矩阵论1.1节
- 格式:ppt
- 大小:1.09 MB
- 文档页数:36
第一章 线性空间线性空间是我们以前学习过的n 维向量空间的推广和抽象,它不仅在线性代数和矩阵的有关理论中占有重要的地位,而且它的理论和方法已经渗透到自然科学和工程技术的许多领域。
§1.1 线性空间的定义和性质为下面讨论需要,先引入数域的概念。
定义1 设P 是由一些复数组成的集合,如果它包含0与1,且P 中任意两个数的和、差、积、商(除数不为零)仍然属于P ,则称P 为一个数域。
显然,有理数集Q 、实数集R 和复数集C 都是数域,分别称为有理数域、实数域和复数域。
另外,数集},3{)3(Q b a b a Q ∈+=也是一个数域,但整数集不是数域。
我们知道n 维向量空间n R 就是全体n 维向量组成的集合,在其中定义了加法运算和实数与向量的数乘运算,并且这二种运算满足八条规律。
另外,在全体n m ⨯阶实矩阵组成的集合n m R ⨯中,也定义了矩阵的加法运算和实数与矩阵的数乘运算,且这二种运算满足八条规律。
还有很多这样的例子,从这些例子中可见,所考虑的对象虽然完全不同,但它们有一个共同点,即它们都具有两种运算:一种是两个元素之间的加法运算;另一种运算是数与元素之间的数乘运算,且满足八条规律。
我们撇开这些对象的具体含义,加以抽象化,得到线性空间的概念。
定义2 设P 是一个数域,V 是一个非空集合,如果1. V 中元素具有可加性 对任意V ∈βα,,在V 中总存在唯一元素γ与它们对应,γ称为α与β的和,记作βαγ+=,并且对任意V ∈γβα,,满足:(1)交换律 αββα+=+(2)结合律 )()(γβαγβα++=++(3)在V 中存在零元素0,使对任意V ∈α,都有αα=+0;(4)对任意V ∈α,存在V 中的元素β,使得0=+βα(β称为α的负元素,记为-α);2. V 中元素与数域P 中的数具有可乘性 对任意P k ∈和任意V ∈α,在V 中总存在唯一元素δ与之对应,δ称为数k 与α的数量乘法(简称数乘),记为αδk =,并且对任意P l k ∈,,任意V ∈α,满足(5)αα=1;(6)结合律 αα)()(kl l k =;(7)左分配律 αααl k l k +=+)(;(8)右分配律 βαβαk k k +=+)(;则称非空集合V 为数域P 上的一个线性空间。
矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。
即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。
定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。
⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。
可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。
若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。
例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。
例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。
第1章线性空间与线性变换线性空间定义1.1 设V是一个非空集合,F是一个数域。
定义两种运算,加法:任意α,β∈V,α+β∈V;数量乘法:任意k∈F,α∈V,kα∈V,并且满足8运算,则称V为数域F上的线性空间,V中元素成为向量定理1.1 线性空间V的性质:V中的零元素唯一;V中任一元素的负元素唯一定义1.2 设V是线性空间,若存在一组线性无关的向量组α1…αn,使空间中任一向量可由它们线性表示,则称向量组为V的一组基。
基所含的向量个数为V 的维数,记为dimV=n定理1.2 n维线性空间中任意n个线性无关的向量构成的向量组都是空间的基定义1.3 设α1…是线性空间的V n(F)的一组基,对于任意β∈V,有β=(α1…)(x1…),则称数x是β在基α1…下的坐标定理1.3 向量组线性相关≡坐标相关定义1.4 α,β为两组基,若满足β=αC,则称矩阵C是从基α到基β的过渡矩阵定理1.4 已知β=αC,V中向量A在两组基下的坐标分别为X,Y,则有X=CY定义1.5 V为线性空间,W是V的非空子集合。
