新版热力学第二定律3
- 格式:ppt
- 大小:2.09 MB
- 文档页数:33
第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。
2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。
3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。
4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。
5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ΔΔΔ和G Δ的计算。
6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的,和r m H Δr m S Δr m G Δ,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。
7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d 的表示式计算温度和压力对Gibbs 自由能的影响。
G 二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的。
自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。
但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。
例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。
不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。
又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。
自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。
例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。
第三章热力学第二定律第三章 热力学第二定律(一)主要公式及其适用条件1、热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中:Q 1及Q 2分别为工质在循环过程中从高温热源T 1所吸收的热量和向低温热源T 2所放出的热量,W 为在循环过程中热机对环境所作的功。
此式适用于在两个不同温度的热源之间所进行的一切可逆循环。
2、卡诺定理的重要结论⎩⎨⎧<=+不可逆循环可逆循环,0,0//2211T Q T Q不论是何种工作物质以及在循环过程中发生何种变化,在指定的高、低温热源之间,一切要逆循环的热温商之和必等于零,一切不可逆循环的热温商之和必小于零。
3、熵的定义式TQ dS /d r def = 式中:r d Q 为可逆热,T 为可逆传热r d Q 时系统的温度。
此式适用于一切可逆过程熵变的计算。
4、克劳修斯不等式⎰⎩⎨⎧≥∆21)/d (可逆过程不可逆过程T Q S上式表明,可逆过程热温商的总和等于熵变,而不可逆过程热温商的总和必小于过程的熵变。
5、熵判据∆S (隔) = ∆S (系统) + ∆S (环境)⎩⎨⎧=>系统处于平衡态可逆过程能自动进行不可逆,,0,,0 此式适用于隔离系统。
只有隔离系统的总熵变才可人微言轻过程自动进行与平衡的判据。
在隔离系统一切可能自动进行的过程必然是向着熵增大的方向进行,绝不可能发生∆S (隔)<0的过程,这又被称为熵增原理。
6、熵变计算的主要公式⎰⎰⎰-=+==∆212121r d d d d d T p V H T V p U T Q S对于封闭系统,一切可逆过程的熵变计算式,皆可由上式导出。
(1)∆S = nC V ,m ln(T 2/T 1) + nR ln(V 2/V 1)= nC p,m ln(T 2/T 1) + nR ln(p 2/p 1)= nC V ,m ln(p 2/p 1) + nC p,m ln(V 2/V 1)上式适用于封闭系统、理想气体、C V ,m =常数、只有pVT 变化的一切过程。
热力学第二第三定律
热力学第二和第三定律,熵的增加和热力学不可能性原理。
热力学第二定律和第三定律是热力学领域中两个重要的定律,它们对能量转化和热力学过程具有深远的影响。
热力学第二定律涉及到熵的增加,而热力学第三定律则涉及到绝对零度的概念。
这两个定律在热力学和能量转化的理论中扮演着至关重要的角色。
热力学第二定律指出,热力学系统的熵(即系统的无序程度)在孤立系统内不会减少,只会增加或保持不变。
这意味着任何自发的热力学过程都会导致系统总熵的增加。
熵的增加是自然界中不可逆过程的特征,也是热力学第二定律的核心内容。
这一定律的重要性在于,它限制了能量转化的效率,指出了自然界中某些过程的方向性和不可逆性。
