第四章三次谐波与四波混频
- 格式:ppt
- 大小:484.50 KB
- 文档页数:34
三次谐波电流主要来自于单相整流电路。
图示的是一个典型的单相整流电路,电路中的电容是平滑电容,大部分整流电路中都包含这个电容,否则直流电压的纹波很大。
这个电容是导致三次谐波电流的主要原因。
熟悉电路的人都知道,平滑电容的电压被充电到交流电的峰值后,就维持在交流电峰值附近。
当交流电的电压低于电容上的电压时,电网上没有电流流入负载。
这时,负载的电流由电容供给,随着输出电流,电容的电压开始降低,在某个时刻,交流电的电压会高于电容上的电压,这时,电网上才会有电流流入电容(给电容充电,使电容上的电压升高)和负载中。
因此,电网仅在接近电压峰值的时刻向负载输入电流,电流的形状为脉冲状。
通过付立叶分析可知,这种脉冲状的波形包含丰富的三次谐波成分。
脉冲状的电流中包含了高次谐波成分,3次谐波电流最大。
传统负荷与现代符合的重要区别是,传统负荷大部分是线性负荷,现代负荷大部分是非线性负荷:1.通信设备、UPS电源2.电脑为代表的信息设备、办公自动化设备3.大型医疗设备4.电视机为代表的家用电器,特别是变频空调、电磁炉等5.节能灯、调光灯等照明设备6.大尺寸的LED屏幕电视机和计算机电流波形调光灯和节能灯电流波形电视机和计算机的电流为很窄的脉冲波,这是很典型的单相整流电路的电流波形,实际上,任何使用开关电源作为直流电源的设备都。
会产生这种电流的波形。
这是三次谐波电流的主要来源。
目前大量使用的大尺寸LED屏幕,采用很多开关电源并联供电,因此LED 屏幕产生的3次谐波电流很大。
节能灯也是目前常见的负载,他的电流也是脉冲状的。
实际上,现代建筑物中,节能灯导致的三次谐波电流已经成为主要的危害。
三次谐波引起跳闸常识告诉我们,电流的持续时间短了,要保持一定的有效值,就必须具有更高的峰值。
这个图中所显示的是一台1500W的设备,按照正弦波电流计算,电流的有效值应该为7A左右,峰值电流为10A左右,但是,这里的峰值达到了60A。
这就会导致通过检测峰值电流工作的保护装置误动作三次谐波引起变压器过热普通变压器消谐波变压器谐波电流在流过变压器时,会造成变压器的损耗增加,从而导致变压器的温度过高。
什么是三次谐波?三次谐波产生原因 在物理学和电类学科中都有三次谐波的概念 f(t)=∑(k=1,n)cos(kwt+ak) 任何一个波函数都可以进行傅里叶分解 如上的形式 当k=1时的分量f(t)=cos(wt+a)成为基波分量 以此类推 当k=3时f(t)=cos(3wt+a3)称为三次谐波。
三次谐波污染主要存在于低压配电网中,以建筑系统较为严重。
其对电网的危害主要有:功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、电网过热等;对配电站会造成电子器件误动作、电容器损坏、附加磁场、中性线过载和电缆着火。
文章主要介绍了消除三次谐波的各种方法及性能比较。
在电力系统中,正常供电频率是50HZ,所谓“三次谐波”,就是在50HZ的电路中,夹杂有150HZ的交流正弦波,这个150HZ的交流正弦波由于是50HZ 的三倍,于是称之为三次谐波。
输电及配电系统规定:在频率恒定情况下,电压和电流均以正弦波波形运行。
然而在非线性负荷接入系统时,产生的附加的谐波电流会引起电流和电压畸变。
产生三次谐波的非线性单相负荷主要有(不考虑暂态及非正常工作状态):(1)荧光灯、节能灯及其镇流器;①市场调查表明,国内市场绝大多数的荧光灯电子镇流器三次谐波电流含量高达80%~90%;②高档的电子镇流器三次谐波电流含量分三种标准:标准:其谐波电流含量<37%;标准:其谐波电流含量<30%;带灯丝预热控制的电子镇流器其谐波电流含量<10%。
