土压平衡盾构机设计计算书
- 格式:pdf
- 大小:202.80 KB
- 文档页数:21
设计依据:1.《广州市轨道交通五号线工程区庄至动物园南门区间详细勘察阶段岩土勘察报告》2.《广州市轨道交通五号线工程动物园南门至杨箕区间详细勘察阶段岩土工程勘察报告》3.《广州市轨道交通五号线首期工程(滘口至文冲段)设计技术要求》4.广州市轨道交通五号线首期工程(滘口至文冲段)区庄站至动物园站区间招标设计及投标设计文件5. 广州市轨道交通五号线首期工程(滘口至文冲段)动物园站到杨箕站区间招标设计及投标设计文件6.《广州市轨道交通五号线首期工程(滘口至文冲段)施工图设计结构防水工程技术要求》7.《广州市轨道交通五号线[区庄站~动物园站~杨箕站区间]盾构工程设计合同》8.广州市地铁五号线总包总体部下发的工作联系单9.采用规范:1)《人民防空工程设计规范》(GB50225-1995)2)《盾构法隧道施工与验收规范》(GB50446-2008)3)《建筑结构荷载规范》(GB50009-2001)4)《地铁设计规范》(GB50157-2003)5)《混凝土结构设计规范》(GB50010-2002)6)《地下工程防水技术规范》(GB50108-2001)7)《铁路隧道设计规范》(TB10003-2005)8)《建筑抗震设计规范》(GB50011-2001)9)《锚杆喷射混凝土支护技术规范》(GB50007-2002)10)《建筑地基基础设计规范》(GB50007-2002)11)《铁路桥涵设计基本规范》(TB10002.1—2005)12)《地下铁道工程施工及验收规范》(GB50299—1999)2003年版13)其他相关规范、规程工程概况本工程含区庄站~动物园站及动物园站到杨箕站两个盾构区间,盾构始发井设于杨箕站,盾构机于动物园站过站,盾构吊出井设于区庄站东侧。
两区间均属珠江三角洲平原,沿线路面交通繁忙,为密集的建筑物、高架桥桩基区,地下管线密布。
动物园站~杨箕站区间隧道下穿内环放射线黄埔大道A2标以及内环—梅东—中山—立交桩基,同时距东风广场会所及环风变电桩基较近。
附件6:计算书1.单件最重设备起吊计算(1) 单件设备最大重量: m=120t 。
(2) 几何尺寸: 6240mm x 6240mm x 3365mm 。
(3 )单件最重设备吊装验算图1中盾吊装示意图工况:主臂(L ) =30m ;作业半径(R ) =10m 额定起重量Q=138t (参见性能参数表) 计算:G=m X K1+q =12" 1.1+2.5=134.5t式中:口=单件最大质量; 0=动载系数,取1.1倍;q=吊索具质量,吊钩2t+索 具0.5t ; 额定起重量 Q=138t > G=134.5t (最大)故:能满足安全吊装载荷要求。
为此选择XGC260履带式起重机能满足盾构机部件吊装要求。
2钢丝绳选择与校核J. JLL L I I L土-=二i _---_--i-:i --------■-・:■:-.■- 7 --- < -----• - L- B - ■■- - ■-•二二-—二二 F■二二 M =="UEDE 5F ==--7 - ~二■二二-E - ~ -主吊索具配备:(以质量最大120t为例)主吊钢丝绳规格:6X 37-65.0盾构机最大重量为120t,吊具重量为2.5t.总负载Q =120t+2.5t=122.5t主吊钢丝绳受力P: P=QK/(4X sina) =34.57ta=77° (钢丝绳水平夹角),K-动载系数1.1钢丝绳单根实际破断力S =331t钢丝绳安全系数=331 /34.57=9.575 , 大于吊装规范要求的8倍安全系数,满足吊装安全要求。
(详见《起重机设计规范》(GB/T3811-2008)符合施工要求)。
3.吊扣的选择与校核此次吊装盾构机,选用了6个55T的“?”型美式卸扣连接盾构机前盾、中盾的起吊吊耳与起吊钢丝绳,设每个卸扣所承受的负荷为H',则H' =K X Q 十4式中K1 :动载系数,取K1=1.1,Q:前盾的重量。
附件6:计算书1.单件最重设备起吊计算(1)单件设备最大重量:m=120t。
(2)几何尺寸:6240mm×6240mm×3365mm。
