充分条件与必要条件教学设计
- 格式:doc
- 大小:341.50 KB
- 文档页数:5
充分条件与必要条件优秀教学设计优秀的教学设计需要具备充分条件和必要条件。
充分条件是指设计师所提供的教学环境、教学资源和教学手段等具备的有利因素,必要条件则是指设计师所提供的教学要素中必须具备的因素。
首先,充分条件是设计师为学生提供一个良好的教学环境。
这包括教室的布置、教学工具和设备的准备以及课堂氛围的营造等。
例如,在数学教学中,一个充分条件是提供一个安静、整洁、舒适的教室环境,让学生能够集中注意力,提高学习效果。
其次,充分条件还包括充足的教学资源。
这些资源包括教材、教具、多媒体课件等。
设计师可以根据学生的学习需求,选择适合的教材和教具,以提供多样化的学习资源。
例如,在地理教学中,设计师可以准备一些实物地图、模拟器材等,以便学生更好地理解地理知识。
此外,充分条件还包括有效的教学手段和策略。
设计师需要根据学科特点和学生的特点,灵活运用不同的教学策略,以提高学生的学习兴趣和参与度。
例如,在语文教学中,设计师可以通过故事讲解、情景模拟等方式,帮助学生更好地理解和掌握语文知识。
相对应的,以上提到的充分条件也是优秀教学设计的必要条件。
没有这些条件,教学设计就难以成功实施。
例如,如果没有一个良好的教学环境,学生可能会分散注意力,无法集中精力学习;如果教学资源不足,学生可能无法深入了解和掌握所学知识;如果教学手段和策略不当,可能无法激发学生的兴趣,影响学习效果。
除了充分条件和必要条件外,优秀的教学设计还需要具备以下几个方面的特点。
首先,教学目标明确。
设计师需要清楚确定每一个教学活动的目标,使学生能够明确知道自己要达到什么样的学习效果。
其次,教学内容有序。
设计师需要将教学内容按照一定的顺序安排,由浅入深,循序渐进,使学生能够有系统地学习。
再次,教学方法灵活多样。
设计师需要选择合适的教学方法,以适应学生的不同学习风格和需求。
最后,教学评价全面客观。
设计师应该使用多种评价手段,如考试、作业、讨论等,全面了解学生的学习情况和能力水平。
1.2.1 充分条件与必要条件一、教学内容解析:1. 教学内容:“充分条件与必要条件”是在p q⇒时,对p与q之间关系的一种描述,是一个数学概念.“p q⇒”与“p是q的充分条件”、“q是p的必要条件”之间是同一逻辑关系的三种不同描述形式,前者是符号表示,后两者是文字表示.通过对命题真假的判断,研究命题中p与q之间的关系,所以判断充分条件与必要条件的关键是分清条件与结论,再判断命题的真假.考虑到充分条件与必要条件的相对性,在判断上还需关注方向性.另外,充分条件与必要条件和集合知识的联系在丰富知识外延拓展的同时,从“形”上(韦恩图表示集合关系)帮助我们进一步理解充分条件与必要条件的内涵.2. 知识地位:“充分条件与必要条件”是高中人教A版《数学》选修2-1第一章《简单逻辑用语》第二节的内容.逻辑是研究思维规律的学科,逻辑用语在数学中具有重要的作用.学习数学需要全面准确地理解概念,正确地进行表述、判断和推理,这些都离不开对逻辑知识的掌握和运用.而“充分条件与必要条件”是数学中常用的逻辑用语,在数学学科中大量的命题用它们来叙述.“充分条件与必要条件”是在前一节“命题及其关系”的基础产生的新知,也为后续“充要条件”的学习提供了保障.另外,本节课的学习可以对我们已经学习过的数学知识加以巩固和提升,同时能够体现出逻辑用语的工具价值,也可以更好地应用于今后的学习.3. 思想方法:充分条件与必要条件的知识学习过程中蕴含着数学发现中的观察、归纳、总结等方法,在知识的形成与运用中还体现了数学思维的合理性与严密性,以及数形结合的数学思想,这些都是数学的精髓.4. 教学重点:充分条件与必要条件.5. 教学难点:必要条件概念的理解.二、教学目标设置:1. 理解充分条件、必要条件的意义;能正确判断是否是充分条件或必要条件.2. 通过对充分条件与必要条件的研究,使学生掌握有关的逻辑知识,以保证推理的合理性和论证的严密性.3. 通过以学生为主体的教学方法,让学生自己构造数学命题,体验获取知识的感受;4. 通过对充分条件和必要条件与集合间的联系的教学,建立概念间的多元联系,培养同学们多角度审视问题的习惯.三、学生学情分析:1.教学有利因素:学生在初中阶段已经接触过命题、真假命题,高中教材在本节课教学之前安排了命题、命题的形式(若p则q)和四种命题的学习,以及学生日常生活中已有大量逻辑经验的积累都为本节课“充分条件与必要条件”概念的学习奠定了良好的基础.淮南三中高二实验班学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2.