市场上的商品实际上达不到标准要求;③节能型电感镇流器标准规定<20%,其中三次谐波电流含量占主要成分。
(2)电弧焊接设备(电弧的非线性类负荷);(3)计算机开关型电源及显示器(大型显示屏幕);(4)彩色电视机及监视器,如证券公司、体育场馆、商业中心和新闻中心的电视墙的显示幕墙。
普通型彩色电视机可达127%,三次谐波电流含量高达90%; (5)晶闸管调压电源(如加热器、调光器、电化学电源等);(6)晶闸管调功电源(如加热器、电化学电源等);(7)整流电源(如电器的工作电源、充电器、直流传动及电化学电源等); (8)开关型稳压电源及;(9)变频器①变频的家用电器,如空调、洗衣机、风机、泵、微波炉;②工业及建筑用的调速电动机;③中频电源。
电机的三次谐波全文共四篇示例,供读者参考第一篇示例:电机是一种将电能转换为机械能的设备,广泛应用于工业生产和日常生活中。
在电机的运行过程中,会产生各种谐波现象,其中三次谐波是影响电机性能和电网稳定性的重要因素之一。
三次谐波是指电压或电流的频率为基波频率的三倍的谐波分量。
在电机中,由于电机线圈的电感作用,电压和电流的波形不再是正弦波,而是含有谐波分量。
当电压和电流中存在较大的三次谐波时,会导致电机运行不稳定、损耗增加、噪音增加等问题。
三次谐波会对电机产生一系列影响。
三次谐波会使电机的工作效率降低。
由于三次谐波会引起磁场的变化,使得电机在工作时出现额外的电磁损耗,从而降低了电机的效率。
三次谐波还会引起电机的噪音增加。
当电机中存在大量三次谐波时,会导致电机内部的振动加剧,产生更多的噪音。
这不仅会对工作环境造成噪音污染,也会影响电机的寿命和稳定性。
三次谐波还会对电网的稳定性产生负面影响。
当电机中存在大量的三次谐波时,这些谐波会通过电网传播到其他设备和系统中,引起电网电压的不稳定,甚至引发电网谐波污染。
这会对电网的正常运行造成干扰,影响其他设备的性能,甚至会导致设备的故障和损坏。
为了减少电机中的三次谐波,可以采取一些措施。
首先是优化电机设计和选用合适的材料。
在电机设计阶段,可以采用合理的绕组结构和材料,减少电机中的电感和电阻对谐波的影响,从而减少三次谐波的产生。
其次是通过滤波器和变流器来控制三次谐波。
在电机运行时,可以通过安装滤波器和变流器来消除三次谐波,减少对电机的影响。
三次谐波是影响电机性能和电网稳定性的重要因素之一。
了解三次谐波的产生机理和影响,采取有效措施减少三次谐波的产生,对于保障电机的正常运行和电网的稳定性具有重要意义。
希望通过对三次谐波问题的深入研究和解决,能够提高电机的运行效率和电网的稳定性,推动电力行业的发展。
第二篇示例:让我们来了解一下什么是三次谐波。
在电机运行过程中,电流和电压中不仅含有基波(即电源频率的谐波),还可能存在着一些非整数倍于电源频率的谐波,这些非整数倍谐波便是电机的谐波成分。
一实验目的1.了解偶氮染料聚合物的非线性光学特性2.掌握四波混频的基本知识和实验方法3.掌握泵浦,探测光和信号光三者的关系4.了解四波混频的应用范围二实验装置半导体激光器一台,反射镜若干,CCD一个,微机一台及其他光学元件三实验原理1.基础知识(1)偶氮染料的分子结构偶氮染料是一类具有光异构特征的有机光学材料,其分子结构是在两个芳环之间以N=N双键连接为特征。
它们的基本结构特征,即骨架决定了它们的主要吸收峰的范围(最大吸收峰在可见光区内)。
偶氮染料还具有一定共轭性,一般来说,共轭程度越大,分子的基态与第一激发态之间的能级差越小,其吸收峰发生红移。