(3)单件最重设备吊装验算图1 中盾吊装示意图工况:主臂(L)=30m;作业半径(R)=10m额定起重量Q=138t(参见性能参数表)计算:G=m×K1+q =120×1.1+2.5=134.5t式中:m=单件最大质量;K1=动载系数,取1.1倍;q=吊索具质量,吊钩2t+索具0.5t;额定起重量Q=138t>G=134.5t(最大)故:能满足安全吊装载荷要求。
为此选择XGC260履带式起重机能满足盾构机部件吊装要求。
2 钢丝绳选择与校核图2钢丝绳受拉图主吊索具配备:(以质量最大120t为例)主吊钢丝绳规格:6×37-65.0盾构机最大重量为120t,吊具重量为2.5t.总负载Q =120t+2.5t=122.5t主吊钢丝绳受力P:P=QK/(4×sina) =34.57ta=77°(钢丝绳水平夹角),K-动载系数1.1钢丝绳单根实际破断力S =331t钢丝绳安全系数=331 /34.57=9.575,大于吊装规范要求的8倍安全系数,满足吊装安全要求。
(详见《起重机设计规范》(GB/T3811-2008)符合施工要求)。
3.吊扣的选择与校核此次吊装盾构机,选用了6个55T的“Ω”型美式卸扣连接盾构机前盾、中盾的起吊吊耳与起吊钢丝绳,设每个卸扣所承受的负荷为H’,则H’=K1×Q÷4式中K1:动载系数,取K1=1.1,Q:前盾的重量。
则H’=K1×Q÷4=1.1×120÷4=33T<55T因此所选用的6个该型号“Ω”型美式卸扣工作能力是足够的,可以使用。
吊装器具选择如下:(1)美式弓型2.5寸55t卸扣6只。
(2)6×37+1-∮65钢丝绳4根,2根用于主钩吊装,两根用于辅助翻身。
6.15m土压平衡型地铁盾构机(液压系统)计算书拼装机驱动液压系统1、基本参数拼装机转速: n = 0.3rpm/1.5rpm拼装机转动范围: =±210°马达-减速机速比: i1 = 19.56减速机-大齿圈速比:i2 = 200/15回转力矩: T=87.2KN²m2、马达扭矩:T马达= T/ i1 / i2= 87.2/19.56/(200/15)= 334.36 N²m3、马达转速:n马达=n³i1³i2=1.5³19.56³(200/15)= 392r/min。
4、马达排量马达的工作压力初选12MPaV = 6.28³T马达/12/ηm= 6.28³334.36/12=174.98mL/min5、流量:Q = V²n马达/ηv= 175³392/1000/0.98= 70L/min考虑到泄漏量:单马达的所需流量初选75/min.根据上述参数:选配:马达: MB175AP080马达额定扭矩: T额定=765 N²m马达排量: q =175cm3/rev额定压力: 27.5Mpa额定转速: 600rpm油源与螺旋机系统共用。
拼装机油缸液压系统1、提升油缸工作负载:210KN;提升速度:5cm/s;油缸数量:21) 液压缸内径D 的计算 初选液压缸的工作压力为21MPamm P F D 79.79102114.31000105446=⨯⨯⨯⨯==π 根据国家标准GB/T2348-1993液压缸内径系列将所计算的值圆整为标准值,取D=80mm2)活塞杆直径D 的计算mm Dd 9.4446.1146.1801=-⨯=-=ϕϕ 根据国家标准GB/T2348-1993活塞杆直径系列将所计算的值圆整为标准值,取d=45mm其中ϕ—速度比。
222d D D -=ϕ下面给出了不同速度比时活塞杆直径d 和液压缸内径D 得关系d 和D 的关系设计中,根据工作压力的大小,选用速度比时可参考ϕ和p 的关系表ϕ和p 的关系本,应尽量选用标准系列值。
1.1 系统推力计算盾构的总推力根据各种推进阻力的总和及所需的富裕量决定,对于土压盾构通常考虑的推进阻力有盾体的摩擦力、作用在刀具上的阻力、开挖面的支撑压力、盾尾与管片及盾尾密封刷间的摩擦力、后配套的拖拉力等。