教学不利因素:“充分条件与必要条件”是密不可分的、相对的两个概念,以学生已有的知识基础对“充分条件”的理解较为容易,但对“必要条件”概念的理解较为困难.另外,充分条件与必要条件的是一个开放性的知识交汇点,往往涉及其它数学知识或者其它学科知识,对学生其它知识的掌握也有一定要求.3.难点突破策略:通过较为简单易懂的例题、练习、学生活动举例,积累足够的充分条件、必要条件的逻辑体验;循序渐进,再从充分条件、必要条件与集合间的联系上,结合集合的韦恩图表示,直观、形象的理解“必要条件”;最后再从逆否命题与原命题同真假的角度理性认识“必要条件”的概念,帮助学生准确而深刻的理解充分条件与必要条件的概念.四、教学策略分析:鉴于以上分析,为达成课堂教学目标,突出重点、突破难点,课堂教学主要贯彻与执行以下思路:1. 坚持“师为主导,生为主体”的教学理念本节课的教学,教师更多的要站在一个引路人的角度,告诉学生该向哪里走,怎么走,让他们自己去走,让学生更多的亲身体验数学的发现之美.通过独立思考、主动探究、合作交流,使学生切实学好数学知识,提高数学能力.2. 问题引领、启发诱导,注重对学生的思维训练教师通过问题引领、启发诱导,引导学生多角度的审视问题,让学生从不同角度去看待问题,分析问题,思考问题,从而可以使得对一个具体问题理解的更准确、更全面、更深刻.在充分条件与必要条件的概念教学中,为了更好的理解概念,可以通过具体问题引导学生从表达形式(符号表示与文字表示)、通俗语言的描述(有它就行和缺它不行)、不同概念间的联系(充分条件与必要条件和集合间的联系)来辅助概念教学.3. 课堂教学层次鲜明、衔接自然,逐步培养学生数学学习能力整个教学过程划分为七个环节:问题引入、铺垫过渡、新知建构、巩固新知、能力提升、牛刀小试、课堂小结.以问题为主线,为了解决问题,学习新知识,掌握了新知识再来解决问题.这样就把几个环节很自然地联系在一起,也为学生对新事物的普遍认识提供了一般性的指导.五、教学过程:1. 问题引入:问题1:同学们,前面我们讨论了“若p,则q”形式的命题,其中有的命题是真命题,有的命题是假命题,你能分别举出一些这样的命题的例子吗?【设计意图】从学生已有知识体系出发提出问题,在学生的最近发展区构建新知,符合学生普遍认知规律.另外,对于充要条件和必要条件的学习涉及命题的真假,通过具体的例子有助于学生对这两个概念的理解.2. 铺垫过渡:“若p,则q”为真命题,是指由p经过推理可以得出q.这时,我们就说,由p 可推出q,数学讲究简洁美,用符号语言,记作p q⇒.例如:“若1x>”为真命题, 即:“10x>,则0>⇒>”;x x【设计意图】通过对命题的新的表述方式的引入,意在顺利实现由“已有的知识结构”转入“新知构建”的过程.3. 新知建构下面我们探究命题中条件与结论之间的关系.“若p ,则q ”为真命题,由于p 的成立可以使得q 成立,我们就称p 是q 的充分条件,同时称q 是p 的必要条件.定义:一般地,如果有p q ⇒,称p 是q 的充分条件,q 是p 的必要条件. 结合学生之前举例,直观感知概念.从定义可见,“充分条件”、“必要条件”是在“若p ,则q ”为真命题时,对命题中的p 与q 之间关系的一种描述,p 是q 的充分条件,q 是p 的必要条件.例1、下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若3x > ,则2x >;(2)若1x = ,则2430x x -+=;(3)若()f x x =,则()f x 在()-∞+∞,上为增函数;追问问题:对于命题(1)、(2)、(3),我们可不可以称q 是p 的必要条件呢?【设计意图】通过实例分析,将新知(充分条件、必要条件的概念)的构建过程转化为已有知识(命题真假的判断)的应用过程.4. 巩固新知练习1、判断下列问题中,p 是q 的充分条件吗?(1)p : 两圆面积相等; q : 两圆半径相等;(2)p : 22x a b >+ q : 2x ab >;(3)p : a b > q : ac bc >;(4)p : x 为无理数 q : 2x 为无理数;问题:像在(3)(4)两个问题中p 与q 的关系应如何描述?【设计意图】概念的否定是概念理解的重要方面,让学生在直观理解的基础上给出“充分条件”和“必要条件”的否定形式.以帮助学生全面认识和理解概念. 练习2、判断下列各组问题中,q 是p 的必要条件吗?(1)p :3x > q :5x > ;(2)p :a b ⊥ q :0a b = ;(3)p :同位角相等 q :两直线平行 ;(4)p :四边形对角线相等 q :四边形是平行四边形 ;【设计意图】提升学生的认识水平,试图从不同角度帮助同学们理解“充分”和“必要”.