必修三概率统计专题复习
- 格式:docx
- 大小:172.82 KB
- 文档页数:7
数学必修3 统计与古典概率专题一、统计知识要点: 1、数据的收集:①总体与样本、样本容量 ②随机抽样:简单随机抽样、.系统抽样、.分层抽样 2、数据的处理:①根据数据的特征数:趋中程度:众数、中位数、均值 离散程度:方差、标准差 ②根据频率分布 频率分布直方图 频率分布折线图 茎叶图 3、变量的相关关系①变量间关系 ②相关关系的分析 ③两变量的线性关系 二、概率知识要点:1、古典概型 2、几何概型 三、基础练习1.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。
为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 (A )9(B )18(C )27(D) 362.一个容量100的样本,其数据的分组与各组的频数如下表则样本数据落在(10,40)上的频率为A. 0.13B. 0.39C. 0.52D. 0.643.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。
黄金矩形常应用于工艺品设计中。
下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本: 甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是 A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近 C. 两个批次总体平均数与标准值接近程度相同 D. 两个批次总体平均数与标准值接近程度不能确定4.对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A)变量x 与y 正相关,u 与v 正相关(B)变量x 与y 正相关,u 与v 负相关(C)变量x 与y 负相关,u 与v 正相关(D)变量x 与y 负相关,u 与v 负相关5.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
⾼中数学必修3第三章概率全章复习概率全章复习⼀、基础知识梳理(⼀)随机事件的概率随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,⼀定会发⽣的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,⼀定不会发⽣的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发⽣也可能不发⽣的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某⼀事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数;称事件A 出现的⽐例nn A f An)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发⽣的频率)(A f n 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发⽣的次数A n 与试验总次数n 的⽐值nn A,它具有⼀定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越⼩。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发⽣的可能性的⼤⼩。
频率在⼤量重复试验的前提下可以近似地作为这个事件的概率概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对⽴事件;(4)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);(3)若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)=P(A)+ P(B)=1,于是有P(A)=1—P(B); (4)互斥事件与对⽴事件的区别与联系,互斥事件是指事件A 与事件B 在⼀次试验中不会同时发⽣,其具体包括三种不同的情形:(1)事件A 发⽣且事件B 不发⽣;(2)事件A 不发⽣且事件B 发⽣;(3)事件A 与事件B 同时不发⽣,⽽对⽴事件是指事件A 与事件B 有且仅有⼀个发⽣,其包括两种情形;(1)事件A 发⽣B 不发⽣;(2)事件B 发⽣事件A 不发⽣,对⽴事件互斥事件的特殊情形。
高二级数学必修3期中考试章节复习要点:统计与概率数学是学习和研究现代科学技术必不可少的基本工具。
以下是查字典数学网为大家整理的高二级数学必修3期中考试章节复习要点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
一、随机事件的含义1.必然事件:在一定条件下,一定发生的事件.2.不可能事件:在一定条件下,一定不会发生的事件.3.随机事件:在一定条件下,可能发生也可能不发生的事件. 注:一般用大写字母A,B,C表示.二、概率与频率在相同的条件下,大量重复进行同一试验时,随机事件A发的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).三、互斥事件1、不可能同时发生的两个事件称为互斥事件;2、如果事件任意两个都是互斥事件,则称事件彼此互斥。
3、如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和。
4、如果事件彼此互斥,则有:P(A+B)=P(A)+P(B)5、对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。
对立事件一定是互斥事件,互斥事件未必是对立事件。
四、概率的基本性质1.概率的取值范围都在[0,1]内,即01,不可能事件的概率为0,必然事件的概率为1.五、古典概型1定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2.古典概型的概率公式P(A)=基本事件的总数A包含的基本事件的个数=nm.六几何概率1.概念:如果每个事件发生的概率只与构成该事件区域的长度(或面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型,几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.2.几何概型中,事件A的概率计算公式3.借助模拟方法可以估计随机事件发生的概率。
必修三概率统计专题复
习
Revised as of 23 November 2020
随机抽样
一、随机抽样的分类
1. 简单随机抽样⎩
⎨⎧随机数法抽签法
2.系统抽样 3. 分层抽样
二、适用条件:
当总体容量较小,样本容量也较小时,可采用 抽签法 ;当总体容量较大,样本容量较小时,可采用 随机数法 ;当总体容量较大,样本容量也较大时,可采用 系统抽样 ;当总体中个体差异较显着时,可采用 分层抽样 . 三、典型练习
1.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了
( c ) A .抽签法
B .随机数法
C .系统抽样
D .有放回抽样
2.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体( b )
A .3
B .4
C .5
D .6
3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生 ( b )
A .30人,30人,30人
B .30人,45人,15人
C .20人,30人,10人
D .30人,50人,10人
用样本估计总体
1、频率分布直方图
在频率分布直方图中,纵轴表示 频率/组距 ,数据落在各小组内的频率用 面积 来表示,各小长方形的面积的总和等于 1 . 2、茎叶图
补充:某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数和平均数;
众数:8.6, 中位数:
8.78.8
8.752
+=,
平均数:
(7.0+7.3+8.6+8.6+8.6+8.6+8.7+8.7+8.8+8.8+8.9+8.9+9.5+9.5+9.6+9.7)/16=
3.众数. 4.中位数 5.平均数
※6.已知一组数据的频率分布直方图如下.求众数、中位数、平均数.
