高中求函数解析式方法
- 格式:doc
- 大小:10.46 KB
- 文档页数:1
高中函数解析式的七种求法函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1设是一次函数,且,求解:设,则二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。
但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。
例2已知,求的解析式解:,三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3已知,求解:令,则,四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点则,解得:,点在上把代入得:整理得五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5设求解①显然将换成,得:②解①②联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解为偶函数,为奇函数,又①,用替换得:即②解①②联立的方程组,得,六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例7已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令得函数解析式为:七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。
例8设是定义在上的函数,满足,对任意的自然数都有,求解,不妨令,得:,又①分别令①式中的得:将上述各式相加得:,。
赋值法求函数解析式赋值法是一种很常用的方法,对于涉及任意量词的题目,要特别注意是否可以通过赋特殊的值,求出函数的解析式.要注意如何选择所赋的值,从而成功得到解析式。
先看例题:例:已知函数f(x)满足f(0)=1,对任意实数x,y有()()()-=--+求函数f(x)的解析式。
f x y f x y x y21解:式子中有两个变量,尽量通过赋值让y消失,从而找到解析式方法一:()()()==--+令得x y f f x x x x021,()21=++f x x x方法二:()()()=-=--+令得x f y f y y001,()()2f y y y y y-=--+=-+-+11()1再把-y看作x,得()21=++f x x x提示:函数的对应法则与使用什么变量无关整理:赋值法求函数解析式若函数的性质是用条件恒等式给出时,可用赋特殊值法求其解析式。
抓住任意性,对自变量合理的取特殊值,分析已知与结论之间的差异进行赋值,从而易于求出函数的表达式,这是求抽象函数解析式的常用方法.再看一个题目,增加印象练:已知函数f (x )对任意实数x ,y 有()()222323y x xy f x f x y y y ++-++=,求函数f (x )的解析式 解:如果令y =1,那么f (xy )就会变为f (x ),所以 1y =令得()()2212133f x f x x x =++-++整理为()22152,f x x =+++()()22152f x f x x =+++要求解析式还差f (1)的值,通过分析题目条件,再一次赋值:()()()11218,18x f f f ==+=-令得所以函数解析式为()2514f x x x =+-变式:已知函数f (x )对任意实数x ,y 有()()222332y x x f x y f y y x y +++++=-,求函数f (x )的解析式 解:()()20203y f x f x x ==++令得()()0020,x f f ==令得()00f =()23,=+f x x x总结:1.在遇到函数的性质是由条件恒等式给出时,可用赋特殊值法求其解析式。
求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知2211()x x x f x x +++=,试求()f x 。
解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。
故得:2()1,1f x x x x =-+≠。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。
(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。
【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。
高中数学求函数解析式解题方法大全及配套练习一、定义法:根据函数的定义求解析式用定义法。
【例1】【例2】【例3】【例4】二、待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
【例1】【解析】【例2】已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)(x+1)= ax2+(2a+b)x+a+b②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.【例3】三、换元(或代换)法:道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
如:已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。
实施换元后,应注意新变量的取值围,即为函数的定义域.【例1】【解析】【例2】【例3】【例4】(1)在(1(2)1(3)【例5】(1(2)由【例6】四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.【例1】解则解得,上,(五)配凑法【例1】:2x当然,上例也可直接使用换元法即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。