总结例1、练习1、练习2:(1)判断p 是不是q 的充分条件,q 是不是p 的必要条件,都是在判断“若p ,则q ”是否为真命题;(2)“p q ⇒”与“p 是q 的充分条件”,“q 是p 的必要条件”之间是“三种表述,一个意思”.问题2:在什么条件下,我们能说q 是p 的充分条件?p 是q 的必要条件? 例2、用“充分条件”或“必要条件”填空:(1)5a >是0a >的______________;(2)四边形的对角线互相垂直是四边形为菱形的________.【设计意图】本例的设计和应用主要目的有:(1)强调“推出”符号的方向性;(2)体会“充分条件”和“必要条件”的不同表述方式;(3)让学生初步体会充分条件与必要条件的四种不同类型,为下节课提前准备.课堂活动:请同学们自己举例给出p 、q 并判断其二者之间存在的是否是充分条件或必要条件的关系.【设计意图】让学生自主构建知识网络,加深对充分条件与必要条件的认识. 教师补充::,:p x Z q x R ∈∈,p q ⇒(p 是q 的充分条件,q 是p 的必要条件)【设计意图】为讨论充分条件、必要条件与集合的联系做铺垫.思考: 充分条件和必要条件与集合之间的联系已知:,:p x A q x B ∈∈,且p q ⇒,集合A 与B 间之间有怎样的关系?(1)在A 中,一定在B 中:p 成立,q 一定成立;有它即可.(2)不在B 中,一定不在A 中:q 不成立,p 一定不成立;缺它不行.【设计意图】从集合关系的角度帮助同学进一步理解“充分条件”和“必要条件”,并建立两者之间的联系,在提升学生对新知识的理解的同时,还可以使得学生对数学知识的掌握达到融会贯通的效果.历史文化:我国战国时期墨子所著《墨经》对充分条件、必要条件的描述: 充分条件:“有之则必然,无之则未必不然”必要条件:“无之则必不然,有之则未必然 ”【设计意图】通过历史文化的学习,增强学生学习数学的兴趣和激发对民族文化的热爱的同时,进一步加深对新知的全面认识.理性认识:追根溯源,其实对必要条件的理解,还可以从逆否命题的角度看待:原命题“若p 则q ”为真命题,其逆否命题“若q ⌝则p ⌝” 也为真命题. 即“q 不成立,则p 一定不成立”.例如: “小明是淮南人,则小明是安徽人”;“小明是淮南人”是“小明是安徽人”的充分条件.“小明不是安徽人,则小明不是淮南人”.“小明是安徽人”是“小明是淮南人”的必要条件.【设计意图】通过原命题与逆否命题的真假联系,从理性上认识必要条件这一难懂的概念认识,加深学生对“必要”二个字的理解,实现难点的有效突破.5. 能力提升例3、 填空(写出一个满足题意的即可)(1)“0ab =”的一个充分条件是 ;(2)“3x <”的一个必要条件是 .练习1、(1)“x a >”是“2x >”的充分条件,求实数a 的取值范围;(2)“x a >”的一个充分条件是“2x >”,求实数a 的取值范围.变式思考:将上述练习中“充分条件”改为“必要条件”,结果又会如何?【设计意图】(1)引导学生观察问题的问法和之前例题有无不同,培养学生的观察能力;(2)从条件判断填空到开放的填写条件有助于彰显学生对问题的理解程度,通过这组练习,可以了解学生“会了什么?”、“还存在什么问题?”,使后面的教学更有针对性!6. 牛刀小试练习:判断下列各组问题中,p 是不是q 的充分条件以及p 是不是q 的必要条件?(1) p : x x = q :20x ≥ ;(2) p :tan 1α= q :4πα=;(3) p : 直线l 与平面α内的两条相交线垂直 q : 直线l 与平面α垂直;(4) p :函数()f x 满足(0)0f = q : 函数()f x 是奇函数. 结合练习,引导学生归纳如下:从练习中我们发现在p 与q 之间存在以下几种关系:(1)p q ⇒且q p ⇒/; (2)p q ⇒/且q p ⇒;(3)p q ⇒且q p ⇒; (4)p q ⇒/且q p ⇒/.对于这几种关系我们应如何描述呢?下节课,我们将解决这一问题.【设计意图】反馈练习的设计,既帮助学生全面掌握本节课的学习内容,再次巩固所学知识和方法,也在前面例3的基础上明确了充要条件涉及的四种类型,为顺利进入下节课的学习打下坚实的基础.7. 课堂小结师生共同回顾本节课的教学过程,小结如下内容:(1)知识内容:①充分条件与必要条件的概念;②充分条件与必要条件的判断;③充分条件和必要条件与集合的联系.(2)思想方法:学会观察、归纳、总结,进行探索发现,注意逻辑推理的合理性和严密性.【设计意图】再现课堂,小结提升,有助于学生明确学习的重点.8. 作业布置(1)(必做题)课本第12页A 组1、2 ,B 组1;(2)(选做题)判断下列命题的真假:①“0a b >>”是“22a b >”的充分条件;②“a b >”是“22ac bc >”的必要条件;③“A B ⊆”是“A B =” 的必要条件;(其中,A B 是集合)④“函数()f x 是奇函数”是“()f x 为幂函数”的充分条件.