北师大版八年级下册数学期末测试题[含答案]
- 格式:doc
- 大小:851.50 KB
- 文档页数:10
2019-2020学年度第二学期期末测试八年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题(本部分共12小题,每小题3分,满分36分,每小题给出四个选项,其中只有一项是正确的)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.不等式215x -≤的解集在数轴上表示为( ) A.B.C.D.3.下列从左到右的变形,是分解因式的是( ) A. 2242(2)a a a a +=+ B. 22(1)y x xy x x-=-C. 2(3)(3)9a a a +-=-D. 25(2)(3)1x x x x +-=-++4.一个多边形的内角和与外角和相等,则这个多边形的边数为( ) A. 8 B. 6C. 5D. 45.若分式2ab a b +中,a b 都扩大到原来的3倍,则分式2aba b+的值是( ) A. 扩大到原来3倍 B. 缩小3倍 C. 是原来的13D. 不变6.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且BD =2CD ,BC =6cm ,则点D 到AB 距离为( )A. 4cmB. 3cmC. 2cmD. 1cm7.如图,将一个含有45o 角的直角三角板的直角顶点放在一张宽为2cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30o 角,则三角板最长的长是( )A. 2cmB. 4cmC. 22cm D. 42cm8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A. 1个B. 2个C. 3个D. 4个9.如图,在△ABC 中,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若∠BAD =45°,则∠B 的度数为( )A. 75°B. 65°C. 55°D. 45°10.下列语句:①每一个外角都等于60o 的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为( ) A. 1B. 2C. 3D. 411.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )A 13310=+B. 25916=+C. 491831=+D. 642836=+12.如图,等边△ABC 边长为6,点O 是三边垂直平分线的交点,∠FOG =120°,∠FOG 的两边OF ,OG 分别交AB ,BC 与点D ,E ,∠FOG 绕点O 顺时针旋转时,下列四个结论正确的是( )①OD =OE ;②ODE BDE S S ∆∆=;③2738ODBES =;④△BDE 的周长最小值为9, A. 1个B. 2个C. 3个D. 4个二、填空题(本题共4小题,每小题3分,满分12分)13.分解因式:255x -=__________.14.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.15.若分式方程2322x mx x+=--有增根,则m 等于__________. 16.在△ABC 中,AB =10,CA =8,BC =6,∠BAC 的平分线与∠BCA 的平分线交于点I ,且DI ∥BC 交AB 于点D ,则DI 的长为____.三、解答题:17.解不等式组:22112x x x x ≤+⎧⎪⎨-<+⎪⎩,并把不等式组的解集在数轴上表示出来.18.解分式方程:2303(3)x x x x --=++ 19.先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥正整数解.20.如图,平行四边形ABCD 的边OA 在x 轴上,将平行四边形沿对角线AC 对折,AO 的对应线段为AD ,且点D ,C ,O 在同一条直线上,AD 与BC 交于点E .(1)求证:△ABC ≌△CDA .(2)若直线AB 的函数表达式为6y x =-,求三角线ACE 的面积.21.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料. (1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?22.如图,在平面直角坐标系中,网格图由边长为1的小正方形所构成,Rt △ABC 的顶点分别是A (-1,3),B (-3,-1),C (-3,3).(1)请在图1中作出△ABC 关于点(-1,0)成中心对称△'''A B C ,并分别写出A ,C 对应点的坐标'A ;'C(2)设线段AB 所在直线的函数表达式为y kx b =+,试写出不等式2kx b +>的解集是 ; (3)点M 和点N 分别是直线AB 和y 轴上的动点,若以'A ,'C ,M ,N 为顶点的四边形是平行四边形,求满足条件的M点坐标.23.如图1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C对应点分别是D、E.AC与BD相交于点O.(1)将射线BD绕B点顺时针旋转,且与DC,DE分别相交于F,G,CH∥BG交DE于H,当DF=CF时,求DG的长;(2)如图2,将直线BD绕点O逆时针旋转,与线段AD,BC分别相交于点Q,P.设OQ=x,四边形ABPQ 的周长为y,求y与x之间的函数关系式,并求y的最小值.(3)在(2)中PQ的旋转过程中,△AOQ是否构成等腰三角形?若能构成等腰三角形,求出此时PQ的长?若不能,请说明理由.答案与解析一、选择题1.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.x-≤的解集在数轴上表示为()2.不等式215A. B. C. D.【答案】A【解析】【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解不等式得:x⩽3,所以在数轴上表示为故选A.【点睛】本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.3.下列从左到右的变形,是分解因式的是( ) A. 2242(2)a a a a +=+ B. 22(1)y x xy x x-=-C. 2(3)(3)9a a a +-=-D. 25(2)(3)1x x x x +-=-++【答案】A 【解析】 【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解. 【详解】2242(2)a a a a +=+是把一个多项式化为几个整式的积的形式,所以A 正确;22(1)yx xy x x-=-中含有分式,所以B 错误;2(3)(3)9a a a +-=-不是把一个多项式化为几个整式的积的形式,所以C 错误; 25(2)(3)1x x x x +-=-++不是把一个多项式化为几个整式的积的形式,所以D 错误.【点睛】本题考查分解因式的定义,解题的关键是掌握分解因式的定义.4.一个多边形的内角和与外角和相等,则这个多边形的边数为( )A. 8B. 6C. 5D. 4【答案】D 【解析】 【分析】利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n ,根据题意 (n-2)•180°=360°, 解得n=4.故选:D .【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.若分式2ab a b +中,a b 都扩大到原来的3倍,则分式2aba b+的值是( ) A. 扩大到原来3倍 B. 缩小3倍 C. 是原来的13D. 不变【答案】A 【解析】 【分析】把分式中的分子,分母中的 ,a b 都同时变成原来的3倍,就是用 3a, 3b 分别代替式子中的a , b,看得到的式子与原式子的关系. 【详解】将分式2ab a b+中,a b 都扩大到原来的3倍,得到1833ab a b +=6ab a b +,则6ab a b +是2aba b +的3倍.故答案为A.【点睛】本题考查分式的性质,解题的关键是掌握分式的性质.6.如图,在三角形ABC 中,90C =o ∠,AD 平分BAC ∠交BC 于点D ,且2BD CD =,6BC cm =,则点D 到AB的距离为( )A. 4cmB. 3cmC. 2cmD. 1cm【答案】C 【解析】 【分析】如图,在△ABC 中,∠C=90∘,AD 平分∠BAC 交BC 于点D ,且BD=2CD ,BC=9cm ,则点D 到AB 的距离.【详解】如图,过点D作DE⊥AB于E,∵BD:DC=2:1,BC=6,∴DC=112×6=2,∵AD平分∠BAC,∠C=90∘,∴DE=DC=2.故选:C.【点睛】本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.7.如图,将一个含有45o角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30o角,则三角板最长的长是()A. 2cmB. 4cmC. 22cmD. 42cm【答案】D【解析】【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板, ∴AB=AC=4,∴BC 2=AB 2+AC 2=42+42=32, ∴BC= 故选:D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①②由①得x <m ; 由②得x >2;∵m 的取值范围是4<m <5, ∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个.故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.9.如图,在ABC ∆中,B Ð=55°,30C ∠=o ,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65oB. 75oC. 55oD. 45o【答案】A【解析】【分析】根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【详解】在△ABC中,∵∠B=55°,∠C=30°,∴∠BAC=180°−∠B−∠C=95°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC−∠DAC=65°,故选:A.【点睛】此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.10.下列语句:①每一个外角都等于60o的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确; ④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.11.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )A. 13310=+B. 25916=+C. 491831=+D. 642836=+【答案】D【解析】【分析】 三角形数=1+2+3+……+n ,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.【详解】A.中3和10是三角形数,但是不相邻;B.中16、9均是正方形数,不是三角形数;C.中18不是三角形数;D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D 正确;故选D.【点睛】此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.12.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,120FOG ∠=o ,FOG ∠的两边,OF OG 与,AB BC 分别相交于,D E ,FOG ∠绕O 点顺时针旋转时,下列四个结论正确的个数是( )①OD OE =;②ODE BDE S S ∆∆=;③433ODBE S =四边形BDE ∆周长最小值是9.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用SBODV =SCOEV得到四边形ODBE的面积=13S ABCV,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S ODEV=3OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,接下来由△BDE的周长=BC+DE=4+DE=4+3OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】连接OB,OC,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB. OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD 和△COE 中,∠BOD=∠COE ,BO=CO ,∠OBD=∠OCE ,∴△BOD ≌△COE ,∴BD=CE ,OD=OE ,所以①正确;∴S BOD V =S COE V ,∴四边形ODBE 的面积=S OBC V =13 S ABC V =13×42 ,所以③正确; 作OH ⊥DE ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=12OE ,OE ,∴OE ,∴S △ODE=12 ·12· OE 2, 即S ODE V 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S ODE V ≠S BDE V ,所以②错误;∵BD=CE ,∴△BDE 的周长OE ,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时, ∴△BDE 周长的最小值=4+2=6,所以④错误.故选:B. 【点睛】此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.二、填空题13.分解因式:255x -=__________.【答案】5(1)(1)x x -+【解析】【分析】先提出公因式5,再直接利用平方差公式分解因式.平方差公式:a 2 -b 2=(a+b )(a-b ).【详解】255x -=5()21x - =5(1)(1)x x -+故答案为:5(1)(1)x x -+.【点睛】此题考查分解因式,解题关键在于先提出公因式.14.如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.【答案】(5,4)【解析】【详解】由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4). 故答案为:(5,4).15.已知关于x 的方程2322x m x x+=--会产生增根,则m =__________. 【答案】4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.【详解】方程两边都乘(x−2),得2x−m=3(x−2),∵原方程有增根,∴最简公分母x−2=0,即增根为x=2,把x=2代入整式方程,得m=4.故答案为:4.【点睛】此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.16.如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN 交AB于点M,交AC于点N,则△AMN的周长为____.【答案】18【解析】【分析】根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.【详解】∵∠ABC和∠ACB的角平分线交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵BC∥MN,∴∠BOM=∠CBO,∠CON=∠BCO,∴∠BOM=∠ABO,∠CON=∠ACO,∴OM=BM,ON=CN,∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.故答案为:18.【点睛】此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.三、解答题17.解不等式组:()-324 211 52x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.【答案】−7<x⩽1,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x−3(x−2)⩾4,得:x⩽1,解不等式52112x x-+<,得:x>−7,则不等式组的解集为−7<x⩽1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.18.解分式方程:233(3)xx x x--=++【答案】原方程无解.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:2(3)0x x--=30x+=3x=-经检验3x=-是原方程的增根∴原方程无解【点睛】此题考查解分式方程,解题关键在于先去分母.19.先化简,再求值:2144(1)11x x x x -+-÷--,其中x 是不等式30x -≥的正整数解. 【答案】1.【解析】【分析】将原式被除式括号中两项通分并利用同分母分式的减法法则计算,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,再由关于x 的不等式求出解集得到x 的范围,在范围中找出正整数解得到x 的值,将x 的值代入化简后的式子中计算,即可得到原式的值.【详解】解:原式=()2211()111x x x x x ---÷--- =()22112x x x x --⨯-- 12x =- 30x -≤的正整数解为1,2,3x =但1,2x x ≠≠所以3x = ∴原式的值112x =- 【点睛】此题考查一元一次不等式的整数解,分式的化简求值,解题关键在于掌握运算法则.20.如图,平行四边形ABCD 的边OA 在x 轴上,将平行四边形沿对角线AC 对折,AO 的对应线段为AD ,且点D ,C ,O 在同一条直线上,AD 与BC 交于点E .(1)求证:△ABC ≌△CDA .(2)若直线AB 的函数表达式为6y x =-,求三角线ACE 的面积.【答案】(1)证明见详解;(2)92 【解析】【分析】(1)利用平行四边形的性质及折叠的性质,可得出CD=AB ,∠DCA=∠BAC ,结合AC=CA 可证出△ABC ≌△CDA (SAS );(2)由点D ,C ,O 在同一直线上可得出∠DCA=∠OCA=90°,利用一次函数图象上点的坐标特征可得出点A 的坐标及OA 的长度,由OC ∥AB 可得出直线OC 的解析式为y=x ,进而可得出∠COA=45°,结合∠OCA=90°可得出△AOC 为等腰直角三角形,利用等腰直角三角形的性质可得出OC 、AC 的长,结合(1)的结论可得出四边形ABDC 为正方形,再利用正方形的面积公式结合S △ACE =14S 正方形ABDC 可求出△ACE 的面积.【详解】(1)证明:∵四边形ABCO 为平行四边形,∴AB=CO ,AB ∥OC ,∴∠BAC=∠OCA .由折叠可知:CD=CO ,∠DCA=∠OCA ,∴CD=AB ,∠DCA=∠BAC .在△ABC 和△CDA 中, AB CD BAC DCA AC CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDA (SAS ).(2)解:∵∠DCA=∠OCA ,点D ,C ,O 同一直线上,∴∠DCA=∠OCA=90°.当y=0时,x-6=0,解得:x=6,∴点A 的坐标为(6,0),OA=6.∵OC ∥AB ,∴直线OC 的解析式为y=x ,∴∠COA=45°,∴△AOC 为等腰直角三角形,∴AC=OC=32∵AB ∥CD ,AB=CD=AC ,∠DCA=90°,∴四边形ABDC 为正方形,2119442ACE ABCD S S AC ∆==⋅=正方形 【点睛】本题考查了平行四边形的性质、折叠的性质、全等三角形的判定、等腰直角三角形、一次函数图象上点的坐标特征以及正方形的面积,解题的关键是:(1)利用全等三角形的判定定理SAS 证出△ABC ≌△CDA ;(2)利用一次函数图象上点的坐标特征及等腰直角三角形的性质,求出正方形边长AC 的长.21.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?【答案】(1)甲框每个2.4米,乙框每个2米;(2)最多可购买甲种边框100个.【解析】【分析】(1)设每个乙种边框所用材料x米,则制作甲盒用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)设生产甲边框y个,则乙边框生产640 2.42y-个,再根据“要求制作乙种边框的数量不少于甲种边框数量的2倍”求出y的取值范围,即可解答.【详解】解(1)设每个乙种边框所用材料x米则121211.2x x-= 2x=经检验:2x=是原方程的解,1.2x=2.4, 答:甲框每个2.4米,乙框每个2米.(2)设生产甲边框y个,则乙边框生产640 2.42y-个,则640 2.422yy-≥100y≤所以最多可购买甲种边框100个.【点睛】此题考查分式方程的应用,一元一次不等式的应用,解题关键在于列出方程.22.