【例2】:分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。
实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的函数来表示出来,在通过整体换元。
和换元法一样,最后结果要注明定义域。
高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。
高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
函数的定义域与值域的常用方法〔一〕求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f〔x〕,不能把它写成f〔x,y〕=0;2、求函数解析式一般要写出定义域,但假设定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:〔1〕直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
〔2〕待定系数法:假设明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;〔3〕换元法:假设给出了复合函数f[g〔x〕]的表达式,求f〔x〕的表达式时可以令t=g〔x〕,以换元法解之;〔4〕构造方程组法:假设给出f〔x〕和f〔-x〕,或f〔x〕和f〔1/x〕的一个方程,则可以x代换-x〔或1/x〕,构造出另一个方程,解此方程组,消去f〔-x〕〔或f〔1/x〕〕即可求出f〔x〕的表达式;〔5〕根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
〔二〕求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g〔x〕]的定义域的求解,应先由y=f〔u〕求出u的范围,即g〔x〕的范围,再从中解出x的范围I1;再由g〔x〕求出y=g〔x〕的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,假设参数在不同的范围内定义域不一样,则在表达结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在表达结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;〔三〕求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,假设记该函数的值域为C,则C是B的子集;假设C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;表达结论时要就参数的不同范围分别进行表达;5、假设对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结;〔四〕求函数的最值1、设函数y=f〔x〕定义域为A,则当x∈A时总有f〔x〕≤f〔x o〕=M,则称当x=x o时f〔x〕取最大值M;当x∈A时总有f〔x〕≥f〔x1〕=N,则称当x=x1时f〔x〕取最小值N;2、求函数的最值问题可以化归为求函数的值域问题;3、闭区间的连续函数必有最值。
求函数解析式的几种方法及题型【最新版3篇】篇1 目录一、引言二、求函数解析式的常用方法1.待定系数法2.交点式3.顶点式4.换元法5.归纳法三、求函数解析式的题型及应用1.已知三个点求解析式2.已知顶点求解析式3.已知交点求解析式4.抽象复杂函数问题四、结论篇1正文一、引言求函数解析式是高中数学中的常见问题,也是高考的常规题型之一。
解决这类问题需要掌握一定的方法和技巧。
本文将介绍几种常用的求函数解析式的方法及题型,帮助同学们更好地理解和应用这些方法。
二、求函数解析式的常用方法1.待定系数法待定系数法是一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。
2.交点式交点式适用于已知抛物线与 x 轴的两个交点的情况。
通过已知的交点,我们可以得到两个方程,解这两个方程可以求得抛物线的解析式。
3.顶点式顶点式适用于已知抛物线的顶点的情况。
通过已知的顶点,我们可以得到一个方程,这个方程包含了抛物线的顶点坐标和抛物线的解析式中的待定系数。
解这个方程可以求得抛物线的解析式。
4.换元法换元法是一种通用的求函数解析式的方法,适用于各种复杂的函数问题。
通过换元,我们可以将复杂的函数问题转化为简单的函数问题,从而求得函数的解析式。
5.归纳法归纳法适用于具有一定规律的函数问题。
通过观察函数的规律,我们可以猜测函数的解析式,然后通过数学归纳法证明我们的猜测是正确的。
三、求函数解析式的题型及应用1.已知三个点求解析式已知函数上的三个点,我们可以通过待定系数法求解函数的解析式。
设定函数的形式为 y=ax^2+bx+c,然后将三个点的坐标代入方程,得到三个方程组成的线性方程组,解这个方程组可以求得函数的解析式。
2.已知顶点求解析式已知抛物线的顶点,我们可以通过顶点式求解抛物线的解析式。
高中数学:求函数解析式的10种常见方法一、配凑法:给定$f(x+1)=x-3x+2$,求$f(x)$。
练1:设函数$f(x)=2x+3$,$g(x+2)=f(x)$,求$g(x)$。
练2:设$f(f(x))=x^2+2$,求$f(x)$。
练3:设$f(x+2)+f(x)=x^3+x$,求$f(x)$。
二、待定系数法:例1:如果反比例函数的图像经过点$(1,-2)$,那么这个反比例函数的解析式为$\frac{-2}{x-1}$,求$f(x)$。
练1:在反比例函数$y=\frac{k}{x}$的图像上有一点P,它的横坐标$m$与纵坐标$n$是方程$t^2-4t-2=0$的两个根,求$k$。
练2:已知二次函数$f(x)$满足$f(x+1)=f(x)+2x+8$,求$f(x)$的解析式。
练3:已知$f(x-2)=2x-9x+13$,求$f(x)$。