六、板书设计:七、教学设计说明:“充分条件与必要条件”作为高中数学的重点内容、难点内容.我希望通过本节课的教学,让学生准确地理解这一概念,能简单的运用这一知识,并希望能够通过较为愉悦的课堂环境,使学生保持浓厚的学习兴趣,不要产生畏难情绪.课后,我将根据本节课实际教学过程中出现的问题,在下一课时的教学中作出调整和弥补,并在下一课时中,加强对学生运用知识解决问题环节的训练.《充分条件与必要条件》教学点评安徽省淮南市中小学教研室 苏里阳(淮南市学科带头人)安徽省淮南市第二中学 高长玉(安徽省特级教师)本节课教学主题是充分条件与必要条件概念的理解、判断以及简单应用.代银老师对教学内容的理解深刻、透彻,对学情的分析详尽、细致,教学方法灵活多样,教学思路清晰、自然,教学重点突出,教学难点得到有效突破,课堂教学效果显著.本节课的教学主要有以下五个亮点:1. 尊重学生,关注学生学习体验本节课采用问题引入,从学生的最近发展区搭起“台阶”,通过对学生自己所举例子的研究,分析构建新知,学生以“主人翁”的角色“身临其境”的体验了知识的形成过程.在学生对新知识有足够认知的基础上,将课堂交给学生,让学生自己举例,安排课堂活动,真正体现了教师为主导、学生为主体的科学理念.2. 妙问诱导,关注学生思维训练课堂中许多看似不经意的启发性问题(或是追问),适时的打破原有“平衡”,引领学生寻找新的“平衡点”,不显山不露水的揭示了概念的本质,起到了润物细无声的教学效果,加深了学生对概念的深层理解,创新了思维,提高了认识.3. 注入文化,关注学生情感教育在对概念的理解有足够认识的基础上,教师介绍我国战国时期《墨经》对两个概念的描述,通过古代精辟的概括性语言加深学生对概念理解的同时,领略我国数学历史文化的博大精深,增强了学生的民族自豪感,提高了学生学习兴趣.4. 循序渐进,渗透数学思想方法将充分条件与必要条件与集合建立联系,并通过韦恩图直观认识概念.另外,从原命题与逆否命题的角度,理性论证了概念的内在涵义,帮助学生从“形”“数”的不同维度理解概念.有效突破教学难点,加强了对学生数学思想、方法的渗透.5. 巧设伏笔,串联章节知识网络考虑到下节内容要带领学生学习“充要条件”,教师在“巩固新知”和“小试牛刀”中分别安排了例2和课堂练习题. 这些习题的安排检验了本节所学的同时,也为下一节充要条件的学习做好铺垫、打下基础,可以很好的将本章知识继续“串”下去.教师能站在系统的高度实施教学,体现了教师教学的“大局观”.。
从前有一个牧民,养了几十只羊,白天放牧,晚上赶进一个用柴草和木桩等物围起来的羊圈内。
一天早晨,这个牧民去放羊,发现羊少了一只。
原来羊圈破了个窟窿,夜间有狼从窟窿里钻了进来,把一只羊叼走了。
邻居劝告他说:“赶快把羊圈修一修,堵上那个窟窿吧。
”他说:“羊已经丢了,还去修羊圈干什么呢?”没有接受邻居的好心劝告。
第二天早上,他去放羊,发现又少了一只羊。
原来狼又从窟窿里钻进羊圈,又叼走了一只羊。
这位牧民很后悔没有认直接受邻居的劝告,去及时采取补救措施。
于是,他赶紧堵上那个窟窿,又从整体进行加固,把羊圈修得十分牢固的。
从此,这个牧民的羊就再也没有被野狼叼走过了。
【知识二:充分条件与必要条件】一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可以推出q ,记作p ⇒q ,并且说p 是q 的充分条件(sufficient condition),q 是p 的必要条件(necessary condition).如果“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p ⇏q .此时,我们就说p 不是q 的充分条件,q 不是p 的必要条件.例1 .下列“若p 则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若四边形的两组对角分别相等,则这个四边形是平行四边形。
(2)若两个三角形的三边成比例,则这两个三角形相似。
(3)若四边形为菱形,则这个四边形的对角线互相垂直。
(4)211x x ==若,则 (5)若a =b ,则ac =bc 。
(6)若x ,y 为无理数,则xy 为无理数。
通过问题探究,使学生深入充分条件、必要条件的概念,培养数学抽象的核心素养。
2.下列“ 若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若直线 l 与⊙O 有且仅有一个交点,则 l 为⊙O 的一条切线;(2)若x 是无理数,则x 2也是无理数.3.如图,直线 a 与 b 被直线 l 所截,分别得到了∠1,∠2,∠3和∠4.请根据这些信息,写出几个“a //b ”的充分条件和必要条件.。