偶氮染料的第二结构特征(苯环上的取代基)对吸收峰的位置具有一定影响。
取代基的电子效应(诱导效应和共轭效应)影响分子中电子云密度分布,使分子的基态与激发态之间的能级差发生变化,其吸收峰发生移动。
(a)光异构过程(b) 偶氮分子的能级结构图1(2)偶氮染料的光异构特性偶氮染料是一种偏振敏感的有机染料,它具有反式(trans)和顺式(cis)两种分子结构,如图1(a)所示(其中R1和R2表示不同的取代基,本实验所用甲基橙的取代基R1为NaO3S , R2 为N(CH3)2 )。
它们的分子主轴均为氮氮双键。
两者对应能态的能量是反式结构能量低,结构稳定;顺式结构能量高,结构不稳定,所以一般情况下偶氮分子多以稳定的反式结构存在。
图 1 (b) 是偶氮分子的能级结构图,由图可见,当用激光激发时,反式偶氮分子的基态粒子So吸收一个光子后,跃迁到第一激发态的某一振动能级Sv上,并迅速驰豫到第一激发态的最低能级S1上。
处于S1能级上的粒子可以进一步吸收一个光子并跃迁到第二重激发态S2上,也可经过系间跃迁无辐射驰豫到三重激发态T1上,这种跃迁由S1与T1间能级差决定。
差距越小,跃迁越容易。
T1态的粒子可以吸收光子跃迁到T2态上,也可通过无辐射跃迁回到So态上。
同时当激光强度达到一定值后,S2、T2等能级上的粒子还可以进一步吸收光子跃迁到更高一级激发态上去。
三次谐波与四波混频(2013年12月31)摘要:讨论了各向同性介质中的三阶非线性过程,以及四波混频和它的特殊情况。
关键词:三阶非线性过程,四波混频。
一、 各向同性介质中的三阶非线性过程只有不具有中心对称性的介质或者各向异性介质才具有二阶非线性,但是所有介质都存在着三阶非线性。
一般(3)χ比(2)χ小得多,故三阶效应要比二阶效应弱得多。
在三阶非线性现象中,也存在着光与介质不发生能量交换,而参与作用的光波之间发生能量交换的非线性效应,这被称为波动非线性效应。
设输入光场()E t 是由沿z 方向传播的三个不同频率的单色光场组成312123().i t i t i t E t E e E e E e c c ωωω---=+++ (1.1) 相应的各向同性介质中的三阶非线性极化强度为(3)(3)30()()P t E tεχ= (1.2) 将式(1.1)代入式(1.2),可见(3)()P t 是具有不同频率的(包括零频)的各项极化强度之和,可以写成(3)()()n i t n nP t P e ωω-=∑ (1.3)式中n 取±,负号表示复数共轭量,包括极化强度的各种频率成分:11211231231200,0,3,,,2ωωωωωωωωωωωω+++-+等。
这些频率项分别表示三次谐波、四波混频、相位共轭、光克尔效应、自聚焦、饱和吸收、双光子吸收、受激散射等三阶非线性光学效应。
三倍频效应是频率为ω的光场入射介质产生频率为3ω光场的过程,其极化强度为(3)(3)30(3)(3;,,)()P E ωεχωωωωω= (1.4) 这里D=1. 很少有晶体能实现三倍频的相位匹配,而且输入激光的强度往往受到光损伤的限制。
气体激光损伤极限强度比固体要高几个数量级,研究表明碱金属蒸汽在可见光区极化率(3)χ有很强的共振增强,因此具有较强的三倍频效应。
以功率比表示的三倍频的转换效率为222(3)223243039()sin ()2P P L kL c P c n n S ωωωωωωηχε∆== (1.5) 定义相干长度c c /,L=L kL /2/2c L k ππ=∆∆=当时,,三倍频效率很快下降;当0k ∆=,相位匹配,有最大的转换效率。