三、换元(或代换)法:例1:已知函数$f(\frac{1-x}{1+x})=\frac{1+x}{1-x}$,求:(1)$f(2)$的值;(2)$f(x)$的表达式。
练1:已知$f(x+1)=x+2x$,求$f(x)$及$f(x^2)$;练2:已知$f(x)=\frac{1}{2}x+\frac{1}{x}$,求$f(x+1)$.四、消去法:例1:设函数$f(x)$满足$f(x)+2f(\frac{1}{x})=x$,求$f(x)$.练1:已知$f(x)-2f(-x)=3x+2$,求$f(x)$.练2:已知定义在R上的函数$f(x)$满足$f(-x)+2f(x)=x+1$,求$f(x)$.练3:已知$f(x)+3f(-x)=2x+1$,求$f(x)$.练4:设函数$f(x)$满足$af(x)+bf(\frac{1}{x})=cx$(其中$a,b,c$均不为$0$,且$a\neq\pm b$),求$f(x)$.五、反函数法:例1:已知$f(a^2-x^2)=x$,求$f(x)$。
高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。
下面分别介绍这六种方法。
一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。
例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。
设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。
二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。
首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。
三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。
例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。
设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。
四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。
把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。
高中数学:函数解析式的十一种方法一、定义法六、特殊值法二、待定系数法八、累加法三、换元(或代换)法九、归纳法四、配凑法十、递推法五、函数方程组法十一、微积分法七、利用给定的特性求解析式.一、定义法:2 x【例1】设f (x 1) x 3 2,求f ( x) .2 x x 2 x 2 xf ( x 1) x 3 2 [( 1)1] 3[( 1) 1] 2 = (x 1) 5( 1) 6f (x) 2 xx 56【例2】设x 1f [ f ( x)] ,求f (x) .x 2【解析】设 f [ f ( x)] xx12x 11f(x)1x 1 1 111x1x【例3】设1 2 1 1 13f (x ) x , g(x ) x ,求f [ g( x)] .2 3x x x x1 1 12 f x x2 2【解析】) 2 ( ) 2f (x) x (x2x x x1 1 1 13 3 3又g x x xg( x) x (x ) 3(x ) ( ) 33x x x x3 x x x x2 6 4 2故f [ g( x)] (x 3 ) 2 6 9 2【例4】设f (cos x) cos17 x, 求f (sin x) .【解析】)f (sin x) f [cos( x)] cos17 ( x2 2cos(8 17 x) cos( 17 x) sin17x.2 2二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】设f (x) 是一次函数,且 f [ f ( x)] 4x3,求 f (x)【解析】设f (x) ax b (a 0),则f [ f ( x)] af (x) b a( ax b) b a 2 x ab ba ab 2 4b 3ab2 a或1 b23f (x) 2x 1或 f (x) 2x 32 x【例2】已知f (x 2) 2x 9 13,求f (x) .2 bx c a 【解析】显然, f (x) 是一个一元二次函数。
求解函数解析式基本方法(附例题)一、求解函数解析式 1、换元法汇总,切记定义域综上所述:新元代换旧元可化作:则取值范围换元,立刻确定新元的则令变形由解:由题意可知:的解析式求已知11,1)(f t 1f(t)①1t 1,cos t 1sin cos ①cos 1)(cos )(f ,sin )(cos f 222222≤≤--=-=≤≤-==+-==x x x x x x x x f x x x 练习一:)的解析式(答案见文末求已知)(,2)1(2x f x x x f -=+2、凑配法汇总,切记定义域求解定义域又运用完全平方公式解:的解析式求已知2,2)(21,02)1()1()(,0,1)1(2222≥-=∴≥+∴>-+=+>+=+x x x f xx x xx x x f x f x x x x x f练习二:解析式求已知)(,45)2(2x f x x x f ++=+换元法和凑配法在实际运用过程中,以计算简单、准确为原则,根据题目恰当选择。
3、待定系数法5)1(5)(505)10()0(0,05)1()(5,15,1)()()(5,1)(2222+--=-==+-=∴+-===+-=x x f a a f x a x f h k hk x a x f x f x f 综上所述,解得:)点,代入计算图像过(图像过原点又故值根据物理意义,直接赋)可得,由顶点为(数顶点式根据题意,选择二次函解:由题意可设:的解析式),且经过原点,求(是二次函数,其顶点为已知练习三:的解析式(求且是二次函数,已知),3)0(,12)()1()(x f f x x f x f x f =+=-+4、构造方程组法:),(联立方程组,求解:)式联立方程组,解得)、(将(合适替换元得:替换用注意定义域,选取),(,且解:的解析式(求满足)上的函数,定义在(∞+∈--==-∴∞+∈=-=-∞+0,323)(21)2(1)(2)1(,10)1()1(2)(),)1(2)()(0x xx x f x x f x f x xx x xf x f x f x xf x f x f 练习四:的解析式求满足)上的函数定义在()(,1)1(2)()(,0x f x xf x f x f -⋅=+∞求解函数解析式,一般出填空题,或者大题的第一小问。