1.4.1充分条件与必要条件教学目标1.理解充分条件、必要条件的意义.2.会求(判定)某些简单命题的条件关系.3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.教学知识梳理知识点充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.(1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系.(2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p 的必要条件;⑤p的必要条件是q.(3)“若p,则q”为假命题时,记作“p q”,则p不是q的充分条件,q不是p的必要条件. 教学案例题型一充分条件、必要条件【例1】给出下列四组命题:(1)p:两个三角形相似,q:两个三角形全等;(2)p:一个四边形是矩形,q:四边形的对角线相等;(3)p:A⊆B,q:A∩B=A;(4)p:a>b,q:ac>bc.试分别指出p是q的什么条件.解(1)∵两个三角形相似⇒/两个三角形全等,但两个三角形全等⇒两个三角形相似,∴p是q的必要不充分条件.(2)∵矩形的对角线相等,∴p⇒q,而对角线相等的四边形不一定是矩形,∴q⇒/p.∴p是q的充分不必要条件.(3)∵p⇒q,且q⇒p,∴p既是q的充分条件,又是q的必要条件.(4)p ⇒/ q ,且q ⇒/p , ∴p 是q 的既不充分也不必要条件.规律方法 本例分别体现了定义法、集合法、等价法.一般地,定义法主要用于较简单的命题判断,集合法一般需对命题进行化简,等价法主要用于否定性命题.要判断p 是不是q 的充分条件,就要看p 能否推出q ,要判断p 是不是q 的必要条件,就要看q 能否推出p .【训练1】指出下列哪些命题中p 是q 的充分条件?(1)在△ABC 中,p :∠A >∠B ,q :BC >AC .(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6.(3)在△ABC 中,p :sin A >sin B ,q :tan A >tan B .(4)已知x ,y ∈R ,p :x =1,q :(x -1)·(x -2)=0.解 (1)在△ABC 中,由大角对大边知,∠A >∠B ⇒BC >AC ,所以p 是q 的充分条件.(2)对于实数x ,y ,因为x =2且y =6⇒x +y =8,所以由x +y ≠8⇒x ≠2或x ≠6,故p 是q 的充分条件.(3)在△ABC 中,取∠A =120°,∠B =30°,则sin A >sin B ,但tan A <tan B ,故p ⇒/q ,故p 不是q 的充分条件. (4)由x =1⇒(x -1)(x -2)=0,故p 是q 的充分条件.故(1)(2)(4)命题中p 是q 的充分条件.题型二 充分条件、必要条件与集合的关系【例2】是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.解 由x 2-x -2>0解得x >2或x <-1,令A ={x |x >2或x <-1}.由4x +p <0,得B =⎩⎨⎧⎭⎬⎫x |x <-p 4. 当B ⊆A 时,即-p 4≤-1,即p ≥4, 此时x <-p 4≤-1⇒x 2-x -2>0, ∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.规律方法 (1)设集合A ={x |x 满足p },B ={x |x 满足q },则p ⇒q 可得A ⊆B ;q ⇒p 可得B ⊆A ;若p 是q 的充分不必要条件,则A B .(2)利用充分条件、必要条件求参数的取值范围的关键就是找出集合间的包含关系,要注意范围的临界值.【训练2】已知M ={x |(x -a )2<1},N ={x |x 2-5x -24<0},若M 是N 的充分条件,求a 的取值范围.解 由(x -a )2<1得x 2-2ax +(a -1)(a +1)<0,∴a -1<x <a +1.又由x 2-5x -24<0得-3<x <8.∵M 是N 的充分条件,∴M ⊆N ,∴⎩⎪⎨⎪⎧a -1≥-3,a +1≤8, 解得-2≤a ≤7.故a 的取值范围是-2≤a ≤7.课堂小结1.充分条件、必要条件的判断方法:(1)定义法:直接利用定义进行判断.(2)等价法:利用逆否命题的等价性判断,即要证p ⇒q ,只需证它的逆否命题綈q ⇒綈p 即可;同理要证q ⇒p ,只需证綈p ⇒綈q 即可.