由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)请你判断△AA1A2与△CC1C2的相似比;若不相似,请直接写出△AA1A2的面积.【答案】(1)见解析;(2)见解析;(3)4.【解析】【分析】(1)利用关于y 轴对称点的性质得出对应点位置求出即可;(2)利用关于原点对称点的性质得出对应点坐标进而求出即可;(3)利用相似三角形的判定方法得出即可,再利用三角形面积求法得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)∵112112CC C C AA A A , ∴△AA 1A 2与△CC 1C 2不相似,S 12AA A △ =12×2×4=4. 【点睛】此题考查作图-旋转变换,作图-轴对称变换,相似三角形的判定,解题关键在于掌握作图法则.23.如图1,在△ABC 中,AB=BC=5,AC=6,△ECD 是△ABC 沿BC 方向平移得到的,连接AE 、BE ,且AC 和BE 相交于点O.(1)求证:四边形ABCE 是菱形;(2)如图2,P 是线段BC 上一动点(不与B. C 重合),连接PO 并延长交线段AE 于点Q ,过Q 作QR ⊥BD 交BD 于R.①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P、Q、R为顶点的三角形与以点B. C. O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.【答案】(1)见解析;(2)①24,②75;【解析】【分析】(1)利用平移的性质以及菱形的判定得出即可;(2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.【详解】(1)证明:∵△ABC沿BC方向平移得到△ECD,∴EC=AB,AE=BC,∵AB=BC,∴EC=AB=BC=AE,∴四边形ABCE是菱形;(2)①四边形PQED的面积是定值,理由如下:过E作EF⊥BD交BD于F,则∠EFB=90°,∵四边形ABCE是菱形,∴AE∥BC,OB=OE,OA=OC,OC⊥OB,∵AC=6,∴OC=3,∵BC=5,∴OB=4,sin ∠OBC=3=5OC BC , ∴BE=8, ∴EF=BE ⋅sin ∠OBC=8×324=55, ∵AE ∥BC ,∴∠AEO=∠CBO ,四边形PQED 是梯形,在△QOE 和△POB 中AEO CBO OE OBQOE POB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△QOE ≌△POB ,∴QE=BP ,∴S PQED 梯形 =12 (QE+PD)×EF=12 (BP+DP)×EF=12×BD×EF=12×2BC×EF=BC×EF=5×245 =24; ②△PQR 与△CBO 可能相似,∵∠PRQ=∠COB=90°,∠QPR>∠CBO ,∴当∠QPR=∠BCO 时,△PQR ∽△CBO ,此时有OP=OC=3.过O 作OG ⊥BC 交BC 于G.∵∠OCB=∠OCB ,∠OGC=∠BOC ,∴△OGC ∽△BOC ,∴CG:CO=CO:BC ,即CG:3=3:5,∴CG=95, ∴BP=BC−PC=BC−2CG=5−2×95=75 . 【点睛】此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。
北师版初中数学八年级下册期末试卷一、选择题(本大题共小题,共分)下列图形中是中心对称图形的是()A B C D如图,在A B C D 中,E 为C D 上一点,连接A E 、B D ,且A E 、B D 交于点F ,D E A B =,则D F B F 等于()AB C D 如果a <b ,那么下列各式中,一定成立的是()A a >bB a c<b c C a -<b -D a>b 下列各式从左到右的变形中,是因式分解的为().A ()()x y x x y -+=+-+B ()()x x x -=+-C ()x a b a x b x -=-D ()ax b x c x a b c ++=++如图,R t △A B C 中,∠C =D ,A C =,B C =,D E 是A C 边的中垂线,分别交A C ,A B 于点E ,D ,则△D B C 的周长为()A B C D 如果关于x 的方程a x x +=-的解为非负数,且关于x,y 的二元一次方程组x y a x y +=+ìí+=î解满足x y +>-,则满足条件的整数a 有()个.A B C D 在正三角形,正方形,正五边形,正六边形这几个图形中,单独选用一种图形不能进行平面镶嵌的图形是()A 正三角形B 正方形C 正五边形D 正六边形“a 是正数”用不等式表示为()A a 5B a 6C a <D a >下列计算正确的是().A a a a ¸=B -=C -=D a b a b¸´=能判定四边形是平行四边形的是()A 对角线互相垂直B 对角线相等C 对角线互相垂直且相等D 对角线互相平分二、填空题(本大题共小题,共分)当x ___时,分式xx +-的值为零如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数之和都相等,则第个格子中的数为_____________.-ab c-…若a b a b a b -+++=,则a b +=______.如图,A B C是边长为的等边三角形,取B C边中点E,作E D A B,E F A C,得到四边形E D A F,它的面积记作S;取B E中点E;作E D F B,E F E F,得到四边形E D F F,它的面积记作S.照此规律作下去,S=_______.(第题)(第题)如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为_______.三、解答题(本大题共小题,共分)判断命题“一组对边平行另一组对边相等的四边形是平行四边形”真假,若是真命题,请给出证明;若是假命题,请修改其中一个条件使其变成真命题(一个即可)并请写出证明过程.(要求:画出图形,写出已知,求证和证明过程)下列运算正确吗?如果不正确,请改正.()a b a b m m m++=;()a ax y y x-=--;()a a+=;()x yx y x y+=++.如图,正方形网格中,每个小正方形的边长均为,每个小正方形的顶点叫格点.()在图①中,以格点为端点,画线段M N;()在图②中,以格点为顶点,画正方形A B C D,使它的面积为.已知:如图,A B C为等边三角形,B D为中线,延长B C至E,使C E=C D,连接D E.()证明:B D E是等腰三角形;()若A B=,求D E的长度.东东在完成一项“社会调查”作业时,调查了城市送餐员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入=基本工资(固定)+计单奖金”的方法计算薪资,并获得如下信息:营业员小李小杨月送餐单数单月总收入元送餐每单奖金为a元,送餐员月基本工资为b元.()求a、b的值;()若月送餐单数超过单时,超过部分每单奖金增加元,假设月送餐单数为x单,月总收入为y元,请写出y与x之间的函数关系式,并求出送餐员小李计划月总收入不低于元时,小李每月至少要送餐多少单?如图,在边长为的正方形A B C D中,动点E以每秒个单位长度的速度从点A开始沿边A B向点B运动,动点F以每秒个单位长度的速度从点B开始沿折线B C﹣C D向点D运动,动点E比动点F先出发秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.()点F在边B C上.①如图,连接D E,A F,若D E⊥A F,求t的值;②如图,连结E F,D F,当t为何值时,△E B F与△D C F相似?()如图,若点G是边A D的中点,B G,E F相交于点O,试探究:是否存在在某一时刻t,使得B OO G=?若存在,求出t的值;若不存在,请说明理由.上海“迪士尼”于今年“”开园,准备在暑假期间推出学生门票优惠价如下:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)我市某慈善单位欲购买三种类型的票共张奖励品学兼优的留守学生,其中购买的A种票x张,B种票数是A种票数的倍少张,C种票y张.()请求出y与x之间的函数关系式;()设购票总费用为w元,求w(元)与x(张)之间的函数关系式;()为方便学生游玩,计划购买的每种票至少购买张,则有几种购票方案?并指出哪种方案费用最少?参考答案一、选择题:C A C B CD C D C D二、填空题-三、解答题假命题.改为:两组对边分别相等的四边形是平行四边形.已知:如图,在四边形A B C D 中,A B C D =,A D B C =.求证:四边形A B C D 是平行四边形.证明:连接A C,如图所示:在A B C 和C D A 中,A B C D A D C B A C C A =ìï=íï=î∴()A B C C D A SS S ≌.∴B A C D C A Ð=Ð,A C B C A D Ð=Ð,∴A B C D ,B C A D ,∴四边形A B C D 是平行四边形.()a b a bm m m++=,故原题计算错误;()a a a a a x y y x x y x y x y -=+=-----,故原题计算错误;()a a a aa a+=++=,故原题计算错误;()x y x y x y x y x y++==+++,故原题计算正确.()如图①所示:()如图②所示.()证明:A B C 为等边三角形,D C B \Ð=°C E CD = ,CE D C D E \Ð=Ð,D C B CE D C D E Ð=Ð+Ð=° ,C ED C DE \Ð=Ð=°,B D Q 为中线D BC \Ð=°,D B C CE D \Ð=Ð,B D D E \=,B D E \是等腰三角形;()解:B D Q 为中线,A D A C \==,B D A C ^,A DB \Ð=°,在R t A B D △中,由勾股定理得:B D =D E B D \==.()由题意得:a b a b +=ìí+=î,解得,a =,b =,答:a =,b =.()①当x ££时,y x =+,②x >时,()y x x =´+-+=+,y \与x 的函数关系式为:()x x y x x ì+££=í+>î,´+=< ,x \>,当x +³时,x ³,因此每月至少要送单,答:月总收入不低于元时,每月至少要送餐单.()①如图∵D E ⊥A F ,∴∠A O E D ,∴∠B A F ∠A E O D ,∵∠A D E ∠A E O D ,∴∠B A E ∠A D E ,又∵四边形A B C D 是正方形,∴A E A D ,∠A B F ∠D A E D ,在△A B F 和△D A E 中,{B A E A D E A E A D A B F D A EÐ=Ð=Ð=Ð∴△A B F≌△D A E(A S A)∴A E B F,∴t t,解得t.②如图∵△E B F∽△D C F∴E B B FD C F C=,∵B F t,A E t,∴F C﹣t,B E﹣﹣t﹣t,∴t tt -=-,解得:t=,t=(舍去),故t-=.()①<t5时如图,以点B为原点B C为x轴,B A为y轴建立坐标系,A的坐标(,),G的坐标(,),F点的坐标(t,),E的坐标(,﹣t)E F所在的直线函数关系式是:y tt-x﹣t,B G所在的直线函数关系式是:y x,∵B G=∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t t -x ﹣t ,得t t -F ﹣t ,解得,t+(舍去),t-,②当6t >时如图,以点B 为原点B C 为x 轴,B A 为y轴建立坐标系,A 的坐标(,),G 的坐标(,),F 点的坐标(,t ﹣),E 的坐标(,﹣t )E F 所在的直线函数关系式是:y t -x ﹣t ,B G 所在的直线函数关系式是:y x ,∵B G =∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t -x ﹣t ,得t -F ﹣t ,解得:t .综上所述,存在t-或t ,使得B O O G =.() 购买的A 种票x 张,\购买的B 种票为()x -张,x x y \+-+=,y x \=-;()()()w x x x =+-+-x =-+;()依题意得x x x ³ìï-³íï-³î,解得x ££,x 为整数,x \=、、,\共有种购票方案,方案一:A 种票张,B 种票张,C 种票张;方案二:A种票张,B种票张,C种票张;方案三:A种票张,B种票张,C种票张,=-+中,k=-<,在w x\随x的增大而减小,w´-+=元,\当x=时,w最小,最小值为()即当A种票为张,B种票张,C种票为张时,费用最少,最少费用为元。
北师大版八年级下册数学期末试卷一、单选题1.下列图形中,是中心对称图形但不是轴对称图形的是A .B .C .D . 2.若a >b ,则下列各式中一定成立的是A .a +2<b +2B .a -2<b -2C .2a >2b D .-2a >-2b 3.如图,Rt ABC 中,90,ACB CD AB ∠=︒⊥于点D ,若60,1A AD ∠=︒=,则BC 的长为A. B . C . D4.下列各式:①22k π;①1m n +;①224m n -;①23b a ;①()211x x +-;①1x .其中分式有 A .3个 B .4个 C .5个 D .6个5.在平行四边形ABCD 中,①A=2①B ,则①C 的度数是A .60°B .90°C .120°D .135°6.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值 A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍 7.下列四个命题中,假命题是A .“等边对等角”与“等角对等边”是互逆定理B .等边三角形是锐角三角形C .角平分线上的点到角两边的距离相等D .真命题的逆命题是真命题 8.某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速后比提速前多行驶100km ,设提速前列车的平均速度为km/h x ,下列方程正确是 A .40040010020x x +=+ B .40040010020x x -=-C .40040010020x x +=-D .40040010020x x -=+ 9.分式22x x -+有意义的条件是 A .2x ≠ B .2x ≠- C .2x ≠± D .2x >-10.若一个正多边形的一个外角是45︒,则这个正多边形的边数是A .10B .9C .8D .611.顺次连接平行四边形各边的中点得到的四边形是A .平行四边形B .菱形C .矩形D .正方形12.点(-4,1)关于原点的对称点是A .(-4,1)B .(-4,-1)C .(4,1)D .(4,-1)二、填空题13.如图,在①ABC 中,EF 是①ABC 的中位线,且EF=5,则AC 等于____.14.把多项式 x 2 + ax + b 分解因式得(x+1)(x ﹣3),则 a -b 的值是_____. 15.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 16.如图,平行四边形ABCD 中,DE 平分①ADC 交边BC 于点E ,AD =8,AB =5,则BE =___.17.当x =______时,分式2136x x +-无意义. 三、解答题18.计算:(1)22-+11()2-02021 (2)解分式方程:11322x x x-+=--19.先化简,再求代数式的值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x =2. 20.解不等式组:102332x x x ->⎧⎨-<-⎩21.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+. 22.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △①CBE △.23.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.24.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.25.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC 的长.26.①ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出①ABC 关于原点O 的中心对称图形①A 1B 1C 1;(2)写出中心对称图形①A 1B 1C 1的顶点坐标.27.已知:如图A 、C 是①DEBF 的对角线EF 所在直线上的两点,且AE =CF .求证:四边形ABCD 是平行四边形.28.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 29.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ的长(用含t的代数式表示);(2)当四边形ABQP是平行四边形时,求t的值;(3)当325t 时,点O是否在线段AP的垂直平分线上?请说明理由.参考答案1.A2.C3.B4.B5.C6.A7.D8.A9.B10.C11.A12.D13.10【详解】解:在①ABC中,①EF是①ABC的中位线,①EF=12AC,①AC=2EF ,①EF=5,①AC=2×5=10,故答案为:10.14.1【详解】①()()21323x x x x +-=--又()()213x x x ax b +-=++①23a b ,=-=-①1a b -=故答案为1.15.5【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.16.3【解析】【分析】由平行四边形对边平行及根据两直线平行,内错角相等可得EDA DEC ∠=∠,而DE 平分ADC ∠,进一步推出EDC DEC ∠=∠,在同一三角形中,根据等角对等边得CE CD =,则BE 可求解.【详解】解:根据平行四边形的性质得//AD BC ,EDA DEC ∴∠=∠,又DE 平分ADC ∠,EDC ADE ∴∠=∠,EDC DEC ∴∠=∠,5CD CE AB ∴===,即853BE BC EC =-=-=.故答案为:3.【点睛】本题考查了平行四边形性质的应用,及等腰三角形的判定,解题的关键是值掌握平行四边形的性质.17.2【解析】【分析】分式无意义的条件是分母等于零.据此解答即可.【详解】 解:分式2136x x +-无意义, 360x ∴-=,解得2x =.故答案为:2.【点睛】本题考查了分式无意义的条件,熟知分式无意义的条件是分母等于零是解答本题的关键.18.(1)-2;(2)x=2是增根,原分式方程无解.【解析】【分析】(1)先乘方,再乘除,最后加减,注意负号的作用;(2)方程两边同时乘以2x -,将分式方程化为整式方程,再解方程、验根即可.【详解】解:(1)22-+11()2-02021 = -4+2-1+1= -2;(2)11322x x x-+=-- 方程两边同乘以2x -,得1+3(x -2)= x -11361x x +-=-解得x=2经检验:x=2是增根,原分式方程无解.【点睛】本题考查实数的混合运算、解分式方程,涉及零指数幂与负正整指数幂、分式有意义的条件等知识,是重要考点,掌握相关知识是解题关键.19.-x -1,-3【解析】【分析】根据题意将原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,进而将x 的值代入计算即可求出值.【详解】解:原式= ()21111x x x x +⎛⎫-÷- ⎪++⎝⎭ =()2111x x x --⎛⎫-÷ ⎪+⎝⎭()111x x x -⎛⎫=-÷ ⎪+⎝⎭=(1)x -+=1x --①当x=2时,①原式=213--=-【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解答本题的关键. 20.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:①不等式组的解集为:1x >【点睛】 本题考查了解不等式组及利用数轴求不等式组的解集.21.(1)()()2422a x y x y -+;(2)()242x - 【解析】【分析】(1)先提取公因式,再用 平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y -=()22246a x y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.22.见解析.【解析】【分析】由等边三角形性质得到AB=BC ,BD=BE ,①ABC=①DBE=60°,从而有①ABD=①CBE ,即可得到结论【详解】证明:①ABC 和BDE 是等边三角形①60ABC DBE ∠=∠=︒①ABC DBC DBE DBC ∠-∠=∠-∠①ABD CBE ∠=∠又①AB BC =,BD BE =,∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩ ①ABD △①CBE △()SAS【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.23.26【解析】【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:①四边形ABCD 是平行四边形, ①AO CO =,BO DO =,①28AC BD +=,①14AO OD +=,①12AD BC ==,①AOD ∆的周长141226AO OD AD =++=+=.