若W的元素关于V中加法与数乘向量法运算也构成线性空间,则称W是V的一个子空间定理1.5 设W是线性空间V的非空子集合,则W是V的子空间的充分必要条件是α,β∈W,α+β∈W;k∈F,α∈W,kα∈W零空间:N(A)={X|AX=0}列空间:R(A)=L{A1,A2…}定理1.6 交空间:W1∩W2={α|α∈W1且α∈W2}和空间:W1+W2={α|α=α1+α2,α∈W1,α∈W2}定理1.7 设W1和W2是线性空间V的子空间,则有如下维数公式:DimW1+dimW2 = dim(W1+W2) + dim(W1∩W2)定义1.6 设W1和W2是线性空间V的子空间,W = W1 + W2,如果W1∩W2 = {0},则称W是W1和W2的直和子空间。
记为W = W1⊕W2定理1.8 设W1和W2是V的子空间,W= W1 +W2,则成立以下等价条件:W = W1⊕W2;W中零向量表达式是唯一的;维数公式:dimW = dimW1 + dimW2定义1.7 对数域F上的n维线性空间V,定义一个从V中向量到数域F的二元运算,记为(α,β),即(α,β):V→F,如果满足对称性、线性性、正定性,则称(α,β)是V的一个內积,赋予內积的线性空间为內积空间。
矩阵论1、意义随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异:线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容.矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富.3、方法在研究的方法上,矩阵论和线性代数也有很大的不同:线性代数:引入概念直观,着重计算.矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将来正确处理实际问题有很大的作用.第1讲 线性空间内容: 1.线性空间的概念;2.基变换和坐标变换;3.子空间和维数定理;4.线性空间的同构线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象.§1 线性空间的概念1. 群,环,域代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数.代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算.代数系统:指一个集A 满足某些代数运算的系统.1.1群定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群.1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα;2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;3)在V 中有一个元e ,若,V ∈β有 βββ=+=+e e ;e 称为单位元;4)对于,V ∈β有 e =+=+αββα.称α为β的逆元.注:对V 任意元素βα,,都有αββα+=+,则称V 为交换群或阿贝尔群.1.2 环定义1.2 设V 是一个非空集合,在集合V 的元素之间定义了两种代数运算,分别叫做加法、乘法,记为“+”和“*”.即,对V 中给定的一个法则,对于V 中任意元素α,β,在V 中都有惟一的一个元ν和他们对应,称ν为α,β的和和积,记为βαν+=(βαν*=).满足下列三个条件,则称V 为一个环. 1)V 在“+”下是阿贝尔群;2) V 在“*”下是可结合的.即,)()(νβανβα**=**;3)乘法对加法满足左、右分配律,即对于V 中任意元素α,β,ν,有 βνανβαν**)(*+=+,νβνανβα*+*=*+)(.注:对V 任意元素βα,,都有αββα*=*,则称V 为交换环.1.3 域定义 1.3 设V 满足环的条件,且在对“加法”群中去除单位元的集合对于“乘法”满足交换群的条件,则称V 为域.例:有理数集对于通常的数的加法和乘法运算构成域,称之为有理数域.最常见的数域有有理数域Q 、实数域R 、复数域C .实数域和复数域是工程上较常用的两个数域.此外,还有其它很多数域.