(3)利用集合间的包含关系进行判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.课堂达标1.“-2<x <1”是“x >1或x <-1”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.既不是充分条件,也不是必要条件D.既是充分条件,也是必要条件【解析】∵-2<x <1 x >1或x <-1,且x >1或x <-1-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.【答案】C2.“a >b ”是“a >|b |”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件【解析】由a >|b |⇒a >b ,而a >b 推不出a >|b |.【答案】B3.若a ∈R ,则“a =1”是“|a |=1”的( )A.充分条件B.必要条件C.既不是充分条件也不是必要条件D.无法判断【解析】当a =1时,|a |=1成立,但|a |=1时,a =±1,所以a =1不一定成立.∴“a =1”是“|a |=1”的充分条件.【答案】A4.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A.充分不必要条件B.必要不充分条件C.既充分也必要条件D.既不充分也不必要条件【解析】f (x )=|(ax -1)x |在区间(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的既充分也必要条件.故选C.【答案】C5.若“x <m ”是“(x -1)(x -2)>0”的充分不必要条件,求m 的取值范围.解由(x-1)(x-2)>0可得x>2或x<1,由已知条件,知{x|x<m}{x|x>2或x<1}.∴m≤1.。
1.2 充分条件与必要条件教学目标1.知识与技能:正确理解充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件的概念;会判断命题的充分条件、必要条件.进一步会判断充分不必要条件、必要不充分条件、充要条件。
2.过程与方法:充分感受和体会将实际问题抽象为数学概念的过程和思想,培养学生现问题的能力,通过对充分条件、必要条件的判定,提高分析问题、解决问题的能力;学会观察,敢于归纳,关于建构;充分培养学生的发散思维能力,挖掘学生的创新思维能力。
3.情感、态度与价值观通过“p⇒q”与“q⇒p”的判断,感受对立,统一的思想,培养辩证唯物主义观;通过学习本节课体验成功的愉悦,激发学习的兴趣;通过探究学习培养学生勇于探索、敢于创新的个性品质。
教学重点与难点1.重点:充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件的概念.(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.)2.难点:判断命题的充分不必要条件、必要不充分条件、充要条件。
3.关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件。
教学方法及教学准备1. 学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系,充要条件中的p、q与四种命题中的p、q要求是一样的,它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若a则b”形式的复合命题。
2. 由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键,教学中应始终注意以学生为主,让学生在自我思考,相互交流中去给概念、“下定义”,去体会概念的本质属性。
3. 教材中对“充分条件”、“必要条件”的定义没作过多的解释说明,为了能让学生能理解定义的合理性,在教学过程中教师可以具体的、简单的命题的条件与结论之间的关系来讲解“充分条件”的概念,从互为逆否命题的等价性来了解“必要条件”的概念。
充分条件和必要条件教案一、教学目标1. 让学生理解充分条件和必要条件的概念。
2. 让学生学会判断充分条件和必要条件。
3. 培养学生运用充分条件和必要条件解决实际问题的能力。
二、教学重点与难点1. 教学重点:充分条件和必要条件的概念及判断方法。
2. 教学难点:如何运用充分条件和必要条件解决实际问题。
三、教学方法1. 采用实例分析法,让学生通过具体例子理解充分条件和必要条件的概念。
2. 采用小组讨论法,让学生学会判断充分条件和必要条件。