【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质. 24.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:①将ABC 绕点A 顺时针旋转一定角度得到ADE ,①4AD AB ==.①60B ∠=︒,①ABD △是等边三角形,①4BD AD AB ===,①743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.25.6BC =【解析】【分析】由题意易得①B=①C=30°,进而可得①CAD=①C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.【详解】解:①AB AC =,120BAC ∠=︒, ①()1180302B C BAC ∠=∠=︒-∠=︒,①AD AB ⊥,①90BAD ∠=︒,①1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,①2CD AD ==,在Rt BAD 中,30B ∠=︒,①24BD AD ==,①426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键. 26.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到①ABC 关于原点O 的中心对称图形①A 1B 1C 1;(2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键. 27.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:①平行四边形DEBF ,①//DE BF ,//DF BE ,①DEF BFE ∠=∠,DFE BEF ∠=∠,①180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,①DEA BFC ∠=∠,DFC BEA ∠=∠,①平行四边形DEBF ,①DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩①DEA BFC △≌△,①AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩①DFC BEA △≌△,①CD AB =,①四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.28.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩,解得2040xy=⎧⎨=⎩,答:篮球、足球各买了20个,40个;(2)设购买了a个篮球,根据题意,得()708060a a≤-,解得32a≤,①最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.29.(1)10-t;(2)5秒;(3)见解析【解析】【分析】(1)先证明①APO①①CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP①BQ,根据AP=BQ,列出方程即可得解;(3)过点O作直线EF①AP,垂足为E,与BC交于F,利用三角形面积公式求出EF,得到OE,利用勾股定理求出AE,再说明AP=2AE即可.【详解】解:(1)①四边形ABCD是平行四边形,①OA=OC,AD①BC,①①PAO=①QCO,①①AOP=①COQ,①①APO①①CQO(ASA),①AP=CQ=t,①BC=10,①BQ=10-t;(2)①AP①BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,①当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF①AP,垂足为E,与BC交于F,在Rt①ABC中,①AB=6,BC=10,,①AO=CO=12AC=4,①S①ABC=12AB AC⋅=12BC EF⋅,①AB•AC=BC•EF,①6×8=10×EF,①EF=245,①OE=125,165,当325t=时,AP=325,①2AE=AP,即点E是AP中点,①点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。
新北师大版八年级下册数学期末考试测试题八年级下数学期末测试第一套一、填空1、分解因式:ab-2ab+a= -ab+a2、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2 cm,则其宽为 1.236 cm.3、若 2/4x+= 345.则 x+y+z= 1384.若 x+2(m-3)x+16 是完全平方式,则 m 的值是5.5.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过 25.2 元.6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号): ①②③④.7.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是 (2.5.1.5).8.如图,Rt△ABC中,∠ACB=90°直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,1/CF=3/AD,则S△AEG= S四边形EBCG。
3/5.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 2.10、若不等式(m-2)x>2的解集是x<2/(m-2)。
则x 的取值范围是 (2/(m-2)。
+∞).11、化简的结果为 2a+2b,12、如果x<-2,则(x+2)·(25abx-y)= (2x+4)·(25abx-y);13、已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为√2.二、选择题:1、如果a>b,那么下列各式中正确的是()A、a-3-b答案:A2、下列各式:(1-x)/(5π-3x^2),其中分式共有()个。
八年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(每小题4分,共40分)(第2题图)(第3题图)3.如图,△ABC沿直线m向右平移2cm,得到△DEF,下列说法错误的是()A.AC∥DFB.AB=DEC.CF=2cmD.DE=2cm8.如图,将△ABC绕点A按逆时针方向旋转110°得到△AB’C’,连接BB’,若AC’∥BB’,则∠CAB’的度数为()A.75°B.80°C.85°D.90°(第8题图) (第9题图) (第10题图)9.如图,在Rt △ABC 中,∠C=90°,D ,E 分别为CA ,CB 中点,BF 平分∠ABC ,交DE 于点F ,若AC=2√5,BC=4,则DF 的长为( ) A.0.5 B.1 C.1.5 D.2二.填空题。
(每小题4分,共24分) 11.因式分解:2ab -4a= .12.已知一个正n 变形的每个内角都为120°,则n= .13.如图,随机闭合开关S 1,S 2,S 3中的两个,能够让灯泡发亮的概率为 .(第13题图) (第15题图) (第16题图)14.关于x 的方程a x+4-x -1x+4=0产生增根,则m= .三.解答题。
17.(6分)解方程x 2-4x -2=0.18.(6分)计算:2aa 2- 4-1a+2.19.(6分)如图,已知平行四边形ABCD 中,AC ,BD 交于点O ,点E ,F 分别在OA ,OC 上,且AE=CF ,求证:∠EBO=∠FDO.20.(8分)解不等式组{4x >2x -6x+13≥x -1,把解集表示在数轴上,并写出所有整数解.答案1.C2.B3.D4.D5.C6.D7.C8.A9.B 10.C14.﹣5 16.711.2a(b-2)12.6 13.2317.x1=2+√6,x2=2-√6.18.1a-219.略20.不等式组解集:﹣3<x≤2 整数解:﹣2,﹣1,0,1,221.(1)略(2)B2(2,2)(3)(0,﹣1)22.(1)2÷3=23(2)4923.(1)8米(2)115 200元24.(1)略(2)2025.(1)(m+1)(m-7)(2)x=2,y=﹣3时,最小值为3.(3)最大值为1326.(1)略(2)∠BAD=60°(3)3√32。
北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。
(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。
北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.若a b >,则下列四个不等式中正确的是( )A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-3.下列式子:①2x ;①5x y +;①12a -;①x π,其中是分式的有( ) A .①① B .①①① C .①① D .①①①4.不等式5x 1>2x 5-+的解集在数轴上表示正确的是( )A .B .C .D .5.已知实数x ,y 满足()2670x y -+-=,则以x ,y 的值为两边的等腰三角形的周长为( )A .19B .20C .19或20D .以上答案都不对 6.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为( ) A .3 B .4 C .5 D .77.下列分式的运算正确的是( )A .111x y xy -=B .2211(1)1x x x x -+=-- C .22142x x x -=-+ D .313x x ÷= 8.在四边形ABCD 中,下列说法正确的是( )A .当AD=BC ,AB①DC 时,四边形ABCD 是平行四边形B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形C .当AC=BD ,AC 平分BD 时,四边形ABCD 是平行四边形D .当AC=BD ,AC①BD 时,四边形ABCD 是平行四边形9.如图,直线11y k x b =+与x 轴交于点(-4,0),直线22y k x b =+与x 轴交于点(3,0),则不等式组112200k x b k x b +>⎧⎨+>⎩的解集是( )A .4x >-B .3x <C .-43x <<D .43x x <->或10.如图,在ABC 中,AB AC 10==,BAC 120∠=,AD 是ABC 的中线,AE 是BAD ∠的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长是( )A .2B .4C .5D .5211.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A .①ADE=①CBFB .①ABE=①CDFC .DE=BFD .OE=OF 12.在平面直角坐标系中,将点(1,2)A -向左平移2个单位长度,再向下平移3个单位长度得到的点坐标为( )A .(1,1)-B .(1,5)-C .(3,1)--D .(3,5)-二、填空题13.一个n 边形的内角和是540°,那么n =_____.14.如图,在①ABC 中,AB=BC ,①ABC=100,BD 是①ABC 的平分线,E 是AB 的中点,则①EDB 的度数为__________.15.若24()3x m x +-+是完全平方式,则数m 的值是________.16.若不等式组321x x m <⎧⎨>-⎩无解,则m 的取值范围是________. 17.如图,AN OB ⊥,BM OA ⊥,垂足分别为N 、M ,OM ON =,BM 与AN 交于点P .写出由上述条件得到的两个不同类的结论__________.三、解答题18.因式分解:(1)2288x y xy y -+(2)()()2222a b a b +--19.(1)解不等式()()3227x x ->-,并把它的解集表示在数轴上. (2) 6234211132x x x x +≥-⎧⎪+-⎨-≤⎪⎩20.解分式方程:2181393x x x x x-=+---21.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中2m = 22.在数学课上,老师出了这样一道题:甲、乙两地相距1200 千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.23.如图,①ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求①OEF 的周长.24.如图,四边形ABCD 为平行四边形,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:①ABE ①①FCE ;(2)过点D 作DG AE ⊥于点G ,H 为DG 的中点.判断CH 与DG 的位置关系,并说明理由.25.在Rt①ABC 中,①ACB =90°,①B =30°,将①ABC 绕点C 顺时针旋转一定角度得到①DEC ,点D 恰好在AB 上.(1)若AC =4,求DE 的值;(2)确定①ACD 的形状,并说明理由.26.如图,在①ABC中,①ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角①CDE,其中①DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当①CDE的周长最小时,求CD的值;(3)求证:222AD DB CE+=.2参考答案1.A【分析】根据中心对称图形和轴对称图形的定义,分别进行判断,即可得到答案.【详解】解:A、既是轴对称图形又是中心对称图形,故A正确;B、是轴对称图形,不是中心对称图形,故B错误;C、是中心对称图形,不是轴对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误;故选:A.【点睛】本题考查了中心对称图形和轴对称图形的定义,解题的关键是熟练掌握定义进行解题. 2.A【解析】【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确;B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.3.C【解析】【分析】根据分式的概念,逐一判断即可.【详解】解:①①分母中都含有未知数,故①①都是分式;①①分母中都不含有未知数,故①①不是分式;故答案选C【点睛】本题主要考查了分式的感念,熟记理解分式的基本概念是解题的关键.4.A【解析】【详解】试题分析:不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,-+,得x>2,在数轴上表示正确的是A.故选A.解不等式5x1>2x55.C【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x-6=0,y-7=0,解得x=6,y=7,①6是腰长时,三角形的三边分别为6、6、7,①6是底边时,三角形的三边分别为6、7、7,6,6,7和6,7,7都能组成三角形,6+6+7=19,6+7+7=20所以,三角形的周长为19或20.故选:C【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.C【解析】【分析】平移的距离为对应点所连线段的长度,由于点P(2,0)平移后对应的点为Q(5,4),根据两点间的距离公式求出PQ即可.【详解】解:①平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),①平移的距离为5,故选:C.【点睛】本题考查了坐标与图形变化-平移,知道平移的距离计算方法是解题的关键.7.B【解析】【分析】根据分式的基本性质以及分式的运算法则进行运算即可.【详解】 A. 11,yx y xy x-=-错误.B. ()()()()2221111,111x x x x x x x +--+==---正确. C. ()()22214222x x x x x x +---=-=--+,错误. D. 3x ÷x 3=3x 3x =29x ,错误.故选:B.【点睛】考查分式的基本性质以及分式的运算,掌握运算法则是解题的关键.8.B【解析】【分析】由平行四边形的判定定理判断即可.【详解】解:①一组对边平行且相等的四边形是平行四边形,①A 不正确;①两组对边分别相等的四边形是平行四边形,①B 正确;①对角线互相平分等的四边形是平行四边形,①C 、D 不正确;故选:B .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解决问题的关键.9.C【解析】【分析】先根据图象求出每个不等式的解集,再根据大小小大中间找求出它们的公共部分即可.【详解】解:①直线y 1=k 1x+b 1与x 轴交于点(-4,0),且y 随x 的增大而增大,①不等式k 1x+b 1>0的解集为x >-4;①直线y 2=k 2x+b 2与x 轴交于点(3,0),且y 随x 的增大而减小,①不等式k 2x+b 2>0的解集为x <3,①不等式组112200k x b k x b +>⎧⎨+>⎩的解集是-4<x <3. 故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一元一次不等式组的解集.10.C【解析】【分析】由等腰三角形的性质可求出①ABD=30°、AD①BC ,根据平行线的性质及角平分线的定义可证明①DAF=①DFA ,即可证明DF=AD ,利用含30°角的直角三角形的性质即可得答案.【详解】①AB=AC=10,①BAC=120°,AD 是中线, ①①ABD=①ACD=12(180°-120°)=30°,AD①BC , ①AD=12AB=5,①DF//AB ,①①DFA=①BAF ,①AF 是①BAD 的角平分线,①①BAF=①DAF ,①①DAF=①DFA ,①DF=AD=5.故选C.【点睛】本题考查了等腰三角形的性质与判定、平行线的性质及含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.11.C【解析】【分析】根据平行四边形的性质,以及平行四边形的判定定理即可作出判断.【详解】A 、在平行四边形ABCD 中,①AO=CO ,DO=BO ,AD①BC ,AD=BC ,①①DAE=①BCF ,若①ADE=①CBF ,在①ADE 与①CBF 中,DAE BCFAD BC ADE CBF∠∠⎧⎪⎨⎪∠∠⎩===,①①ADE①①CBF ,①AE=CF ,①OE=OF ,①四边形DEBF 是平行四边形;B 、若①ABE=①CDF ,在①ABE 与①CDF 中,BAE DCFAB CD ABE CDF∠∠⎧⎪⎨⎪∠∠⎩===,①①ABE①①CDF ,①AE=CF ,①OE=OF,①OD=OB,①四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点M使DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;D、若OE=OF,①OD=OB,①四边形DEBF是平行四边形;故选C.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.12.C【解析】【分析】直角利用平移中点的变化规律进行解答即可.【详解】解:①将点(-1.2)先向左平移2个单位长度再向下平移3个单位长度,①平移后得到的点是(-1-2,2-3),即(-3,-1).故答案为C.【点睛】本题考查了点的平移规律,掌握横坐标右移加,左移减;纵坐标上移加,下移减是解答本题的关键.13.5【解析】【分析】根据多边形的内角和公式列出方程,解方程即可【详解】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,故答案为:5.【点睛】本题考查了多边形的内角和,熟练掌握n边形的内角和为(n﹣2)•180°是解题的关键14.50【解析】【分析】根据等腰三角形三线合一的性质可得D是AC的中点,已知又E是AB的中点,由此可得ED是①ABC的中位线,根据三角形的中位线定理可得DE①BC;根据等腰三角形三线合一的性质可得①DBA=①CBD=50°,由平行线的性质即可得①EDB =①CBD=50°.【详解】①BD是等腰①ABC的①ABC的平分线,①D是AC的中点,又①E是AB的中点,①ED是①ABC的中位线,①DE①BC.①①ABC=100°,BD是①ABC的平分线,①①DBA=①CBD=50°,①DE①BC,①①EDB =①CBD=50°.故答案为:50°.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及平行线的性质,根据等腰三角形的性质证得ED是①ABC的中位线是解决问题的关键.15.7或-1【解析】【详解】①x2+(m−3)x+4是完全平方式,①m−3=±4,①m=7或−1.故答案为7或-1.16.2m ≥【解析】【分析】根据大大小小无解了,即可求出m 的取值范围.【详解】解:①不等式组321x x m <⎧⎨>-⎩无解, ①213m -≥,①2m ≥;故答案为:2m ≥.【点睛】本题考查了已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.17.PM=PN ,①PON=①POM (答案不唯一).【解析】【分析】连接OP ,证明Rt①OPM①Rt①OPN (HL ),①APM①①PBN (ASA ),再利用全等三角形的性质解答即可.【详解】如PM=PN ,①PON=①POM ,①OPN=①OPM ,BN=AM ,OA=OB .