这些推进阻力根据地层情况和盾构的尺寸参数计算如下:1)盾体与地层间的摩擦阻力由公式(1)计算11001)22(25.0μμγπ⨯+⨯++=W D K P K P DL F e e (1) 式中D ——盾构机直径L ——主机长度W ——盾构机主机重量(KN )γ—— 掘削断面上的土体浮重度(KN/m3)K 0——掘削断面上土体的静止土压系数,取值0.51μ——地层与盾构机外壳间摩擦系数, 通常取ϕμtan 5.01=ϕ——掘削断面上土体的内摩擦角(°)P e ——作用在盾构机上顶部的竖直土压强度(kPa ), in i i e H p ∑==1γn ——地表至盾构机外壳上顶区域内的不同浮重度的土层的层数γi ——第i 层的浮重度(KN/m3)H i ——第i 层厚度=1F 0.25×3.14×8.658×6.48×(2×200+2×0.5×200+0.5×20×6.48)×0.13+3000×0.13=4196KN2)刀具上的推力现按照滚刀方式计算推力,共47把,按每把单刃滚刀的最大承载力按250kN 计算。
F2=250×47=11750kN3)盾尾与管片间的摩擦力盾尾与管片间的摩擦力由公式(2)计算2110213μπμ⨯⨯⨯⨯+⨯⨯=p l D W n F s (2) 式中1n ——盾尾内管片的环数Ws ——1环管片的重量2μ——管片与盾尾间的摩擦系数D0——管片外径1l ——盾尾刷的长度1p ——尾刷内油脂压力 F3=2×1000×0.3+3.14×6.2×0.85×300×0.15=1344kN4)后配套拖车的拖拉力后配套的拖拉力暂按500 kN 考虑F4=500 kN5)开挖面的支撑压力开挖面的支撑压力按公式(3)计算,对于土压平衡盾构计算公式如下 S P D F ⨯⨯=425π (3) 式中s P ——设计掘进压力,此处取200kPaF5=3.14×6.482×200/4=6592kN6)系统推力系统的装备推力为上述推进阻力的总和乘以富裕量系数此处取1.5 F=)(54321F F F F F ++++⨯α=1.5×(4196+11750+1344+500+6592)=36573kN 实际配置共22根推进油缸,总推力达到40861KN 。
附件6:计算书1.单件最重设备起吊计算(1)单件设备最大重量:m=120t。
(2)几何尺寸:6240mm×6240mm×3365mm。
(3)单件最重设备吊装验算图1中盾吊装示意图工况:主臂(L)=30m;作业半径(R)=10m额定起重量Q=138t(参见性能参数表)计算:G=m×K1+q=120×1.1+2.5=134.5t式中:m=单件最大质量;K1=动载系数,取1.1倍;q=吊索具质量,吊钩2t+索具0.5t;额定起重量Q=138t>G=134.5t(最大)故:能满足安全吊装载荷要求。
为此选择XGC260履带式起重机能满足盾构机部件吊装要求。
2钢丝绳选择与校核图2钢丝绳受拉图主吊索具配备:(以质量最大120t为例)主吊钢丝绳规格:6×37-65.0盾构机最大重量为120t,吊具重量为2.5t.总负载Q=120t+2.5t=122.5t主吊钢丝绳受力P:P=QK/(4×sina)=34.57ta=77°(钢丝绳水平夹角),K-动载系数1.1钢丝绳单根实际破断力S=331t钢丝绳安全系数=331/34.57=9.575,大于吊装规范要求的8倍安全系数,满足吊装安全要求。
(详见《起重机设计规范》(GB/T3811-2008)符合施工要求)。
3.吊扣的选择与校核此次吊装盾构机,选用了6个55T的“?”型美式卸扣连接盾构机前盾、中盾的起吊吊耳与起吊钢丝绳,设每个卸扣所承受的负荷为H’,则H’=K1×Q÷4式中K1:动载系数,取K1=1.1,Q:前盾的重量。
则H’=K1×Q÷4=1.1×120÷4=33T<55T 因此所选用的6个该型号“?”型美式卸扣工作能力是足够的,可以使用。
吊装器具选择如下:(1)美式弓型2.5寸55t卸扣6只。
(2)6×37+1-∮65钢丝绳4根,2根用于主钩吊装,两根用于辅助翻身。
-K 0φH B e ·у0+B H -K 0φ·B 1·уC1-eφ盾构施工关键参数的计算1)计算依据盾构掘进机选型主要性能参数的计算,根据工程和水文地质情况、盾构机厂商提供的结构和性能参数,参考有关资料进行。
2)计算内容盾构机的主要参数计算主要为土压平衡工况下盾构机推力和扭矩的计算。