如{}.,2)2(Q b a b a Q ∈+=,不难验证,)2(Q 对实数四则运算封闭的,所以)2(Q 也是一个数域.而整数集合Z 就不是数域. 数域有一个简单性质,即所有的数域都包含有理数域作为它的一部分.特别,每个数域都包含整数0和1. 2. 线性空间定义 1.4 设V 是一个非空集合,P 是一个数域.在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”:即,给出了一个法则对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.在数域P 和集合V 的元素之间还定义了一种代数运算,称为数量乘法(数乘),记为“∙”:即,对于数域P 中任一数k 和V 中任一元α,在V 中都有惟一的一个元δ和它们对应,称δ为k 和α的数乘,记为αδ∙=k .如果加法和数乘这两种运算在V 中是封闭的,且满足如下八条规则:⑴ 交换律αββα+=+;⑵ 结合律)()(γβαγβα++=++ ,V ∈γ;⑶ V V ∈∃∈∀0,α,有αα=+0,(0称为零元素);⑷ V V ∈∃∈∀βα,,有 0=+βα,(β称为的α负元素,记为α-); ⑸ P V ∈∈∀1,α,有 αα=∙1;⑹ αα∙=∙∙)()(kl l k ,P l k ∈,;⑺ ααα∙+∙=∙+l k l k )(;⑻ βαβα∙+∙=+∙k k k )(,则称集合V 为数域P 上的线性空间.当数域P 为实数域时,V 就称为实线性空间;P 为复数域,V 就称为复线性空间.例 1.按通常向量的加法和数乘运算,由全体实n 维向量组成的集合,在实数域R 上构成一个实线性空间,记为n R ;由全体复n 维向量组成的集合,在复数域C 上构成—个复线性空间,记为n C .例 2.按照矩阵的加法及数和矩阵的乘法,由数域P 上的元素构成的全体n m ⨯矩阵所成的集合,在数域P 上构成一个线性空间,记为n m P ⨯.而其中秩为)0(>r r 的全体矩阵所成的集合rR 则不构成线性空间,为什么?(事实上,零矩阵r R O ∉).例3.按通常意义的函数加法和数乘函数,闭区间[]b a ,上的连续函数的全体所成的集合,构成线性空间[]b a C ,.例4. 设+R ={全体正实数},其“加法”及“数乘”运算定义为xy y x =+, k x x k = 。
矩阵论前言为何要学矩阵论:矩阵论是数学的一个分支,是学习数学和其它学科(如数值分析、最优化理论、概率统计、控制论、信息科学)的基础,也是科学和工程计算的有力工具。
如求解线性方程组的解AX=b在A-1存在的情况下,解为X=A-1b,有两个问题:怎么知道A-1存在不存在;如果存在,怎么求A-1。
在A-1不存在的情况下,如何求误差范数bAX 为最小的最小二乘解。
这也涉及到矩阵范数定义,最小二乘解的求解方法。
再如,已知矩阵A,如何求A100。
或许有人会说。
简单,进行矩阵连乘不就行了。
但是,计算量太大,如何用一个更好的方法来求呢?如何求A e,Asin,A第一章线性空间与线性变换1.1线性空间1.1.1线性空间的概念及定义数域:设F是包含0和1在内的数集,若F对于数的加、减、乘、除都封闭,即F中的任意两个数的和、差、积、商(除数不为零)仍在F中,则称F是一个数域。
由全体实数构成的集合为实数域(R),由全体复数构成的集合为复数域(C)。
不存在所谓的整数域。
我们用F表示数域(实数域或复数域)。
线性空间:设V 是非空集合,F 是数域,在V 中定义了两种代数运算。
加法:就是给定了一个法则“+”,对于V 中的任意两个元素α和β,在V 中都有惟一的元素γ与之对应称为α与β的和,记为βαγ+= 加法运算满足以下4条规则:(1)αββα+=+ (交换律) (2))()(γβαγβα++=++ (结合律)(3)在V 中存在零元素“0”,对V 中的的任一元素,即V ∈α,都有αα=+0;(4)对V 中的每一元素α,都存在元素β,使0=+βα,β称为α的负元素,记为αβ-=。
数乘:就是给定一个法则,对V 中的任一元素α和数域F 中的任一数k ,在V 中都有惟一的元素δ与它们对应称为α与k 的乘积,记为αδk =。
数乘运算满足以下4条规则: (5)αα)()(kl l k = (6)αα=1(7)βαβαk k k +=+)( (8)αααl k l k +=+)(对加法、数乘运算满足(1)~(8)条规则的非空集合V ,称为定义在数域F 上的线性(向量)空间。