众数:面积最大的那个矩形的中点横坐标 65
中位数:前部分面积加起来占50%的那条线的横坐标 60+10⨯
40
20
=65 平均数:每个矩形面积╳其中点横坐标再全部加起来(不用再除!!!) 7、标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示. 8、方差:(标准差的平方) 经典练习
1.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a ,中位数为b ,众数为c ,则有 ( D )
A .a >b >c
B .a >c >b
C .c >a >b
D .c >b >a
2.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x =__15___. 3.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分约为
( B )
A .分
B .分
C .分
D .分
变量间的相关关系
1.
函数关系是一种确定性关系,相关关系是一种 不确定 性关系.(正相关、负相关)
2.从散点图上看,如果点从整体上看大致分布在一条直线附近,称两个变量之间具有 线性相关关系 ,这条直线叫 回归直线 . 3. ()y x ,一定在回归方程上!!!
※经
典练习
x
b y a x
n x
y x n y
x n
i
n
i i
i a x b ∧
∧=∧
∧
∧∧
-=--=
+=∑2
2
1
b y 其中程参考公式:线性回归方
1.某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程y ^
=b ^
x +a ^
中的b ^
为,据此模型预报广告费用为6万元时销售额为( B ) 万
万元 万元
万元
解析: 概率
一.随机事件及其概率
1.事件:必然事件、不可能事件、和随机事件
3.概率基本性质:
(1)对任意的一个随机事件概率是__(0,1)__.
(2)必然事件概率是__1____,不可能事件的概率是___0___.
(3)互斥事件是___不能同时发生__.若A 和B 互斥_P (A ∪B )=P (A )+P (B )____(加法公式) 对立事件是_不能同时发生,但必有一个发生_.
若A 和B 事件对立,则__P (A )=1-P (B ) ____.
二.古典概型:
1.特点:①基本事件有__有限___个,②每个基本事件发生的可能性__相等__.
2.概率公式: ※掷两个骰
子,抛两枚硬币是有序的
有序:有先后次序,依次抽,无放回抽,有放回抽 无序:任取,一次性抽取,随机抽
A A m
P n
所包含的基本事件的个数()=基本事件的总数
公式(大题只用于验算写出的基本事件个数对不对,小题可直接用):
n 个任取2个:()2
1-n n n 个任取3个:()()621--n n n
三.几何概型:
1.定义:_每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例 _简称为几何概型。
2.特点:①?基本事件有__无限__个,②?基本事件__等可能___.
3.几何概型概率公式
四.典型练习
1、 某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1) 恰有1名男生与恰有2名男生; 互斥不对立 (2) 至少有1名男生与全是男生; 不互斥不对立 (3) 至少有1名男生与全是女生; 对立
(4) 至少有1名男生与至少有1名女生. 不互斥不对立
2、在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率为( D ) A.
259 B.2516 C.10
3 D.51
3、.甲、乙二人下棋,甲获胜的概率为,甲不输的概率为,则甲、乙两人下不成和棋的概率是 .
4.袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:
P(A)=
构成事件A 的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或
(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3) 3只颜色不全相同的概率. 解:所有基本事件:
(红,红,红),(红,红,黄),(红,黄,黄),(红,黄,红), (黄,黄,黄),(黄,红,红),(黄,红,黄),(黄,黄,红), 共8种
记3只全是红球为事件A ,3只颜色全相同为事件B , 3只颜色不全相同为事件C
满足事件A 满足事件B 种,P(B)= 4
1
事件B 与事件C 对立,P(C)=1- P(B)= 4
5.为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂 (Ⅰ)求从A,B,C 区中分别抽取的工厂个数;
(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。
21
11 解:A,B,C 三区人数比为:
18:27:18=2:3:2
抽取A 区个数:(个)2
2322
7=++⨯
抽取B 区个数:(个)3
2323
7=++⨯ 抽取C 区个数:(个)22322
7=++⨯
6.进位制(阅读必修三课本p40-43)
例1 把二进制数110011(2)化为十进制数.
110 011(2)=1×20+1×21+0×22+0×23+1×24+1×25=51. 例2 把310(8)化为十进制数
310(8)=0×80+1×81+3×82=200.
例3 把194(10)化成八进制数;例4 把48(10)化成二进制数.
∴194(10)化为八进制数为302(8).∴48(10)化为二进制数为110 000(2).程序框图:。