从中选择边和角不同的结论即可.①AN①OB ,BM①OA ,①在Rt①OPM 与Rt①OPN 中ON OM OP OP =⎧⎨=⎩, ①Rt①OPM①Rt①OPN (HL ),①①PON=①POM ,PN=PM ,①OPN=①OPM ,在①APM 与①PBN 中90PNB PMA PN PM BPN APM∠∠︒⎧⎪⎨⎪∠∠⎩====,①①APM①①PBN (ASA ),①BN=AM ,①OA=AM+OM ,OB=BN+ON ,①OA=OB .故答案为:PM=PN ,①PON=①POM (答案不唯一).【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键. 18.(1)()222y x -;(2)()()33a b b a +-【解析】【分析】(1)先提取公因式,再运用完全平方公式因式分解即可;(2)运用平方差公式因式分解后化简即可.【详解】(1)2288x y xy y -+()2244y x x =-+()222y x =-(2)()()2222a b a b +--()()2222a b a b a b a b =++-+-+()()33a b b a =+-【点睛】本题主要考查了因式分解,熟记因式分解的公式以及灵活运用是解题的关键.19.(1)4x >,图详见解析;(2)-21x ≤≤【解析】【分析】(1)先去括号,移项、合并同类项,把x 的系数化为1,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】解:(1)()()3227x x ->-解:36142x x ->-32146x x +>+520x >4x >在数轴上表示解集如下:(2)6234211132x x x x +≥-⎧⎪⎨+--≤⎪⎩①② 解:解不等式①得2x ≥-解不等式①得1x ≤在同一数轴上表示不等式①①的解集如图所示:所以不等式组的解集为-21x ≤≤【点睛】本题考查了解一元一次不等式及解一元一次不等式组,掌握不等式的基本性质是解题的关键.20.无解【解析】【分析】先去分母,去括号,移项合并,求出方程的解,通过检验即可得到分式方程的解.【详解】 解:2181393x x x x x-=+--- 方程两边同乘以()()33x x +-得:()23893x x x x x +-=--+,①3793x x -=--,①412x =①3x =;经检验,3x =是原方程的增根①原方程无解.【点睛】本题考查了解分式方程,解题的关键是熟练掌握运算法则进行解题,注意分式方程需要检验.21【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.【详解】 原式=()()2m 1m 21m 2m 22m 1++⎛⎫-÷ ⎪+++⎝⎭ m 12=m 2m 1+⋅++ =2m 2+,当m 2时,原式= 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.特快列车从甲地到乙地的时间为12 h .【解析】【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用8h ,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【详解】解:设高铁列车从甲地到乙地的时间为y h ,则特快列车从甲地到乙地的时间为(y+8) h , 根据题意得1200120038y y =⨯+ 解这个方程得 4y =经检验,4y=是原分式方程的根则812y+=;答:特快列车从甲地到乙地的时间为12 h.【点睛】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.23.(1)详见解析;(2)14【解析】【分析】(1)由平行四边形的性质可得AO=CO,BO=DO,由中点的性质可得EO=12AO,GO=12CO,FO=12BO,HO=12DO,由对角线互相平分的四边形是平行四边形可得结论;(2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)①四边形ABCD是平行四边形①AO=CO,BO=DO①E、F、G、H分别是AO、BO、CO、DO的中点①EO=12AO,GO=12CO,FO=12BO,HO=12DO①EO=GO,FO=HO①四边形EFGH是平行四边形(2)①E、F分别是AO、BO的中点①EF=12AB,且AB=10①EF=5①AC+BD=36①AO+BO=18①EO+FO=9①①OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 24.(1)见解析;(2)CH①DG ,见解析【解析】【分析】(1)由平行四边形的性质可得:AB‖DC ,则可求出①BAE=①CFE ,结合题目条件可证得结论;(2)由(1)可证得CF=CD ,可得CH 为三角形DFG 的中位线,则可得CH‖AF ,可证CH①DG .【详解】(1)证明:①四边形ABCD 为平行四边形,①AB‖DC ,①①BAE=①CFE ,①E 为BC 的中点,①BE=CE ,在①ABE 和①FCE 中:BAE CFE AEB CEF BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ≅①FCE (AAS );(2)解:CH①DG ,理由如下:由(1)得①ABE ≅①FCE ,①AB=CF ,①四边形ABCD 为平行四边形,①AB=CD ,①CF=CD ,①C 为FD 的中点,①H 为DG 的中点,①CH 为①DFG 的中位线,①CH‖AF ,①DG①AE,①①DHC=①DGF=90°,①DG①AE.【点睛】此题考查平行四边形的性质,三角形全等和中位线,其中第二问证明中位线是关键.25.(1)8;(2)等边三角形,理由见解析【解析】【分析】(1)根据直角三角形的性质和旋转的性质即可得到结论;(2)根据三角形的内角和得到①A=60°,根据旋转的性质得到AC=CD,于是得到结论.【详解】解:(1)①在Rt①ABC中,①ACB=90°,①B=30°,AC=4,①AB=2AC=8,①将①ABC绕点C顺时针旋转一定角度得到①DEC,①DE=AB=8;(2)①ACD是等边三角形,理由:①①ACB=90°,①ABC=30°,①①A=60°,①将①ABC绕点C顺时针旋转一定角度得到①DEC,①AC=CD,①①ACD是等边三角形.【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定,正确的识别图形是解题的关键.26.(1)见解析;(2)(3)见解析【解析】【分析】(1)先判断出①ACD=①BCE,得出①ADC①①CBE(SAS),即可得出结论;(2)先判断出CD,进而得出①CDE的周长为()CD,进而判断出当CD①AB时,CD 最短,即可得出结论;(3)先判断出①A=①ABC=45°,进而判断出①DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)①①ACB =①DCE =90°,①①1+①3=90°,①2+①3=90°,①①1=①2.①BC =AC ,CD =CE ,①①CAD①①CBE ,①AD =BE .(2)①①DCE=90°,CD=CE .①由勾股定理可得.①①CDE 周长等于CD+CE+DE=2CD =(2CD .①当CD 最小时①CDE 周长最小.由垂线段最短得,当CD①AB 时,①CDE 的周长最小.①BC =AC =6,①ACB =90°,①AB=此时AD =CD =1122BD AB ==⨯①当CD =时,①CDE 的周长最小.(3)由(1)易知AD =BE ,①A =①CBA =①CBE =45°,①①DBE =①CBE +①CBA =90°.在Rt①DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt①CDE中:222+=.CD CE DE222∴+=CE CE DE①222+=.AD BD CE2【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD①AB时,CD最短是解本题的关键.21。
八年级(下)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在应题号的答题下上1.(4分)下列各式中,最简二次根式是()A.B.C.D.2.(4分)已知一次函数y=(k﹣1)x+2,若y随x的增大而增大,则k的取值范围是()A.k>1B.k<1C.k<0D.k>03.(4分)菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A.50B.25C.D.12.54.(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁5.(4分)估计的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.无法确定6.(4分)一组数据为:31,30,35,29,30,则这组数据的方差是()A.22B.18C.3.6D.4.47.(4分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF 8.(4分)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.(4分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,…,照此规律排列下去,则第个8图中小正方形的个数是()A.48B.63C.80D.9910.(4分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.211.(4分)从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1B.2C.3D.412.(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或B.或C.或D.或二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上13.(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.14.(4分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=cm.15.(4分)仪征市某活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如表所示:则全体参赛选手年龄的中位数是岁.16.(4分)设的整数部分为a,小数部分为b,则的值等于.17.(4分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.18.(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是元.三、解答题:(本大题2个小题,每题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应过程或推理步骤的位置上19.(8分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.20.(8分)计算:(1)××(﹣)(2)+3﹣﹣.四、解答题:(本大题5个小题,每题10分,共50解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?22.(10分)如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.23.(10分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,两人一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程y (米)与小明出发的时间x(秒)的函数图象,请根据题意解答下列问题:(1)在跑步的全过程中,小明共跑了米,小明的速度为米/秒.(2)求小亮跑步的速度及小亮在途中等候小明的时间;(3)求小亮出发多长时间第一次与小明相遇?24.(10分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.(1)若AB=2,求四边形ABFG的面积;(2)求证:BF=AE+FG.25.(10分)已知m和n是两个两位数,把m和n中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以10的商记为W(m,n).例如:当m=36,n=10时,将m十位上的3放置于n的1、0之间,将m个位上的6放置于n中0的右边,得到1306;将n十位上的1放置于m的3、6之间,将n个位上的0放置于m中6的右边,得到3160.这两个新四位数的和为1306+3160=4466,4466÷11=406,所以W(36,10)=406.(1)计算:W(20,18);(2)若a=10+x,b=10y+8(0≤x59,1≤y≤9,x,y都是自然数).①用含x的式子表示W(a,36);用含y的式子表示W(b,49);②当150W(a,36)+W(b,49)=62767时,求W(5a,b)的最大值.五、解答题:(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.2017-2018学年重庆市九龙坡区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在应题号的答题下上1.【解答】解:A、=,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,符合题意;D、=|a|,故此选项错误;故选:C.2.【解答】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选:A.3.【解答】解:菱形的面积=AC•BD=×5×10=25.故选:B.4.【解答】解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.5.【解答】解:=10﹣,∵2<<3,∴7<10﹣<8,即的值在7和8之间.故选:B.6.【解答】解:这组数据的平均数为=31,所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选:D.7.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.8.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.9.【解答】解:∵第1个图中小正方形的个数3=12+2×1,第2个图中小正方形的个数8=22+2×2,第3个图中小正方形的个数15=32+2×3,第4个图中小正方形的个数24=42+2×4,……∴第n个图中小正方形的个数为n2+2n,则第8个图中小正方形的个数为82+2×8=80,故选:C.10.【解答】解:如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.11.【解答】解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.12.【解答】解:如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上13.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣414.【解答】解:∵▱ABCD∴∠ADE=∠DEC∵DE平分∠ADC∴∠ADE=∠CDE∴∠DEC=∠CDE∴CD=CE∵CD=AB=6cm∴CE=6cm∵BC=AD=8cm∴BE=BC﹣EC=8﹣6=2cm.故答案为2.15.【解答】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为14岁,∴全体参赛选手的年龄的中位数为14岁.故答案为:14.16.【解答】解:∵2<<3,∴a=2,b=﹣2,∴===2﹣.故答案为:2﹣.17.【解答】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=4,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:18.【解答】解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,∵购进的每一种衬衫的数量都不少于90件,∴a≥90,∴当a=90时,y取得最大值,此时y=﹣50×90+44000=39500,故答案为:39500.三、解答题:(本大题2个小题,每题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应过程或推理步骤的位置上19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20.【解答】解:(1)原式=﹣=﹣;(2)原式=2+2﹣﹣=0.四、解答题:(本大题5个小题,每题10分,共50解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;(3)捐款20元及以上(含20元)的学生有:(人);故答案为:(1)50,(2)10,13.1.22.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.23.【解答】解:(1)由图象可得,在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)当x=500时,y=1.5×500=750,当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),故小亮的速度为:750÷(400﹣100)=2.5米/秒,小亮在途中等候小明的时间是:500﹣400=100(秒),即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)设小亮出发t秒时第一次与小明相遇,2.5t=1.5(t+100),解得,t=150,答:小亮出发150秒时第一次与小明相遇.24.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠BAE=∠DEA=90°,BD平分∠ABC,∴∠ABD=30°.∴∠DAE=30°.在Rt△ABF中,tan30°=,即,解得AF=.在Rt△AFG中,FG=AF=,∴AG=1.所以四边形ABFG的面积=×2×+×1×=;(2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=.在Rt△AFG中,FG=AF=.在Rt△ADE中,AE=.∴AE+FG=+=.∴BF=AE+FG.25.【解答】解:(1)W(20,18)=(1280+2108)÷11=3388÷11=308;(2)①W(a,36)=[3160+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②∵当150W(a,36)+W(b,49)=62767∴150([3160+x+1306+10x)÷11]+(489+1000y+4098+100y)÷11=627673x+2y=29,∴x=5,y=7,x=7,y=4,x=9,y=1,∴a=15,b=78,a=17,b=48,a=19,b=18,∴W(75,78)=1413,W(85,48)=1213,W(95,18)=1013,∴W(5a,b)最大值为1413.五、解答题:(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)①∵矩形OABC,OA=3,OC=2∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2∵△APD为等腰直角三角形∴∠P AD=45°∵AO∥BC∴∠BP A=∠P AD=45°∵∠B=90°∴∠BAP=∠BP A=45°∴BP=AB=2∴P(1,2)设直线AP解析式y=kx+b,过点A,点P∴∴∴直线AP解析式y=﹣x+3②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小.∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+当x=0时,y=,∴N(0,)∵G'G''=∴△GMN周长的最小值为(2)如图:作PM⊥AD于M∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB∴PD=P A,且PM⊥AD∴DM=AM∵四边形P AEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM ∴△PMD≌△ODE∴OD=DM,OE=PM∴OD=DM=MA∵PM=2,OA=3∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n∴∴直线PE解析式y=2x﹣2。