求函数解析式的几种常用方法一、配凑法:例1:设23)1(2+-=+x x x f ,求)(x f .练1:设函数()23,(2)()f x x g x f x =++=,求()g x 。
练2:设21)]([++=x x x f f ,求)(x f .练3:设33221)1(,1)1(xx x x g x x x x f +=++=+,求)]([x g f .二、待定系数法:例1:如果反比例函数的图象经过点(1,2)-,那么这个反比例函数的解析式为 。
练1:在反比例函数k y x=的图象上有一点P ,它的横坐标m 与纵坐标n 是方程2420t t --=的两个根,求反比例解析式。
练2:已知二次函数()x f 满足()00=f ,()()821++=+x x f x f ,求()x f 的解析式。
练3:已知1392)2(2+-=-x x x f ,求)(x f .三、换元(或代换)法: 例1:已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式练1:已知1)f x =+()f x 及2()f x ;练2:已知22111(),x x f x x x++=+求()f x .四、消去法:例1:设函数()f x 满足()x x f x f =⎪⎭⎫ ⎝⎛+12,()0≠x ,求()f x .练1:已知1()2()32f x f x x-=+,求()f x .练2:已知定义在R 上的函数()f x 满足()()12+=+-x x f x f ,()0≠x ,求()f x .练3:已知()3()21f x f x x +-=+,求()f x .练4:设函数()f x 满足1()()af x bf cx x+=(其中,,a b c 均不为0,且a b ≠±),求()f x .五、反函数法:例1:已知2)(21+=-x af x ,求)(x f .练1:已知函数1ln +=x y ,()0>x ,求它的反函数六:函数性质法例1:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.练1:已知()f x 是定义在R 上的奇函数,当0<x 时,()13-=x x f ,求()f x 的解析式.例1:设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均xy y x f y f x f -+=+)()()(,求)(x f .练1:设定义在R 上的函数)(x f ,且满足()10=f ,并且对于任意实数y x ,均有()()()12+--=-y x y x f y x f ,求)(x f .练2:设定义在R 上的函数)(x f ,对于任意实数y x ,均有()()()()1232++-+=-y x x y f x f y x f ,求)(x f .练3:已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.例1:已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f .综合运用 例1:(1)已知3311()f x x x x+=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。
高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。
例1、 已知,试求。
解:设,则,代入条件式可得:,t ≠1。
故得:。
说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。
例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。
例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用得式子表示就容易解决了。
(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,得两个程就行了。
【解题过程】⑴设,由得, 由,得恒等式,得。
故所求函数得解析式为。
(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。
(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。
(4)因为 ① 用代替得 ② 解①②式得。
【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。
若函数程中同时出现,,则一般将式中得用代替,构造另一程。
高中求函数解析式方法
高中求函数解析式的方法有以下几种:
1. 列方程法:根据已知条件设置等式,然后解方程得到函数解析式。
这种方法适用于一些简单的函数问题,如线性函数、二次函数等。
2. 求导法:如果已知函数的导函数和一个点上的函数值,可以通过求导得到函数解析式。
这种方法适用于一些需要通过求导来确定函数解析式的问题,如最小值、最大值等。
3. 已知特殊点法:如果已知函数经过某个特殊点,可以通过该特殊点的信息来确定函数解析式。
例如,如果已知函数经过原点,则可以确定函数的截距。
4. 已知导函数法:如果已知函数的导函数,可以通过积分来确定函数解析式。
这种方法适用于一些需要通过积分来确定函数解析式的问题,如定积分、不定积分等。
总之,求函数解析式的方法取决于已知条件和问题的性质,需要根据具体情况选择合适的方法。