x x注:取初值为(10,10,10)。
3、求表面积为常数150 m 2的体积最大的长方体体积及各边长。
注:取初值为(4,5,6)。
三. 上机方法与步骤给出相应的问题分析及求解方法,并写出Matlab 程序,并有上机程序显示截图。
1、用quadprog 和fmincon 求解二次规划问题min f(x):初始值为(1,1)Matlab程序:根据目标函数和约束条件利用quadprog来写主程序;而fmincon则根据目标函数和约束条件来定义目标函数和主程序。
Quadprog程序:H=[1 -1;-1 2];c=[-2 -6];A=[1 1;-1 2;2 1];b=[2;2;3];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=quadprog(H,c,A,b,Aeq,beq,vlb,vub)Fmincon程序:function f=fun1(x);f=(1/2)*x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-6*x(2);x0=[1;1];A=[1 1;-1 2;2 1]; b=[2;2;3]; Aeq=[]; beq=[]; vlb=[0;0]; vub=[];[x,fval]=fmincon('fun1',x0,A,b,Aeq,beq,vlb,vub)2、求解优化问题:min 321)(x x x x f -= S.T.72220321≤++≤x x x注:取初值为(10,10,10)。
matlab解决⾮线性规划问题(凸优化问题)当⽬标函数含有⾮线性函数或者含有⾮线性约束的时候该规划问题变为⾮线性规划问题,⾮线性规划问题的最优解不⼀定在定义域的边界,可能在定义域内部,这点与线性规划不同;例如:编写⽬标函数,定义放在⼀个m⽂件中;编写⾮线性约束条件函数矩阵,放在另⼀个m⽂件中;function f = optf(x);f = sum(x.^2)+8;function [g, h] = limf(x);g = [-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束h = [-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束options = optimset('largescale','off');[x y] = fmincon('optf',rand(3,1),[],[],[],[],zeros(3,1),[],...'limf',options)输出为:最速下降法(求最⼩值):代码如下:function [f df] = detaf(x);f = x(1)^2+25*x(2)^2;df = [2*x(1)50*x(2)];clc,clear;x = [2;2];[f0 g] = detaf(x);while norm(g)>1e-6 %收敛条件为⼀阶导数趋近于0p = -g/norm(g);t = 1.0; %设置初始步长为1个单位f = detaf(x+t*p);while f>f0t = t/2;f = detaf(x+t*p);end %这⼀步很重要,为了保证最后收敛,保持f序列为⼀个单调递减的序列,否则很有可能在极值点两端来回震荡,最后⽆法收敛到最优值。
x = x+t*p;[f0,g] = detaf(x);endx,f0所得到的最优值为近似解。
基于M A T L A B的非线性规划的求解The Standardization Office was revised on the afternoon of December 13, 2020基于MATLAB 的非线性0-1规划的求解学 生:易棉生指导教师:宋来忠三峡大学理学院摘要:本文主要研究非线性0-1整数规划的解法。
首先,通过对传统求解方法的研究,提出从0-1整数规划的变量只取值0和1这个特点来求解,为利用好这个特点,构造了一种数据结构——组合树,还根据目标函数和约束条件所含的变量是否被包含在解中取值为1的变量集中,将0-1整数规划的解细分为目标特殊解和约束特殊解。
然后,把这个特点具体化为4条性质。
根据这些性质,设计出合理的算法,并用MATLAB 实现该算法。
实验表明,该算法是有效的。
Abstract: In this paper, the problem about solving nonlinear 0-1 integer programming is studied. Firstly the view that we can use the feature that the variables of 0-1 integer programming only have two values 0 and 1 is raised after discussing some traditionalalgorithms. To express the feature, a new tree structure, called combination tree in the paper is given and also object-satisfied solution and constrain-satisfied solution is defined, based on whether the variables with the value 1 in objective function and constrained condition belong to the variables with the value 1 in solution. Then it can be specified by 4 properties. According to these properties, a new algorithm is designed and implemented with MATLAB language. From the experiment, it is proved that the algorithm is effective.