北师大版八年级下册数学期末考试卷一、选择题(共12小题,每小题3分,计36分)1.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.ab>b22.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC 于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm3.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是A.m+1 B.2m C.2 D.m+24.若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3 B.m=3 C.m=0 D.m=﹣15.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个7.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.58.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.1612.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人二.填空题(共4小题,每小题3分,计12分)13.在平面直角坐标系中,点P(2,﹣1)关于原点的对称点在第象限.14.若x是整数,且满足不等式组,则x=.15.如图,P是∠AOB的平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA 于点C,若∠AOB=30°,PD=2cm,则PC=cm.16.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为m.三.解答题(共8小题,满分52分)17.(6分)解不等式组:,并把解集在数轴上表示出来.18.(6分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求(m﹣p)n的值19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.20.(6分)解分式方程:.21.(6分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.22.(6分)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC 于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.23.(8分)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.(8分)如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.参考答案一、选择题(共12小题,每小题3分,计36分)1.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.ab>b2选A.2.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC 于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm解:∵DE是AB边的垂直平分线,∴AE=BE(线段垂直平分线上的点到线段两端点的距离相等),∵△BEC的周长=BE+BC+CE=AE+CE+BC=AC+BC=14cm,BC=5cm,∴AC=14﹣5=9cm,∵AB=AC,∴AB的长是9cm.故选B.3.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.4.若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3 B.m=3 C.m=0 D.m=﹣1解:去分母得:3﹣x﹣m=x﹣4,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:3﹣4﹣m=0,解得:m=﹣1,故选D.5.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故选A.6.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个解:∵在△ABC中,∠A=36°,∠C=72°∴∠ABC=180°﹣∠A﹣∠C=72°=∠C∴AB=AC,∴△ABC是等腰三角形BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°∵∠A=∠ABD=36°,∴△ABD是等腰三角形∠BDC=∠A+∠ABD=36°+36°=72°=∠C∴△BDC是等腰三角形∴共有3个等腰三角形故选D.7.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.5解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RTABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.故选A.8.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ABD经旋转后到达△ACE的位置,∴∠BAC等于旋转角,即旋转角等于60°.故选B.9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.解:当x<﹣1时,y1<y2,所以关于x的不等式x+m<kx﹣1的解集为x<﹣1,用数轴表示为:.故选D10.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=m,∴△ABD的面积=×2n×m=mn,故选:A.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.16解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.12.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x<6.5,故共有学生6人,故选A.二.填空题(共4小题,每小题3分,计12分)13.在平面直角坐标系中,点P(2,﹣1)关于原点的对称点在第二象限.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故点P(2,﹣1)关于原点的对称点在第二象限.故答案为:二.14.若x是整数,且满足不等式组,则x=3.解:,解①得x>2,解②得x<,所以不等式组的解为2<x<,所以整数x的值为3.故答案为3.15.如图,P是∠AOB的平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA 于点C,若∠AOB=30°,PD=2cm,则PC=4cm.解:如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,PD=2cm,∴PE=PD=2cm,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PC=2PE=2×2=4cm.故答案为:4.16.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为50m.解:设实际每天铺设污水排放管道的长度为xm,则计划每天铺设污水排放管道的长度为xm,根据题意得:﹣=15,解得:x=50,经检验,x=50是原分式方程的解.故答案为:50.三.解答题(共8小题,满分52分)17.解不等式组:,并把解集在数轴上表示出来.解:由①得x≥4,由②得x<1,∴原不等式组无解,18.过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求(m﹣p)n的值.解:∵过m边形的一个顶点有8条对角线,∴m﹣3=8,m=11;n边形没有对角线,n=3;∵p边形有p条对角线,∴p=p(p﹣3)÷2,解得p=5,所以(m﹣p)n=(11﹣5)3=216.19.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.20.解分式方程:.解:方程的两边同乘(x+1)(x﹣1),得2(x﹣1)=x(x+1)﹣(x+1)(x﹣1),2x﹣2=x2+x﹣x2+1,2x﹣x=1+2,解得x=3.检验:把x=3代入(x+1)(x﹣1)=8≠0.∴原方程的解为:x=3.21.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B (0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(2,﹣1).解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).22.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.24.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.解:(1)如图,连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,。
2020-2021学年北师大新版八年级下册数学期末试题一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在中,分式的个数为()A.1B.2C.3D.43.下列各式,从左到右变形是因式分解的是()A.a(a+2b)=a2+2ab B.x﹣1=x(1﹣)C.x2+5x+4=x(x+5)+4D.4﹣m2=(2+m)(2﹣m)4.如图,在▱A BCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F.若AE:AF=2:3,▱AB CD的周长为10,则AB的长为()A.2B.2.5C.3D.3.55.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 6.将点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为()A.(﹣1,﹣6)B.(2,﹣6)C.(﹣1,﹣3)D.(5,﹣3)7.如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH 的对角线交点为O,连接OB,则线段BO的最小值为()A.4B.5C.3D.48.如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A′BC′,若点C′在AB上,则AA′的长为()A.B.4C.2D.59.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是()A.矩形B.正方形C.对角线互相垂直的四边形D.对角线互相垂直且相等的四边形10.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的B.缩小为原来的C.扩大为原来的3倍D.不变11.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=912.已知:如图,D、E、F分别是△ABC的三边的延长线上一点,且AB=BF,BC=CD,AC=AE,S△ABC =5cm2,则S△DEF的值是()A.15cm2B.20cm2C.30cm2D.35cm2二.填空题13.若分式的值为零,则x=.14.已知x+y=8,xy=2,则x2y+xy2=.15.若,则代数式的值是.16.如图,在直角三角形ABC中,∠C=90°,∠A=30°,AB=10,点E、F分别为AC、AB的中点,则EF=.17.若一个菱形的周长为200cm,一条对角线长为60cm,则它的面积为.18.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(5,0),点C的坐标是(1,3),则点B的坐标是.三.解答题19.分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).20.先化简,再求值:÷(x+2﹣),其中x=.21.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F,求证:DE=BF.22.解方程:(1)=;(2)=+1.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,得到△A1B1C1,画出图形,并直接写出点A1、B1、C1的坐标.24.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?25.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.26.中国古贤常说万物皆自然.而古希腊学者说万物皆数.小学我们就接触了自然数,在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另一种特殊的自然数﹣﹣“欢喜数”.定义:对于一个各数位不为零的自然数,如果它正好等于各数位数字的和的整数倍,我们就说这个自然数是一个“欢喜数”.例如:24是一个“欢喜数”,因为24=4×(2+4),125就不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各数位数字之和的4倍,求所有这种“欢喜数”.27.如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC 的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.四.填空题28.若关于x的分式方程=2a无解,则a的值为.29.如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线AP交DE 于点P.若AE=AP=1,PB=,则正方形ABCD的面积为.30.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案与试题解析一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:在所列代数式中,分式有,,共2个,故选:B.3.解:A.从左边到右边变形是整式乘法,不是因式分解,故本选项不符合题意;B.等式的右边不是整式积的形式是整式乘法,不是因式分解,故本选项不符合题意;C.从左边到右边变形不是因式分解,故本选项不符合题意;D.从左边到右边变形是因式分解,故本选项符合题意;故选:D.4.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC+CD=10÷2=5,根据平行四边形的面积公式,得BC:CD=AF:AE=3:2.∴BC=3,CD=2,∴AB=CD=2,故选:A.5.解:A、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD,∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;B、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;C、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;故选:B.6.解:点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为(2﹣3,﹣3),即(﹣1,﹣3),故选:C.7.解:连接AO,∵四边形CDGH是矩形,∴CG=DH,OC=CG,OD=DH,∴OC=OD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ACO和△ADO中,,∴△ACO≌△ADO(SSS),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=AB=×10=5,即OB的最小值为5.故选:B.8.解:根据旋转可知:∠A′C′B=∠C=90°,A′C′=AC=4,AB=A′B,根据勾股定理,得AB===5,∴A′B=AB=5,∴AC′=AB﹣BC′=2,在Rt△AA′C′中,根据勾股定理,得AA′===2.故选:C.9.解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是正方形,即EF⊥FG,FE=FG,∴AC⊥BD,AC=BD,故选:D.10.解:原式==,故选:A . 11.解:由题意得:180(n ﹣2)=360×3,解得:n =8,故选:C .12.解:连接AD ,EB ,FC ,如图所示:∵BC =CD ,三角形中线等分三角形的面积,∴S △ABC =S △ACD ;同理S △ADE =S △ADC ,∴S △CDE =2S △ABC ;同理可得:S △AEF =2S △ABC ,S △BFD =2S △ABC ,∴S △EFD =S △CDE +S △AEF +S △BFD +S △ABC =2S △ABC +2S △ABC +2S △ABC +S △ABC =7S △ABC ; 故答案为:S △EFD =7S △ABC =7×5=35cm 2故选:D .二.填空题13.解:由题意得:x 2﹣1=0,且x ﹣1≠0,解得:x =﹣1,故答案为:﹣1.14.解:∵x +y =8,xy =2,∴x2y+xy2=xy(x+y)=2×8=16.故答案是:16.15.解:∵,∴设x=2t,y=3t,∴===﹣.故答案为﹣.16.解:在Rt△ABC中,∠C=90°,∠A=30°,∴BC=AB=5,∵点E、F分别为AC、AB的中点,∴EF=BC=2.5,故答案为:2.5.17.解:已知AC=60cm,菱形对角线互相垂直平分,∴AO=30cm,又∵菱形ABCD周长为200cm,∴AB=50cm,∴BO===40cm,∴AC=2BO=80cm,∴菱形的面积为×60×80=2400(cm2).故答案为:2400cm2.18.解:∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,∵A(5,0),∴OA=BC=5,∵C(1,3),∴B(6,3),故答案为(6,3).三.解答题19.解:(1)原式=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)原式=(x﹣y)(3a+2b)(3a﹣2b).20.解:原式=÷=•=,当x=时,原式==.21.证明:∵▱ABCD的对角线AC,BD交于点O,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴DE=BF.22.解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.23.解:(1)点A关于点O对称的点的坐标为(2,﹣3);故答案为:(2,﹣3)(2)如图,△A1B1C1即为所求,A1(﹣3,﹣2),B1(0,﹣6),C1(0,﹣1).24.解:(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意得:=2×,解得:x=70,经检验,x=70是原方程的解,且符合题意,∴x+20=90.答:每个A种书包的进价为70元,每个B种书包的进价为90元.(2)设购进A种书包m个,则购进B种书包(2m+5)个,依题意得:,解得:18≤m≤20.又∵m为整数,∴m可以为18,19,20,∴该商场有3种进货方案,方案1:购进18个A种书包,41个B种书包;方案2:购进19个A种书包,43个B种书包;方案3:购进20个A种书包,45个B种书包.(3)设该商场销售A,B两种书包获利w元,则w=(90﹣70)m+(130﹣90)(2m+5)=100m+200,∵100>0,∴w随m的增大而增大,∴当m=20时,w取得最大值,即购进20个A种书包,45个B种书包.设赠送的书包中A种书包有a个,销售的A种书包中有b个样品,则赠送的书包中B种书包有(5﹣a)个,销售的B种书包中有(4﹣b)个样品,依题意得:90(20﹣a﹣b)+90×0.5b+130[45﹣(5﹣a)﹣(4﹣b)]+130×0.5(4﹣b)﹣70×20﹣90×45=1370,整理得:2a+b=4.又∵a为非负整数,b为正整数,∴当a=0时,b=4,此时4﹣b=0不合题意,舍去;当a=1,b=2.∴5﹣a=4,4﹣b=2,∴赠送的书包中A种书包有1个,B种书包有4个,样品中A种书包有2个,B种书包有2个.25.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AB=13,∴BC=AB=13,AC⊥BD,OA=OC=AC,OB=OD=BD,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=OA=2,AC=2OE=4,∴OB===3,∴BD=2OB=6,∵菱形ABCD的面积=BD×AC=BC×AE,即×6×4=13×AE,解得:AE=12.26.解:(1)∵2+8=10,28不是10的整数倍,∴根据“欢喜数”的概念,28不是“欢喜数”;∵1+3+5=9,135=15×9是9的倍数,∴根据“欢喜数”的概念,135是“欢喜数”;(2)①设这个数为一位数a,且a为自然数,a≠0,根据题意可知a=4a,又a≠0,∴这种情况不存在;②设这个数为两位数,a,b为整数,∴10a+b=4(a+b),即b=2a,∴或或或,∴这种欢喜数为12,24,36,48;③设这个数为三位数,a,b,c为整数,∴100a+10b+c=4(a+b+c),则96a+6b=3c,又a,b,c为0到9的整数,且a≥1,∴这种情况不存在;④设这个数为四位数,a,b,c,d为0到9的整数,且a≥1,∴1000a+100b+10c+d=4(a+b+c+d),∴996a+96b+6c=3d,故没有0到9的整数a,b,c,d使等式成立,由此类推,当这个数的位数不断增加时,更加无法满足等式,∴当一个欢喜数等于各数位数字之和的4倍时,这个数为:12或24或36或48.27.解:(1)AC=,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC﹣PC=()a;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=()a,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.四.填空题28.解:=2a,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x==3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.29.解:如图,过点B作BF⊥AE,交AE的延长线于F,连接BD,在Rt△AEP中,AE=AP=1,∴EP=,∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,在△APD和△AEB中,,∴△APD≌△AEB(SAS),∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED,又∵PB=,∴BE==2,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,∴EF=BF=,在Rt△ABF中,AB2=(AE+EF)2+BF2=5+2,∴S=AB2=5+2,正方形ABCD方法二:BD2=BE2+DE2=4+(+2)2=10+4,∴S=DB2=5+2,正方形ABCD故答案为5+2.30.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