热力学第三定律则涉及到绝对零度的概念。
它表明在绝对零度(-273.15摄氏度)时,系统的熵将趋于零。
这意味着在绝对零度下,系统的无序程度达到最小值,即系统处于最有序的状态。
热力学第三定律对研究低温物理和固体物理有着重要的意义,也为研究热力学系统的基态性质提供了理论基础。
热力学第二定律和第三定律的结合,揭示了能量转化和热力学过程的一些基本规律和限制。
它们不仅在理论物理学和工程领域中有着重要的应用,也对我们理解自然界中能量转化和热力学过程的本质提供了深刻的启示。
因此,热力学第二定律和第三定律的研究和应用具有重要的理论和实践意义。
物理化学The Second Law of Thermodynamics 版权所有:武汉科技大学化学工程与技术学院Copyright © 2015 WUST. All rights reserved.•掌握热机效率的表达、卡诺循环及其重要结论;•掌握热力学第二定律以及由第二定律导出卡诺定理的方法,卡诺定理的推论;•掌握克劳修斯等式和状态函数-熵,克劳修斯不等式和熵增原理,熵判据;•掌握系统熵变(简单pVT变化、相变过程、化学变化)及环境熵变的计算;•掌握热力学第三定律的普朗克表述及熵的物理意义,理解规定摩尔熵、标准摩尔熵、标准摩尔反应熵及能斯特热定理。
•掌握亥姆霍兹自由能和吉布斯自由能定义、亥姆霍兹自由能判据、吉布斯自由能判据,理解亥姆霍兹自由能变和吉布斯自由能变的物理意义及计算,理解可逆与平衡、不可逆与自发的关系;•理解热力学基本方程和热力学关系式(麦克斯韦关系、对应系数关系,其它重要关系);•掌握热力学第二定律应用实例——克拉佩龙方程、克劳修斯-克拉佩龙方程。
本章主要内容§3.1 卡诺循环§3.2 热力学第二定律§3.3 熵增原理§3.4 单纯pVT变化熵变的计算§3.5 相变过程熵变的计算§3.6 热力学第三定律和化学变化过程熵变计算§3.7 亥姆霍兹函数和吉布斯函数§3.8 热力学基本方程§3.9 克拉佩龙方程§3.10 吉布斯-亥姆霍兹方程和麦克斯韦关系式§3.1 热力学第二定律•自发过程举例•自发过程逆向进行必须消耗功•自发过程的共同特征•热力学第二定律出现问题1.符号:宏观量与微观量2.单位:3.公式4.解题过程:d d δ δU H W Q U H W Q ∆∆d d W Q W Q U H∆∆不带单位计算;单位混用;简写Rδd amb W p V =- () =W pV W pV W pV H U W==-=∆∆∆-缺少必要说明、过程错结果正确amb d W p V=-,m 21amb 21()()V nC T T p V V -=--222p V nRT =由于绝热Q = 0,故∆U =W)1(22)1(11γγγγ--=p T p T W = ∆U = n C V , m (T 2-T 1)2211d d V V amb V V nRT W p V V V=-=-⎰⎰W = -p amb ∆V(1)(2)(3)(4)1. 自发过程举例自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
4.热力学第二定律 核心素养学习目标 物理观念 知道传热、扩散现象、机械能与内能的转化具有方向性,了解能量耗散和品质降低的内容,能解释相关现象。
科学思维 理解热力学第二定律的两种表述,学会用热力学第二定律解释自然界中的能量转化、转移及方向性问题,提高分析推理能力。
科学探究 通过对热机效率的探讨,揭示热机效率不能达到100%的实质,学会与他人交流合作,提高探索科学的能力。
科学态度 与责任 学会科学家探索问题的方法,实事求是的科学态度,培养学习科学的兴趣。
知识点 1 热力学第二定律1.热力学第二定律的克劳修斯表述(1)内容:热量不能自发地从__低温__物体传到__高温__物体。
即传热的过程具有__方向性__。
(2)传热的方向性①热量可以自发地由__高温__物体传给__低温__物体。
②热量不能自发地由__低温__物体传给__高温__物体。
③一切与热现象有关的宏观自然过程都是__不可逆的__。
说明:在表述中强调“自发”,就是不需要任何第三者介入,就能发生。
2.热力学第二定律的另一种表述(1)热机①热机工作的两个阶段:第一个阶段是燃烧燃料,把燃料中的__化学能__变成工作物质的__内能__。
第二个阶段是工作物质对外__做功__,把自己的内能变成__机械能__。
②热机的效率:热机输出的__机械功W __与燃料产生的__热量Q __的比值。
用公式表示:η=__W Q__。
(2)开尔文表达不可能从单一热库吸收热量,使之__完全变成功__,而不产生其他影响。
(该表述阐述了机械能与内能转化的方向性)注意:热力学第二定律的克劳修斯和开尔文表述是等价的。
知识点 2 能源是有限的1.能量耗散:有序度较高(集中度较高)的能量转化为__内能__,流散到环境中无法重新收集起来加以利用的现象。
2.各种形式的能量向内能的转化,是无序程度__较小__的状态向无序程度__较大__的状态的转化,是能够__自动__发生、全额发生的。