关键词:0-1规划 非线性 组合树 解的标记 MATLABkey words: 0-1 integer programming; nonlinear; combination tree; the mark of solution; MATLAB前言本文研究的模型可是:111min ()..()0()0{0,1}f x Ax b A x b s t C x C x x ≤=⎧⎪≤=⎨⎪∈⎩,,,,(1) 其中,()f x 都是非线性函数,A 、b 、1A 、1b 是矩阵,1()()C x C x 、非线性矩阵函数。
关于非线性规划问题背景:线性规划问题,即目标函数和约束条件都是线性函数的规划问题,但在实际工作中,还常常会遇到另一类更一般的规划问题,即目标函数和约束条件中至少有一个是非线性函数问题,即非线性规划问题.求解方法:Matlab软件问题:某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货50台、70台、90台。
每季度的生产费用为()^2=+(元),f x ax bx其中x是该季度生产的台数,若交货有剩余可用于下季度交货,但需支付存储费,每季度每台c元。
已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50,b=0。
2,c=4,问工厂如何安排每月生产计划,才能既满足合同又使总费用最低(包括生产费用和库存费用)。
问题分析与假设:目标函数是总费用,记为()F x.约束条件是生产合同和生产能力的限制.设第一季度生产1x台,第二季度生产2x台,则第三季度生产(21012)--台。
则:x x≤+≤x x12012210≤≤x501100≤≤x02100由a=50,b=0.2,c=4,第一季度生产费用15010.21^2=+,T x x剩余品存储到下一季度的费用14(150)=-,k x同理可得:25020.22^2T x x=+=+-24(12120)k x x350(21012)0.2(21012)^2=--+--T x x x x建模总费用=++++=+++--++-先建立M-文件: F x T T T k k x x x x x x()12312103000.2(1^22^2)0.2(21012)^24(212120)a=50;b=0.2;c=4;H=diag(2*b*ones(1,3));C=[a+2*c,a+c,a];A1=[-1,0,0;—1,-1,0];b1=[-50,—120]';A2=[1 1 1];b2=210;v1=[0 0 0]';v2=[100 100 100]’;[x,faval,exitflag,output,lambada]=quadprog(H,C,A1,b1,A2,b2,v1,v2,[])X2=x'*H*x/2+C*x-140*c再建立主程序:a=50;b=0。
MATLAB⾮线性规划MATLAB求解⾮线性规划可以使⽤ fmincon 函数,其数学模型可以写成如下形式:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是⽬标函数,x0是初始值,A,b 规定线性不等式约束条件,Aeq,beq 规定线性等式约束条件,lb 规定可⾏解的数值下限,ub规定可⾏解的数值上限。
nonlcon是包含⾮线性约束条件(C(x),Ceq(x))的函数。
使⽤options所指定的优化选项执⾏最⼩化。
例如,使⽤MATLAB计算如下⾮线性规划。
x0 = [0.5,0];A = [1,-2];b = 1;Aeq = [2,1];beq = 1;x = fmincon(fun,x0,A,b,Aeq,beq)带有边界约束的,例如:fun = @(x)1+x(1)/(1+x(2)) - 3*x(1)*x(2) + x(2)*(1+x(1));lb = [0,0];ub = [1,2];% 没有线性约束,因此将这些参数设置为 []。
A = [];b = [];Aeq = [];beq = [];% 尝试使⽤⼀个位于区域中部的初始点。
x0 = (lb + ub)/2;x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)带有⾮线性约束的,例如:%% 主函数options=optimset('largescale','off');x = fmincon(@fun,rand(3,1),[],[],[],[],zeros(3,1),[], @nonlcon, options)%% ⽬标函数function f=fun(x)f=sum(x.^2)+8;end%% ⾮线性约束条件function [c,ceq]=nonlcon(x)c=[-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束ceq=[-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束end特别注意:⽬标函数为最⼩化函数,fun是⼀个函数,fun接受向量或数组 x,并返回实数标量 f,即在 x 处计算的⽬标函数值。