北师大版八年级下册数学期末试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是 A .B .C .D .2.若x >y ,则下列式子中正确的是A .x ﹣2>y ﹣2B .x+2<y+2C .﹣2x >﹣2yD .22x y < 3.能判定四边形ABCD 是平行四边形的是 A .AB∥CD,AB =CD B .AB =BC,AD =CD C .AC =BD,AB =CD D .AB∥CD,AD =CB 4.等腰三角形的两边分别为7和4,则它的周长是A .15B .18C .15或18D .11 5.将2(2)(2)m a m a -+-分解因式,正确的是A .2(2)()a m n --B .(2)(1)m a m -+C .(2)(1)m a m --D .(2)(1)m a m --6.若分式211x x -+的值为0,则x 的值为A .0B .1C .﹣1D .±1 7.用反证法证明“若a∥c ,b∥c ,则a∥b”,第一步应假设A .a∥bB .a 与b 垂直C .a 与b 不一定平行D .a 与b 相交8.如图,在ABC 中,D ,E 分别是AB ,AC 边的中点,连接BE ,DE .若2BDE S =△,则BCE S的值为A .2B .4C .6D .89.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是A .x <0B .x <1C .0<x <1D .x >110.如图,将□ABCD 沿对角线AC 折叠,使点B 落在'B 处,若1240︒∠=∠=,则B =( )A .60︒B .100︒C .110︒D .120︒11.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF∥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:∥BE 平分∥CBF ;∥CF 平分∥DCB ;∥BC =FB ;∥PF =PC .其中正确结论的个数为( )A .1B .2C .3D .412.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是 A .1201806x x =+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 二、填空题13.不等式9﹣3x >0的非负整数解是_____. 14.若分式33x x --的值为零,则x =_______.15.若方程2111x m x x ++=--有一个增根,则m =_____. 16.若不等式组341x x x n +<-⎧⎨>⎩的解集是x >3,则n 的值是 ___.17.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A 对应点A′的坐标为____.18.如图所示,在∥ABC 中,∥C =90°,D 是CA 延长线上一点,∥BDC =15°,AD =AB =8,则BC =___.19.如图,一次函数1y kx b =+和2y mx n =+交于点A ,则kx b mx n +>+的解集为___.20.如图,在∥ABC 中,AB =AC ,AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∥ABC, 则∥A =________________ °.三、解答题21.分解因式:2x 2﹣12x+18.22.解不等式组()32226131x x x x -<+⎧⎨-≥--⎩. 23.解方程:2316111x x x +=+--. 24.先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.25.我们把依次连接任意四边形各边中点得到的四边形叫做中点四边形. 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,依次连接各边中点得到中点四边形EFGH . (1)这个中点四边形EFGH 的形状是____________; (2)证明你的结论.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,. (1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △; (2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.27.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元,求甲、乙两种款型的T 恤衫各购进多少件?28.如图,在∥ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若∥CMN 的周长为15cm ,求AB 的长; (2)若70MFN ∠=︒,求MCN ∠的度数.29.已知:如图,在平行四边形ABCD 中,点F 在AB 的延长线上,且BF=AB ,连接FD ,交BC 于点E . (1)说明∥DCE∥∥FBE 的理由; (2)若EC=3,求AD 的长.30.如图,在四边形ABCD 中,//AD BC ,6BC =厘米,9AD =厘米,点P ,Q 分别从点A ,C 同时出发,点P 以1厘米/秒的速度由点A 向点D 运动,点Q 以2厘米/秒的速度由点C 向点B 运动.当一点到达终点时,两点均停止运动. (1)经过几秒四边形ABQP 为平行四边形?(2)经过几秒直线PQ 将四边形ABCD 截出一个平行四边形?参考答案1.A2.A3.A4.C5.C6.B7.D8.B9.B10.D11.D12.C13.0、1、2【详解】解:9﹣3x>0,∥﹣3x>﹣9,∥x<3,∥x的非负整数解是0、1、2.故答案为0、1、2.14.-3【详解】根据题意得|x|-3=0且x-3≠0,解|x|-3=0得x=3或-3,而x-3≠0,所以x=-3.故答案为-3.15.2.【详解】解:去分母得:x+2=m+1,由分式方程有增根,得到x ﹣1=0,即x =1, 把x =1代入整式方程得:m+1=3, 解得:m =2, 故答案为:2 16.3 【详解】解:解不等式341x x +<-得:43x >, 不等式组的解集为3x >,3n ∴=.故答案为:3. 17.(1,-1) 【详解】解:将点A (-3,2)先向右平移4个单位,再向下平移3个单位, 即把A 点的横坐标加4,纵坐标减3即可,即A′的坐标为(1,-1). 故答案为:(1,-1). 18.4 【详解】 解:8AD AB ==,15ABD BDC ∴∠=∠=︒, 30BAC ABD BDC ∴∠=∠+∠=︒,在ABC ∆中,90C ∠=︒,142BC AB ∴==. 故答案为:4. 19.1x > 【详解】解:由函数图象可得:kx b mx n +>+的解集为:1x >, 故答案为:1x >. 20.36.【详解】试题分析:∥AB =AC , ∥∥C =∥ABC ,∥AB 的垂直平分线MN 交AC 于D 点. ∥∥A =∥ABD , ∥BD 平分∥ABC , ∥∥ABD =∥DBC , ∥∥C =2∥A =∥ABC , 设∥A 为x ,可得:x+x+x+2x =180°, 解得:x =36°, 故答案为36.点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案. 21.2(x ﹣3)2. 【详解】原式=2(x 2﹣6x+9) =2(x ﹣3)2. 22.﹣1≤x <4. 【详解】解不等式3x ﹣2<2x+2,得:x <4, 解不等式6﹣x≥1﹣3(x ﹣1),得:x≥﹣1, 则不等式组的解集为﹣1≤x <4. 23.2x = 【详解】 解:2316111x x x +=+-- 两边同时乘以(x+1)(x -1)得: 3(x -1)+(x+1)=6,3x -3+x+1=6, 4x=8, x=2,检验:当x=2时,(x+1)(x -1)≠0, ∥x=2是原方程的根. 24.21a a --,2 【详解】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a 的值时,不能使原分式没有意义,即a 不能取2和-2. 试题解析:原式=232a a +-+·2(2)(2)(1)a a a +--=21a a --当a=0时,原式=21a a --=2. 考点:分式的化简求值. 25.(1) 平行四边形;(2)见解析. 【详解】试题分析:(1)根据四边形的形状,及三角形中位线的性质可判断出四边形EFGH 是平行四边形;(2)连接AC 、利用三角形的中位线定理可得出HG=EF 、EF∥GH ,继而可判断出四边形EFGH 的形状; 试题解析:(1)平行四边形. (2)证明:连接AC ,∥E 是AB 的中点,F 是BC 的中点, ∥EF∥AC ,EF=12AC . 同理HG∥AC ,HG=12AC . ∥EF∥HG ,EF=HG .∥四边形EFGH 是平行四边形. 26.(1)见解析;(2)见解析 【详解】即111A B C △、222A B C △是所求作的三角形.27.甲种购进60件,乙种购进40件. 【详解】解:设乙种购进x 件,则甲种购进1.5x 件, 根据题意,得:78001.5x +30=6400x, 解得:x =40,经检验x =40是原分式方程的解, 1.5x =60,答:甲种购进60件,乙种购进40件.28.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒. 【详解】解:(1)∥DM ,EN 分别垂直平分AC 和BC ∥AM CM =,CN NB = ∥∥CMN 的周长为15cm ∥15CM CN MN cm ++= ∥15AM BN MN cm ++= ∥15AB cm = AB 的长为15cm(2)由(1)得AM CM==,CN NB∥A ACM∠=∠∠=∠,B BCN在MNF中,70∠=︒MFN∥110∠+∠=︒FMN FNM根据对顶角的性质可得:FMN AMD∠=∠,FNM BNE∠=∠在Rt ADM∠=︒-∠=︒-∠A AMD FMN△中,9090在Rt BNE中,9090∠=︒-∠=︒-∠B BNE FNM∥909070A B FMN FNM∠+∠=︒-∠+︒-∠=︒∥70∠+∠=︒MCA NCB在ABC中,70∠+∠=︒A B∥110∠=︒ACB∥()40∠=∠-∠+∠=︒MCN ACB MCA NCB29.(1)证明见解析(2)6【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∥CDE=∥F,又由BF=AB,即可利用AAS,判定∥DCE∥∥FBE.(2)由(1),可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长.(1)证明:∥四边形ABCD是平行四边形,∥AB=DC,AB∥DC.∥∥CDE=∥F.又∥BF=AB,∥DC=FB.在∥DCE和∥FBE中,∥∥CDE=∥F,∥CED=∥BEF,DC=FB,∥∥DCE∥∥FBE(AAS).(2)解:∥∥DCE∥∥FBE,∥EB=EC.∥EC=3,∥BC=2EB=6.∥四边形ABCD是平行四边形,∥AD=BC.∥AD=6.30.(1)2秒;(2)2秒或3秒【解析】(1)设t秒后四边形ABQP是平行四边形;根据题意得:AP=t厘米,CQ=2t厘米,由AP=BQ得出方程,解方程即可;(2)由(1)知,2秒时四边形ABQP是平行四边形,第二种情况:四边形DCQP 是平行四边形,根据题意得:AP=x厘米,CQ=2x厘米,则PD=(9-x)厘米,进而可得方程2x=9-x,再解即可.【详解】解:(1)设经过t秒四边形ABQP是平行四边形,根据题意,得AP=t厘米,CQ=2t厘米,则BQ=(6-2t)厘米,∥AD∥BC,∥当AP=BQ时,四边形ABQP是平行四边形,∥t=6-2t,解得t=2,即经过2秒四边形ABQP为平行四边形;(2)由(1)知,经过2秒四边形ABQP是平行四边形,设经过x秒直线PQ将四边形ABCD截出另一个平行四边形DCQP,根据题意,得AP=x厘米,CQ=2x厘米,则PD=(9-x)厘米,∥AD∥BC,∥当CQ=PD时,四边形DCQP是平行四边形,∥2x=9-x,解得x=3.综上,经过2秒或3秒直线PQ将四边形ABCD截出一个平行四边形.。
期末达标测试卷一、选择题(每题3分,共30分)1.若分式x 2-4x 的值为0,则x 的值是( )A .2或-2B .2C .-2D .02.【2021·牡丹江】下列美术字中,既是轴对称图形又是中心对称图形的是( )3.下列式子从左到右的变形中,属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x (x -2)+1C .a 2-b 2=(a +b )(a -b )D .mx +my +nx +ny =m (x +y )+n (x +y )4.【2021·丽水】若-3a >1,两边都除以-3,得( )A .a <-13B .a >-13C .a <-3D .a >-35.【2022·张家界】把不等式组⎩⎨⎧x +1>0,x +3≤4的解集表示在数轴上,下列选项正确的是( )6.【2022·雅安】在平面直角坐标系中,点(a +2,2)关于原点的对称点为(4,-b ),则ab 的值为( ) A .-4 B .4C .12D .-127.【2022·山西】化简1a -3-6a 2-9的结果是( ) A.1a +3 B .a -3 C .a +3 D.1a -3 8.在▱ABCD 中,对角线AC ,BD 交于点O ,下列结论不一定...成立的是( ) A .∠ABO =∠CDO B .∠BAD =∠BCDC .AB =CDD .AC ⊥BD9.【教材P 132复习题T 12变式】为了防止疫情扩散,确保人民健康,某区计划开展全员核酸检测,甲、乙两个检测队分别负责A,B两个生活区的核酸检测.已知A生活区参与核酸检测的共有3 000人,B生活区参与核酸检测的共有2 880人,乙检测队因工作原因比甲检测队晚开始检测10分钟.已知乙检测队的检测速度是甲检测队的1.2倍,结果两个检测队同时完成检测,设甲检测队每分钟检测x人,根据题意,可以得到的方程是()A.2 880x=3 0001.2x+10 B.3 000x=2 8801.2x+16C.3 000x=2 8801.2x D.3 000x=2 8801.2x+1010.【2022·百色】活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如已知△ABC中,∠A=30°,AC=3,∠A所对的边为3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2 3 B.23-3C.23或 3 D.23或23-3二、填空题(每题3分,共24分)11.【2022·金华】因式分解:x2-9=____________.12.【2022·福建】如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为________.(第12题)(第15题)(第16题)(第17题)13.计算mm2-1-11-m2的结果是__________.14.【教材P156例2改编】一个多边形的内角和是外角和的2倍,这个多边形的边数是________.15.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是边AB的垂直平3分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________. 16.如图,已知函数y =kx +2与函数y =mx -4的图象交于点A ,根据图象可知不等式kx +2<mx -4的解集是__________.17.如图,将△ABC 绕点C 按顺时针方向旋转20°,B 点落在B′的位置,A 点落在A ′的位置,若AC ⊥A′B ′,则∠BAC =________. 18.【2022·齐齐哈尔】若关于x 的分式方程1x -2+2x +2=x +2m x 2-4的解大于1,则m 的取值范围是__________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.【2022·梧州】解方程:1-23-x =4x -3.20.【2022·常德】解不等式组:⎩⎪⎨⎪⎧5x -1>3x -4,-13x ≤23-x .21.【2022·盘锦】先化简,再求值:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1,其中x =|-2|+1.22.【2021·达州】如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.23.【2023·云南大学附属中学模拟】如图,在平行四边形ABCD中,F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.24.【2022·聊城】为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3 600米的街道地下管网时,每天的施工效率比原计划提高了20%.按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?25.【动态探究题】点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点,连接EF.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否仍然成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,请说明理由;如果变化,请直接写出EF,BE,CF之间的数量关系.5答案一、1.A 2.C 3.C 4.A 5.D 6.D 7.A 8.D 9.D10.C 【点拨】如图,满足已知条件的三角形为△ABC 和△AB ′C ,其中CB ′=CB ,作CH ⊥AB 于H . ∴B ′H =BH . ∵∠A =30°, ∴CH =12AC =32.∴AH =AC 2-CH 2=32 3.在Rt △CBH 中,由勾股定理得BH =BC 2-CH 2=3-94=32,∴AB =AH +BH =332+32=23,AB ′=AH -B ′H =AH -BH =332-32= 3.二、11.(x +3)(x -3) 12.6 13.1m -114.6 15.16 16.x <-3 17.70° 18. m >0且m ≠1【点思路】解分式方程,得x =m +1.经检验,当m +1≠2,m +1≠-2,即m ≠1且m ≠-3时,x =m +1是原分式方程的解.根据题意,得m +1>1,所以m >0且m ≠1. 三、19.解:去分母,得x -3+2=4,解得x =5.检验:当x =5时,x -3≠0. 所以x =5是原分式方程的根. 20.解:⎩⎪⎨⎪⎧5x -1>3x -4,①-13x ≤23-x .②7解不等式①,得x >-32; 解不等式②,得x ≤1.所以这个不等式组的解集为-32<x ≤1. 21.解:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1=x -3(x +1)(x -1)·(x +1)2x -3-⎝⎛⎭⎪⎫1x -1+x -1x -1 =x +1x -1-x x -1=1x -1. ∵x =|-2|+1=2+1, ∴原式=12+1-1=12=22.22.解:(1)如图,△A 1B 1C 1即为所求.(2)如图所示.S △A 1C 1C 2=8×4-12×3×2-12×2×8-12×4×5=11. 23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ∴AD ∥BE . ∴∠ADF =∠BEF . ∵F 是AB 的中点, ∴AF =BF .在△ADF 和△BEF 中,⎩⎨⎧∠ADF =∠BEF ,∠AFD =∠BFE ,AF =BF ,∴△ADF ≌△BEF (AAS). ∴AD =BE . 又∵AD ∥BE ,∴四边形AEBD 是平行四边形.(2)解:如图,过点D 作DG ⊥BC 于点G ,过点B 作BH ⊥CD 于点H . ∵BD =BC =5,CD =6, ∴CH =DH =12CD =3. ∴BH =BC 2-CH 2=4. ∵S △BCD =12BC ·DG =12CD ·BH , ∴DG =CD ·BH BC =6×45=245. ∵四边形AEBD 是平行四边形, ∴BE =AD . ∴BE =BC =5.∴S 平行四边形AEBD =BE ·DG =5×245=24.24.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x米.由题意得3 600x - 3 600(1+20%)x =10,解得x =60.经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米. (2)设以后每天改造管网还要增加m 米. 由题意得(40-20)(72+m )≥3 600-72×20, 解得m ≥36.答:以后每天改造管网至少还要增加36米.25.(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴∠AEF=∠AFE.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF(SAS).∴DE=DF,∠BDE=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴△DEF是等边三角形,∠BDE=∠CDF=30°.∴DE=DF=EF,BE=12DE=12DF=CF.∴BE+CF=12DE+12DF=EF,即EF=BE+CF.(2)解:仍然成立.理由如下:如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBE=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).9∴DF=DF′,∠BDF′=∠CDF.∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠CDF=60°.∴∠EDB+∠BDF′=∠EDF′=60°.∴∠EDF′=∠EDF.又∵DE=DE,∴△EDF′≌△EDF(SAS).∴EF=EF′=BE+BF′=BE+CF.(3)解:结论发生变化.EF=CF-BE.【点要点】利用旋转解决问题时要注意以下几点:1.旋转中的变(图形的位置)与不变(图形的形状、大小);2.旋转前后的对应关系(顶点、边、角);3.旋转过程中的相等关系.。