⑴在软土中推进时,盾构机所需推力的计算地质参数选取:岩土容重 γ=2.0t/m 3岩土内摩擦角 φ=27°土的粘聚力 C=30Kpa=3.0t/m 2覆盖层厚度 最大:H max =20.3m ;最小H min =10.0m 地面上置荷载 Po=2t/m 2水平侧压力系数 λ=0.62盾构掘进机外径 D=6.39m盾构掘进机总长 L=7.755m盾构掘进机总重 W=300t管片每环的重量 W g =19.29t水平垂直土压之比 K o =1由于隧道沿线的埋深差别不大,最大处为20.3m ,最小为10.0m ,因此,计算最大埋深处的松动土压和两倍盾构掘进机直径的全土柱高产生的土压,并取其中的较大值作为作用于盾构掘进机上的土压计算:松动高度计算:1×tg27° 0-1×tg27°× 5.71 )(20.32.002+ e 20.3( )5.71-1×tg27°× ×1-e 3.05.71×2.0.5.71 (1- ) h = =7.08m )(.式中:松动土压P SP S =γh 0=2×7.08=14.16t/m 2两倍盾构掘进机直径的全土柱土压:P q =γh 0式中:h 0=2D=2×6.39=12.78mP q =γh 0=2×12.78=25.56t/m 2由于P q >P S所以,取P q 计算。
P o = P q +2=25.56+2=27.56 t/m 2P o1= P o +W/(D ·L )=27.56+300/(6.39×7.755)=33.61t/m 2 侧压力计算:P 1 =P o1λ=33.61×0.62=20.84 t/m 2P 2 = (P o +γD )λ =(27.56+2.0×6.39)×0.62=25.01 t/m 2 盾构掘进机的推力由盾构掘进机的外壳与土体之间的摩擦阻力F 1、刀盘承受的主动水平压力引起的推力F 2、土的粘接力引起的刀盘推力F3以及盾尾与管片之间的摩擦阻力F4几部分组成。
盾构关键参数的计算1.1 说明盾构工作过程的力学参数计算是一个非常复杂的问题,由于地质因素、土层改良方法、掘进参数等一系列因素的影响,在盾构参数计算方法上存在很多不确定因素。
至今应用的盾构参数计算方法在很大程度上只是处于研究、探索阶段,甚至很大程度上是一些经验性的计算方法。
以下的计算在参考盾构生产厂家提供的有关计算资料及其它相关文献资料的基础上,根据南京地铁三号线地质勘察报告,结合我单位南京地铁二号线盾构施工经验,按照盾构厂商提供的设计方案来进行关键参数的校核计算。
1.2 推力计算1.2.1 盾构外荷载的确定由于盾构工程沿线的隧道埋深差别很大,在埋深最深处的隧道顶部的覆土厚度约为33m ,而在较浅处的隧道顶部距地面约为9.3m 。
根据常用算法,盾构的外部荷载将按照最大埋深处的松动土压和两倍盾构直径的全土柱高产生的土压计算,并取两者中的最大值作为盾构计算的外部荷载。
在新庄站—市政府站区间最大埋深位置在K19+342处,此处隧道处于全断面岩层中,上部覆土为②-1b2-3、②-1c2-3、②-2b4、③-1h1-2、③-2b2、③-3e1、③-3a1-2地层,埋深约33m ,所以对盾构计算取此断面埋深为最大埋深值。
软土计算中地质参数均按照此断面的③-3a1-2号地层选取如下:岩土容重:3/9.18m KN =γ 岩土的内摩擦角:φ=17.60土的粘结力: c=47KN/m2覆盖层厚度: mH 33max =地面荷载:2020/P KN m =水平侧压力系数:45.0=λ盾构外径:m D 4.6= 盾构主机长度: m L 38.7= 盾构主机重量: W=350t 经验土压力系数:01K =松动土压(泰沙基公式)计算:()()()()1010/0/0111/B H tg K B H tg K s e P e tg K B c B P φφφγ--⨯+-⨯⨯-⨯=其中B1=R ×ctg[(45°+φ/2)/2] =3.2×ctg[(45°+17.6°/2)/2] =6.3m代入上式得 P5=︒⨯.617)3.6/319.18(3.6tg -×[1-e -1×tg17.6°×(33/6.3)]+20×e -1×tg17.6°×(33/6.3)=228.7(KN/m 2)计算两倍掘进机直径的全土柱土压: Pq=γ×2×D=18.9×2×6.4=242(KN/m2)q sP P >qP ∴取作为计算的数据。