3. 采用问题解决法,培养学生运用充分条件和必要条件解决实际问题的能力。
四、教学准备1. 准备相关实例,用于讲解充分条件和必要条件的概念。
2. 准备小组讨论题目,用于引导学生学会判断充分条件和必要条件。
3. 准备实际问题,用于培养学生运用充分条件和必要条件解决实际问题的能力。
五、教学过程1. 导入:通过一个实例,引导学生思考充分条件和必要条件的概念。
2. 新课:讲解充分条件和必要条件的定义及判断方法。
3. 实例分析:分析实例,让学生理解充分条件和必要条件的概念。
4. 小组讨论:布置讨论题目,让学生学会判断充分条件和必要条件。
5. 总结:总结本节课的内容,强调充分条件和必要条件的判断方法。
6. 练习:布置课后作业,让学生巩固所学内容。
7. 拓展:引导学生思考充分条件和必要条件在实际生活中的应用。
六、教学活动设计1. 活动一:理解充分条件和必要条件的概念教师通过生活实例介绍充分条件和必要条件的概念。
学生参与讨论,分享自己对充分条件和必要条件的理解。
2. 活动二:判断充分条件和必要条件教师给出几个判断题,学生集体判断并解释理由。
学生分组讨论,尝试自己设计判断题目,并互相评判。
七、教学评估设计1. 评估一:理解程度评估教师通过课堂提问,检查学生对充分条件和必要条件概念的理解程度。
学生通过小组讨论,评估彼此的判断能力。
2. 评估二:应用能力评估教师设计实际问题,学生独立解决,评估学生运用充分条件和必要条件的能力。
充分条件与必要条件教学设计(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、策划方案、规章制度、演讲致辞、合同协议、条据书信、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, planning plans, rules and regulations, speeches, contract agreements, policy letters, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!充分条件与必要条件教学设计充分条件与必要条件教学设计作为一名辛苦耕耘的教育工作者,就不得不需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。
充分条件与必要条件教学设计教学目标:1.理解充分条件和必要条件的概念;2.能够辨别一个命题是充分条件还是必要条件;3.能够运用充分条件和必要条件解决问题。
教学重点:1.充分条件和必要条件的概念;2.充分条件和必要条件的辨别;3.充分条件和必要条件的运用。
教学难点:充分条件和必要条件的辨别和运用。
教学准备:1.教师准备课件、多媒体设备等教学资源;2.学生准备笔记本、教材等学习工具。
教学过程:Step 1. 导入引入教师可以先通过一个例子引入充分条件和必要条件的概念,例如:"如果下雨,那么地面湿润。
"这个句子中,下雨是充分条件,地面湿润是必要条件。
在提出这个例子后,教师可以问学生是否有其他类似的例子,并让学生尝试辨别充分条件和必要条件。
Step 2. 理论知识讲解教师向学生介绍充分条件和必要条件的定义和区别。
充分条件是指一个事件发生的条件,如果这个条件发生,那么该事件一定会发生。
必要条件是一个事件发生所必需的条件,如果这个条件不满足,那么该事件一定不会发生。
Step 3. 实例分析教师可以给学生提供一些实例,让学生分析充分条件和必要条件,并指导学生辨别和理解。
例如,"如果电影票半价,那么学生可以购买。
"在这个例子中,电影票半价是充分条件,学生可以购买是必要条件。
教师可以让学生通过类似的例子进行练习,并帮助学生正确辨别。
Step 4.练习与拓展教师可以给学生一些练习题目,让学生运用充分条件和必要条件解答问题。
例如,给定命题:"如果一只鸟会飞,那么它有翅膀。
"学生要判断这个命题是充分条件还是必要条件。
教师可以就这个问题与学生进行讨论,并给予正确的答案。
Step 5.归纳总结教师与学生一起总结充分条件和必要条件的概念、特点和应用方法。
并鼓励学生总结和记忆相关的关键点。
Step 6.拓展延伸教师可以给学生一道拓展题目,让学生运用充分条件和必要条件进行解答。
《充分条件与必要条件》教学设计一、教学目标1•知识与技能:⑴正确理解充分条件、必要条件和充要条件;⑵能正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件。
2•过程与方法:通过对充分条件、必要条件和充要条件概念的理解及运用,培养学生分析、判断和归纳的逻辑思维能力。
3•情感、态度和价值观:先由一段审判视频进行导课,给学生渗透知法、守法的法律意识。