北师大版八年级年级数学下册期末综合复习测试题考试时间:120分钟满分150分一、单选题(本大题共10小题,每小题4分,总分40分)1.下列生活中的现象,属于平移的是( )A.摩天轮在运行B.抽屉的拉开C.坐在秋千上人的运动D.树叶在风中飘落2.如果a>b,那么一定有am<bm,则m的取值可以是( )A.﹣10B.10C.0D.无法确定3.如图,Rt△ABC的斜边AB的垂直平分线MN与AC交于点M,∠A=15°,BM=2,则△AMB的面积为( )A.1B.2C.4D.54.若x2+kx﹣15能分解为(x+5)(x﹣3),则k的值是( )A.﹣2B.2C.﹣8D.85.算经之首《九章算术》中有这样一题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门一十四步,折而西行一千七百七十五步见木.问邑方几何?”其大意为“今有正方形小城,不知其大小,东南西北城墙正中央各开有一城门.出北城门20步处有一棵树,出南城门14步,转而西行1775步恰好能看见那棵树.问正方形小城的边长是多少?”若设正方形小城的边长为x步,则所列方程正确的是( )A.20x+14=x1775B.2020+x+14=x1775C.20x+14=12x1775D.2020+x+14=12x17756.如图,▱ABCD中,已知A(﹣1,2),C(2,﹣1),D(3,2),则点B的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣2)C .(﹣3,﹣1)D .(﹣2,﹣1)7.已知不等式组{x−m >1x +n <2的解集是﹣2<x <0,则(m +n )2024=( )A .2024B .1C .0D .﹣18.如图,在四边形ABCD 中,E ,F 分别是AD ,BC 的中点.若AB =6,CD =8,∠ABD =30°,∠BDC =120°,则EF 的长是( )A .3B .125C .5D .49.自然数a ,b ,c ,d 满足1a 2+1b 2+1c 2+1d 2=1,则1a 2+1b 3+1c 4+1d 5等于( )A .14B .38C .716D .153210.如图,在△ABC 中,∠ACB =90°,∠CAB =30°,AC =63,D 为AB 上一动点(不与点A 重合),△AED 为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( )A .23B .6C .33D .9二、填空题(本大题共5小题,每小题4分,总分20分)11.因式分解:3a 2﹣18a +27= .12.平面直角坐标系中,若点A (a ,3)与B (﹣2,b )关于原点对称,则a +b = .13.黄河流域两岸地带培育的大红枣,学名“木枣”,自古以来就被列为“五果”(桃、李、梅、杏、枣)之一“家家利”超市购进一批大红枣,一箱的进价为18元,标价为21元,在春节期间,该超市准备打折销售,但要保证利润率不低于5%,则至多可以打 折.14.若关于x的一元一次不等式组{2x+13≤34x−2<3x+a 的解集为x≤4,且关于y的分式方程a−8y+2−yy+2=1的解均为负整数,则所有满足条件的整数a的值之和是 .15.如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB=30°;③DF=2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是 .(填序号)三、解答题(本大题共11小题,总分90分)16.分解因式:8(x2﹣2y2)﹣x(7x+y)+xy.17.解不等式组:{7x−14≤0①2(x+3)>x+4②,并把它的解集在数轴上表示出来.18.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.19.如图,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B +∠C =90°,将AB ,CD 分别平移到EF 和EP 的位置.(1)求证:△EFP 为直角三角形.(2)若AD =5,CD =6,BC =15,求AB 的长.20.先化简:(1−4x +3)÷x 2−2x +12x +6,再从﹣3,1,2中选取一个合适的数作为x 的值代入求值.21.如图,E ,F 分别为▱ABCD 的边AD ,BC 的中点,G ,H 是对角线BD 上的两点,且BG =DH ,连接EG ,HF .求证:△BFH ≌△DEG .22.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2x的不变值是 ,A= ;(2)已知代数式x2﹣bx+b.①若A=0,求b的值;②若1≤A≤2,b为整数,求所有整数b的和.23.某商店欲购进A、B两种化妆品,用160元购进的A种化妆品与用240元购进的B种化妆品的数量相同,每件B种化妆品的进价比A种化妆品的进价贵10元.(1)求A、B两种化妆品每件的进价分别为多少元?(2)若该商店A种化妆品每件售价24元,B种化妆品每件售价35元,准备购进A、B两种化妆品共100件,且这两种化妆品全部售出后总获利高于468元,则最多购进A种化妆品多少件?24.如图,直线l1:y1=kx+a分别交x轴,y轴于点A(﹣2,0),B(0,1).直线l2:y2=﹣2x+b分别交x轴,y轴于点C,D,与直线l1相交于点E,已知OB=13 OC.(1)求直线l1的表达式;(2)求三角形ACE的面积;(3)直接写出y1>y2时,x的取值范围.25.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.26.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB (填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).参考答案一、单选题(本大题共10小题,每小题4分,总分40分)1-5.BAABD 6-10.DBCDB.二、填空题(本大题共5小题,每小题4分,总分20分)11.3(a﹣3)2.12.﹣1.13.九.14.12.15.①③④.三、解答题(本大题共11小题,总分90分)16.解:(1)原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).(2){7x−14≤0①2(x+3)>x+4②,由①得7x≤14,则x≤2,由②得2x+6>x+4,则x>﹣2,故原不等式组的解集为:﹣2<x≤2,在数轴上表示其解集如下:17.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∠BAD=∠CAD,∵BE⊥AC,∴∠BEC=∠ADC=90°,∴∠CBE=90°﹣∠C,∠CAD=90°﹣∠C,∴∠CBE=∠CAD,∴∠CBE=∠BAD.18.(1)证明:由平移的性质得AB ∥EF ,CD ∥EP ,∴∠B =∠EFP ,∠C =∠EPF ,∵∠B +∠C =90°,∴∠EFP +∠EPF =90°,∴∠FEP =90°,∴△EFP 是直角三角形;(2)解:由平移的性质得:AB =EF ,AE =BF ,ED =CP ,∴AD =AE +DE =BF +CP ,∵AD =5,BC =15,CD =6,∴PF =BC ﹣BF ﹣CP =BC ﹣AE ﹣DE =BC ﹣AD =10,EP =6,在Rt △EFP 中,由勾股定理得EF =PF 2−EP 2=102−62=8,∴AB =8.19.解:(1−4x +3)÷x 2−2x +12x +6=x +3−4x +3•2(x +3)(x−1)2 =x−1x +3•2(x +3)(x−1)2 =2x−1,∵x +3≠0,x ﹣1≠0,∴x ≠﹣3,x ≠1,∴当x =2时,原式=22−1=2.20.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC =AD ,∴∠HBF =∠GDE .∵E ,F 分别为AD ,BC 的中点,∴BF =DE ,∵BG =DH ,∴BG +GH =DH +GH ,∴BH =DG ,在△BFH和△DEG中,{BF=DE∠HBF=∠EDGBH=DG,,∴△BFH≌△DEG(SAS).21.解:( )1由题意得x2﹣2x=x,解得:x1=0,x2=3,∴代数式x2﹣2x的不变值是0,3;∴A=3﹣0=3,故答案为:0,3;3;(2)①由题意得x2﹣bx+b=x,即x2﹣(b+1)x+b=0,∵A=0,∴关于x的一元二次方程x2﹣(b+1)x+b=0只有一个实数根,∴Δ=[﹣(b+1)]2﹣4b=0,解得:b=1;②由题意得x2﹣bx+b=x,即x2﹣(b+1)x+b=0,设方程x2﹣(b+1)x+b=0的两根为x1,x2,∴x1+x2=b+1,x1x2=b,∴(x1−x2)2=(x1+x2)2−4x1x2=(b+1)2−4b=(b−1)2,∴A=|b﹣1|,∵1≤A≤2,∴1≤|b﹣1|≤2,b为整数,∴当b<1时,可得1≤1﹣b≤2,解得:﹣1≤b≤0;当b≥1时,可得1≤b﹣1≤2,解得:2≤b≤3;∴所有整数b的值为﹣1,0,2,3,∴所有整数b的和为﹣1+0+2+3=4.22.解:(1)设A种化妆品每件的进价为x元,则B两种化妆品每件的进价为(x+10)元,由题意得:160x=240x+10,解得:x =20,经检验,x =20是原方程的解,且符合题意,则x +10=30,答:A 、B 两种化妆品每件的进价分别为20元、30元;(2)设购进A 种化妆品y 件,则购进B 种化妆品(100﹣y )件,由题意得:(24﹣20)y +(35﹣30)(100﹣y )>468,解得:y <32,答:最多购进A 种化妆品31件.23.如图,直线l 1:y 1=kx +a 分别交x 轴,y 轴于点A (﹣2,0),B (0,1).直线l 2:y 2=﹣2x +b 分别交x 轴,y 轴于点C ,D ,与直线l 1相交于点E ,已知OB =13OC .(1)求直线l 1的表达式;(2)求三角形ACE 的面积;(3)直接写出y 1>y 2时,x 的取值范围.解:(1)根据题意得{−2k +a =0a =1,解得{k =12a =1,∴直线l 1的表达式为y 1=12x +1;(2)∵B (0,1),∴OB =1,∵OB =13OC ,∴OC =3OB =3,∴C (3,0),把C(3,0)代入y2=﹣2x+b得﹣6+b=0,解得b=6,∴y2=﹣2x+6,联立{y=12x+1y=−2x+6,{x=2y=2,∴E(2,2),∵A(﹣2,0),∴S△AEC=12×5×2=5;(3)∵B(0,1),∴OB=1,∵OB=13 OC,∴OC=3OB=3,∴C(3,0),把C(3,0)代入y2=﹣2x+b得﹣6+b=0,解得b=6,∴y2=﹣2x+6,解不等式12x+1>﹣2x+6得x>2,即y1>y2时,x的取值范围为x>2.24.(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴AD =12OB ,OD =BD =12OB ∴DO =DA ,∴∠DAO =∠DOA =30°,∠EOA =90°,∴∠AEO =60°,又∵△OBC 为等边三角形,∴∠BCO =∠AEO =60°,∴BC ∥AE ,∵∠BAO =∠COA =90°,∴CO ∥AB ,∴四边形ABCE 是平行四边形;(2)解:设OG =x ,由折叠可得:AG =GC =8﹣x ,在Rt △ABO 中,∵∠OAB =90°,∠AOB =30°,BO =8,∴AO =BO •cos30°=8×32=43,在Rt △OAG 中,OG 2+OA 2=AG 2,x 2+(43)2=(8﹣x )2,解得:x =1,∴OG =1.25.解:(1)当E 为AB 的中点时,AE =DB ;(2)AE =DB ,理由如下,过点E 作EF ∥BC ,交AC 于点F ,证明:∵△ABC 为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,{DE=CE∠DEB=∠ECF,BE=FC∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.。
北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知a b <,则下列不等式中不正确的是()A .44a b<B .44a b ++<C .4a 4b--<D .44a b --<3.当3x =-,下列分式中有意义的是()A .33x x --B .33x x -+C .()()()()3232x x x x ++--D .()()()()3232x x x x -++-4.不等式12x -≥的解集在数轴上表示正确的是()A .B .C .D .5.下列等式从左到右的变形正确的是()A .11b b a a +=+B .2b ab a a=C .22b b a a=D .32b b a a=6.下列多项式中,不能用平方差公式分解的是()A .22x y -B .22x y --C .224x y -D .24x -+7.如图,在菱形ABCD 中,不一定成立的是()A .四边形ABCD 是平行四边形B .AC BD ⊥C .ABD 是等边三角形D .CAB CAD∠=∠8.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是A .6050x x 2=-B .6050x 2x=-C .6050x x 2=+D .6050x 2x=+9.若方程()()211120m m x m x +----=是关于x 的一元二次方程,则m 的值为()A .0B .±1C .1D .-110.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±1二、填空题11.分解因式:2x y y -=_________.12.如图,函数y=2x 和y=ax+4的图象相交于点A(32,3),则不等式2x >ax+4的解集为___.13.已知关于x 的方程21+-x ax -1=0的解是正数,则a 的取值范围是________.14.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,则BC 的长为______cm .15.已知关于x 的分式方程2233x kx x -=+--无解,则k 的值是__________.16.一个n 边形的各内角都等于120︒,则边数n 是_______.17.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的边长为_____.三、解答题18.在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 、O 都是格点.将ABC绕点O 按逆时针方向旋转180︒得到111A B C △,请画出111A B C △.19.(1)解方程:21233x x x-=+--(2)解不等式组64325213x x x x +≥-⎧⎪+⎨--⎪⎩>20.(1)用配方法解方程:2230x x --=(2)用因式分解法解方程:()()224219210x x +--=21.化简226921432a a a a a a a -++-----22.如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E.(1)判断四边形ACED 的形状,并说明理由;(2)若BD=8cm ,求线段BE 的长.23.某物流公司要将300吨物资运往港口码头,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装完.如果已确定调用5辆A 型车,那么至少还需调用B 型车多少辆?24.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路钱一少用10分钟到达.求小明走路线一时的平均速度.25.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .(1)求证:四边形AECF 是矩形;(2)若AB=6,求菱形的面积.26.如图,在ABC 中,点O 是AC 边上的一个动点,过点O 作直线//BC MN ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角ACG ∠的平分线于点F ,连接AF .(1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)在(2)的条件下,ABC 满足什么条件时,四边形AECF 是正方形?并说明理由.参考答案1.D 【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .2.C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a<b,∴4a<4b,故本选项不符合题意;B、∵a<b,∴a+4<b+4,故本选项不符合题意;C、∵a<b,∴-4a>-4b,故本选项符合题意;D、∵a<b,∴a-4<b-4,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.C【解析】【分析】根据分式有意义的条件是分母不为0对各个选项进行判断即可.【详解】解:A、当x=-3时,x-3=0,故A不符合;B、当x=-3时,x+3=0,故B不符合;C、当x=-3时,(x-3)(x-2)≠0,故C符合;D、当x=-3时,(x+3)(x-2)=0,故D不符合;故选:C.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.4.A【解析】先求出已知不等式的解集,然后表示在数轴上即可.【详解】不等式1-x≥2,解得:x≤-1,表示在数轴上,如图所示:故选:A .【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.5.B 【解析】【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项.【详解】解:A 、根据分式基本性质知道11b b a a ++≠,故选项错误;B 、2b ab a a =,其中a≠0,故选项正确;C 、等式的右边是左边的平方,显然不成立,故选项错误;D 、根据分式的基本性质可得:32b b a ab=(b≠0),故选项错误;故选B .【点睛】此题主要考查了分式的基本性质,关键是熟练掌握分式的基本性质.6.B 【解析】根据平方差公式的结构特点,两平方项的符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、x 2-y 2符合平方差公式,故本选项错误;B 、-x 2与-y 2符号相同,不能运用平方差公式,故本选项正确;C 、4x 2-y 2符合平方差公式,故本选项错误;D 、-4+x 2,符合平方差公式,故本选项错误.故选:B .【点睛】本题主要考查了运用公式法分解因式,熟记平方差公式的结构特点是解本题的关键.7.C 【解析】【分析】菱形是特殊的平行四边形,故A 正确,根据菱形的性质:对角线互相平分且平分对角得B 、D 正确.【详解】因为菱形是特殊的平行四边形,对角线互相垂直平分,且每一条对角线平分一组对角.故选:C.【点睛】考查菱形的性质,熟练掌握菱形的性质定理是解题的关键.8.D 【解析】【详解】试题分析:由乙队每天安装x 台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:6050x 2x=+.故选D .9.D 【解析】【分析】根据一元二次方程的定义解答,(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.所以m 2+1=2,且m-1≠0,解得m 的值只能是-1.【详解】解:∵()()211120m m x m x +----=是关于x 的一元二次方程,∴21012m m -≠⎧⎨+=⎩,解得:m=-1,故选D .【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.B 【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211x x -+的值为零,∴21010x x ⎧-=⎨+≠⎩,解得:x=1,故选B .【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.11.y (x+1)(x ﹣1).【解析】【详解】试题分析:x 2y ﹣y=y (x 2﹣1)=y (x+1)(x ﹣1),故答案为y (x+1)(x ﹣1).考点:提公因式法与公式法的综合运用;因式分解.12.x>3 2【解析】【分析】由于函数y=2x和y=ax+4的图象相交于点A(332,),观察函数图象得到当x>32时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>3 2.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(332,),∴当x>32时,2x>ax+4,即不等式2x>ax+4的解集为x>3 2.故答案为:x>3 2.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.a<-1且a≠-2【解析】【分析】先求得方程的解,再解x>0,求出a的取值范围.【详解】解21+-x ax-1=0得:x=-a-1,∵于x的方程21+-x ax-1=0的解是正数,∴x〉0,即-a-1>0,∴a<-1,当x-1=0时,x=1,代入得:a=-2.此为增根,∴a≠-2,综合上述可得:a<-1且a≠-2.故答案是:a<-1且a≠-2.【点睛】考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.14.6【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后推出△BDC的周长=AC+BC,代入数据进行计算即可得解.【详解】∵DE是AB的中垂线,∴AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△BDC的周长为16cm,AC=10cm,∴10+BC=16,解得BC=6.故答案为6.【点睛】此题考查等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.15.1【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x-3=0求出x的值,代入整式方程求出k的值即可.【详解】解:分式方程去分母得:x-2=k+2(x-3),即x=4-k,由分式方程无解得到x-3=0,即x=3,代入整式方程得:3=4-k,解得:k=1,故答案为:1.【点睛】此题考查了分式方程的解,需注意在解分式方程时要考虑分母不为0.16.6【解析】【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∴每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.17.2【解析】【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【详解】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE 和△EAF′中''AF AF FAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAE ≌△EAF′(SAS ),∴EF=EF′,∵△ECF 的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE ≌△EAF′是解题关键.18.见解析【解析】【分析】连接AO 并延长,然后截取OA 1=OA ,则A 1就是A 的对应点,同样可以作出B 、C 的对应点,然后顺次连接即可.【详解】解:所作图形111A B C △如图所示.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.(1)x=5;(2)45<x≤3【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解:(1)21233x x x-=+--去分母得:()2231x x -=--,去括号得:2261x x -=--,移项合并得:x=5,经检验:x=5是原方程的解,∴原方程得解是x=5;(2)64325213x x x x +≥-⎧⎪⎨+--⎪⎩①>②,解不等式①得:x≤3,解不等式②得:x >45,∴不等式组的解集为:45<x≤3.【点睛】本题考查了解分式方程和解一元一次不等式组,解题的关键是掌握相应的解法.20.(1)x 1=-1,x 2=3;(2)x 1=110,x 2=52【解析】【分析】(1)方程两边加上4,再把方程左边分解得到()214x -=,然后利用直接开平方法求解;(2)利用平方差公式进行因式分解,然后求解即可.【详解】解:(1)2230x x --=,∴2214x x -+=,∴()214x -=,∴x-1=±2,解得:x 1=-1,x 2=3;(2)()()224219210x x +--=,()()2242630x x +--=,()()426342630x x x x ++-+-+=,()()101250x x --+=,10x-1=0或-2x+5=0,解得:x 1=110,x 2=52.【点睛】本题考查了解一元二次方程—因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了配方法解一元二次方程.21.22a --【解析】【分析】先将各分子和分母因式分解,再约分,最后计算减法.【详解】解:226921432a a a a a a a -++-⋅----=()()()23212232a a a a a a a -+-⋅-+---=3122a a a a -----=22a --【点睛】本题考查了分式的混合运算,解题的关键掌握运算法则以及因式分解的运用.22.(1)四边形ACED 是平行四边形.理由如下见解析(2).【解析】【分析】(1)根据正方形的对边互相平行可得AD ∥BC ,即为AD ∥CE ,然后根据两组对边互相平行的四边形是平行四边形解答.(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE ,再根据正方形的边长等于对角线的2倍求出BC ,然后求出BE 即可.【详解】解:(1)四边形ACED 是平行四边形.理由如下:∵四边形ABCD 是正方形,∴AD ∥BC ,即AD ∥CE.∵DE ∥AC ,∴四边形ACED 是平行四边形.(2)由(1)知,BC=AD=CE=CD ,∵BD=8cm ,∴BC=2BD=2cm ,∴.23.14.【解析】【详解】试题分析:设还需要调用B 型车x 辆,根据关系式为:5辆A 型车的装载量+x 辆B 型车的装载量≥300列不等式进行求解即可得.试题解析:设还需要调用B 型车x 辆,根据题意得:20×5+15x≥300,解得x≥1313,由于x 是车的数量,应为整数,所以x 的最小值为14,答:至少需要调用14辆B 型车.【点睛】本题考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.24.50千米/小时【解析】【分析】设小明走路线一的平均速度是x 千米/小时,则小明走路线二的平均速度是x (1+80%)千米/小时,根据走路线二比走路线一少用10分钟建立方程求出其解即可.【详解】解:设小明走路线一的平均速度是x 千米/小时,则走路线二的平均速度是x (1+80%)千米/小时,由题意,得()253010180%60x x =++,解得:x=50,经检验,x=50是原方程的解.故小明走路线一的平均速度是50千米/小时.答:小明走路线一的平均速度是50千米/小时.【点睛】本题考查了列分式方程解关于行程问题的运用题运用及分式方程的解法的运用,解答时根据条件找到等量关系建立方程是关键,解分式方程要验根是不可少的步骤.25.(1)证明见解析;(2)【解析】【详解】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD ,EC=12BC ,∵四边形ABCD 是菱形,∴AD ∥BC 且AD=BC ,∴AF ∥EC 且AF=EC ,∴四边形AECF 是平行四边形,又∵∠AEC=90°,∴四边形AECF 是矩形;(2)在Rt △ABE 中,AE==,所以,S 菱形ABCD 考点:1.菱形的性质;2..矩形的判定.26.(1)见解析;(2)当点O 运动到AC 的中点时,四边形AECF 是矩形,理由见解析;(3)ABC 满足ACB ∠为直角时,四边形AECF 是正方形,理由见解析.【解析】【分析】(1)由平行线的性质和角平分线的定义得出32∠=∠,13∠=∠,得出EO=CO ,FO=CO ,即可得出结论;(2)先证明四边形AECF 是平行四边形,再由对角线相等,即可得出结论;(3)由//BC MN ,得出AOE ACB ∠=∠,当90ACB ∠=︒时,AC EF ⊥即可.【详解】(1)证明:如图,∵//BC MN ,∴32∠=∠.又∵CF 平分ACG ∠,∴12∠=∠,∴13∠=∠,∴FO CO =,同理,EO CO =,∴EO FO =.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形,证明如下:当点O 运动到AC 的中点时,AO CO =.又∵EO FO =,∴四边形AECF 是平行四边形,由(1)可知,FO CO =,∴AO CO EO FO ===,∴AO CO EO FO +=+,即AC EF =,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.在(2)的条件下,ABC 满足ACB ∠为直角时,四边形AECF 是正方形.理由:由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形.∵//BC MN ,∴AOE ACB ∠=∠,当90ACB ∠=︒时,90AOE ∠=︒,即AC EF ⊥,∴四边形AECF 是正方形.【点睛】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、正方形的性质;熟练掌握平行线的性质和矩形、正方形的判定方法,并能进行推理论证是解决问题的关键.。
北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a 为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1B.x<1C.x>2D.x<22、如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3、下列命题:(1)如果a<0,b>0,那么;(2)同角的补角相等;(3)同位角相等;(4)如果,那么;(5)有公共顶点且相等的两个角是对顶角。
其中正确的个数是()A.1B.2C.3D.44、如图,AD是正五边形ABCDE的一条对角线,则∠BAD等于()A.72°B.108°C.36°D.62°5、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<46、已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.47、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A. B. C. D.8、若将分式中的x和y都扩大到原来的2倍,那么分式的值()A.扩大到原来的4倍B.扩大到原来的2倍C.不变D.缩小到原来的.9、如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )A. B. C. D.10、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.511、如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A. B. C. D.12、如图,中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B. C.D.13、如图,△ABC的顶点都在⊙O上,∠BAO=50°,则∠C的度数为()A.30°B.40°C.45°D.50°14、如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是( )A.42°B.40°C.36°D.32°15、若整数使得关于的不等式组的解集为,且关于的分式方程的解为负数,则所有符合条件的整数的和为()A.0B.-3C.-5D.-8二、填空题(共10题,共计30分)16、因式分解:________ .17、若m+n=2,计算6﹣2m﹣2n=________.18、如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有________个.19、如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为________.20、如图,在矩形中,,,那么的度数为________.21、若关于的分式方程有增根,则=________ .22、在函数y=中,自变量x的取值范围是________.23、在□ABCD中,若∠A=50°,则∠D的度数为________。
2009—2010八年级下学期数学期末试卷
一、选择题
1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( )
A.20米
B.18米
C.16米
D.15米 2、下列说法正确的是( )
A .所有的等腰三角形都相似 B.所有的直角三角形都相似
C.所有的等腰直角三角形都相似
D.有一个角相等的两个等腰三角形都相似
3、如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的点,DE ∥BC ,并且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( )
(A)32 (B)43 (C)54 (D)9
4
4、某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格那么你估计该厂这20万件产品中合格品约为( ) A .1万件
B .19万件
C .15万件
D .20万件
5、已知04
3
2
≠==c b a ,则c
b a +的值为( ) A.5
4 B.4
5 C.2 D.2
1
6、如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )
A.0.36πm 2
B.0.81πm 2
C.2πm 2
D.3.24πm 2
二、填空题
7、妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查)
8、甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙
甲,则成绩较稳定的同学是 .(填“甲”或“乙”)
9、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.
10、化简:2222
444m mn n m n
-+-= . 11、不等式5(1)31x x -<+的解集是 .
12、如图,DE 与BC 不平行,当AC
AB
= 时,ΔABC 与ΔADE 相似.
13、如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ= .
14、如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在CB 、CD 上滑动,
当CM= 时,ΔAED 与N ,M ,C 为顶点的三角形相似.
15、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与ΔAOB 相似(写出1个满足条件的点的坐标).
三、计算题(共75分)
16. (8分)先化简,再求值:x x x
x x x x ÷--++--221
2122
2其中21=x
17、(8分)解不等式组⎩⎨⎧>+<-0635
12x x ,并把解集在数轴上表示出来。
18、(9分)解分式方程(注意要检验哦):
)
1(5
16++=
+x x x x
19、(10分)如图,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由. (2)求∠1+∠2的度数.
20、(9分)美国NBA 职业篮球赛的火箭队和湖人队在本赛季已进行了5场比寒.将比赛成绩进行统计后,绘制成统计图(如图10-1).请完成以下四个问题:
/场
图10-
2
场次/场
图10-1
(1)在图10-2中画出折线表示两队这5场比赛成绩的变化情况;
(2)已知火箭队五场比赛的平均得分90
,请你计算湖人队五场比赛成绩的平均得分
x
火
(3)就这5场比赛,分别计算两队成绩的极差;
(4)根据上述统计情况,试从平均得分、折线的走势、获胜场次和极差四个方面分别进行简要分析,请预测下一场比赛哪个队更能取得好成绩?
21、(10分)王明同学为了测量河对岸树AB的高度.他在河岸边放一面平面镜MN,他站在C 处通过平面镜看到树的顶端A.如图l-4-33,然后他量得B、P间的距离是56米,C、P 间距离是12米,他的身高是1.74米.
⑴他这种测量的方法应用了物理学科的什么知识?请简要说明; ⑵请你帮他计算出树AB 的高度.
22、(10分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:
已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户. (1)满足条件的方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱.
23、(11分)在ΔABC中,AB=4如图(1)所示,DE∥BC,DE把ΔABC分成面积相等的两部分,
即SⅠ=SⅡ,求AD的长.
如图(2)所示,DE∥FG∥BC,DE、FG把ΔABC分成面积相等的三部分,即SⅠ=SⅡ=SⅢ,求AD的长.
如图(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把ΔABC分成面积相等的n部分,SⅠ=SⅡ=S
=…,请直接写出AD的长.
Ⅲ
八年级月考答案
一选择题
1.B
2.C
3.C
4.B
5.B
6.B
二.填空题
7. 抽样调查 8. 甲 9. 40 10. (m-2n)÷(m+2n) 11. x <3 12. AE ÷AD 13. 1:3:5 14. 55
2
或5 15. (1,0)(答案不唯一) 三计算与证明 16. 解: 原式=
1)
1()
1)(1(2
+-+-x x x 当x=21时原式=-3+1= -2 =
1)
1()
1(+-+x x 17. 解:由(1)可得:x <3
由(2)可得:x >-2
∴原不等式的解集是-2<x <3
把次解集表示在数轴,如下图: 18.解:
)1(516++=+x x x x
5)
1()
1(6+=++x x x x
6x=x+5
X=1
经检验x=1满足方程符合题意不是增根
∴原方程的解就是x=1
19.解:(1)略
(2)(110+90+83+87+80) ÷5=90 (3) 火箭的极差 98-80=18 湖人的极差 110-80=30
(4)综上所述:火箭队发挥平稳 获胜的机率大
20. 解:(1)∵
2
2
=
=AC CF CG AC ,∠C 是⊿ACF 与⊿GCA 的公共角
∴⊿ACF 与⊿GCA 相似 (2)∵AC 是正方形ABCD 的对角线 ∴∠ACB=45° ∵⊿ACF ∽⊿GCA
又∵∠ACB 是⊿ACF 与⊿GCA 的外角 ∴∠1﹢∠2=∠ACB ∴∠1﹢∠2=45°
21. 解:(1)平面镜反射图像入射角等于反射角 (2)∵∠DCP=∠ABP ∠DPC=∠APB ∴⊿DCP ∽⊿ABP
∴
AB DC
BP CP = ∴AB
74.15612= AB=8.12 ∴树高8.12米。
22. 解:(1)造A 型沼气池X 个,B 型的(20-X )个
得方程组:⎩
⎨⎧≥-+≤-+492)20(3018365
)20(2015x x x x
解方程组得79≤≤x x 是整数所以x=7,8,9 所以有3种方案
(2)当x=7时,7×2+(20-7)×3=53万元 当x=8时,8×2+(20-8)×3=52万元 当x=9时,9×2+(20-9)×3=51万元
51<52<53 ∴x=9时花钱最少
∴建A 型9个,B 型11个最省钱
23.(1) (2)
(3)
n
16
2
22
2
121121==∴=∴=∴=AB
AD AB AD SABC S S S 解: 3
34
33
131
13
21==∴=∴=∴
==AB AD AB AD SABC S S S S 解:。