再通过主动探究、合作学习、感受探索的乐趣与成功的喜悦,从中体会数学的理性与严谨性。
二、教学重点与难点重点:充分条件、必要条件和充要条件的定义。
难点:(1)充分条件、必要条件和充要条件三个概念在论证中的正确运用;(2)“q的什么条件是p"转化为“p是q的什么条件”。
三、教学方法与手段采用探究式教学方法。
通过多媒体辅助教学,充分调动学生的参与课堂的主动性与积极性。
四、教学基本流程五•教学情境设计(一)创设情境,渗透法律意识1•教师借助多媒体播放一段关于抢劫罪”的审判视频。
2.师生活动教师提出问题:(1)同学们,看完这段视频,你们有何感想?⑵视频中审判长先陈述一系列的“理由依据”,才得出审判的结果,请问理由依据”与审判结果”之间有什么关系?学生经过思考回答老师提出的上述问题,问题1的回答主要围绕不要触犯法律方面。
老师可以引导学生回答问题⑵,理由依据”必须是充分的,审判结果”才能让人信服,说明理由依据”对于审判结果”来说必须是充分的;若没有审判结果”,则这一系列的理由依据”毫无实际意义,说明审判结果”对理由依据”来说是必要的。
3.设计意图问题⑴的提出是向学生渗透法律意识,让学生知法、守法,不要去触犯法律。
问题⑵让学生理解理由依据”与审判结果”是充分必要的关系,从而引入新课《充分条件与必要条件》,既激起了学生的兴趣,又激发了学生的求知欲。
(二)提出问题,引入充分条件、必要条件和充要条件的定义1.思考:判断下列命题的真假(1)若a>b>0,则a2>b2;⑵若x>5,贝Ux>10;(3)若ac>bc,则a>b;(4)若整数a是6的倍数,则整数a是2和3的倍数。
充分条件与必要条件教案设计一、教学内容本节课的教学内容选自人教版高中数学必修1第四章“充分条件与必要条件”。
具体包括:1. 充分条件和必要条件的定义;2. 充分条件和必要条件与充分不必要条件、必要不充分条件的区分;3. 运用充分条件和必要条件解决实际问题。
二、教学目标1. 理解充分条件和必要条件的定义,掌握其判断方法;2. 能够运用充分条件和必要条件解决实际问题;3. 培养学生的逻辑思维能力和数学应用能力。
三、教学难点与重点1. 教学难点:充分条件和必要条件的判断方法,以及如何运用到实际问题中;2. 教学重点:充分条件和必要条件的定义,以及如何运用。
四、教具与学具准备1. 教具:黑板、粉笔、PPT;2. 学具:笔记本、笔。
五、教学过程1. 情景引入:通过一个实际问题,引导学生思考充分条件和必要条件的关系;2. 讲解充分条件和必要条件的定义,以及判断方法;3. 举例说明充分条件和必要条件在实际问题中的应用;4. 随堂练习:让学生运用充分条件和必要条件解决实际问题;六、板书设计1. 充分条件和必要条件的定义;2. 充分条件和必要条件的判断方法;3. 充分条件和必要条件在实际问题中的应用。
七、作业设计1. 请用充分条件和必要条件描述下列问题:(1)一个三角形的两边分别是3cm和4cm,第三边的长度是多少?(2)一辆汽车要经过两个城市A和B,从A城市出发,到达B城市,沿途可以选择经过的城市有C、D、E,问这辆汽车可能经过哪些城市?2. 答案:(1)第三边的长度是5cm;(2)这辆汽车可能经过C、D、E三个城市。
八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生理解充分条件和必要条件的概念,并通过举例让学生掌握判断方法,课堂效果良好;2. 拓展延伸:让学生思考充分条件和必要条件在生活中的应用,例如:判断一个人是否成年,判断一个学生是否及格等。
重点和难点解析一、教学难点与重点在教学过程中,学生对于充分条件和必要条件的判断方法以及如何运用到实际问题中往往存在困惑。
充分条件和必要条件教学设计教学目标1、理解必要条件、充分条件、充要条件的意义以及充分条件和必要条件之间的区别和联系。
2、结合四种命题形式,理解并掌握充分条件、必要条件与充要条件的判定方法,并进行一些简单的应用。
3、培养学生的辩证思维能力。
教学重点充分条件、必要条件与充要条件的意义及判定方法。
教学过程一、问题情境1、情境:命题的四种形式及相互之间的关系2、问题:如果命题“若p 则q”是真命题,那么p 和q 之间有什么关系?二、学生活动1、分别判断下列命题的真假(1)若x=y,则x 2=y 2;(2)若x 2=y 2,则x=y.2. 上述命题中,条件和结论之间有什么关系?三、建构数学1、结合问题,引入符号“p ⇒q”和“p ⇒/q”.2、引入充分条件、必要条件和充要条件的有关概念。
3、解释“充分”、“必要”的含义,并举例说明。
“充分”即“足够”,“必要”的意识就是“必不可少”。
例如,对“0 x ”和“02 x ”,而言,由于“若0 x ,则02 x ”是一个真命题,就称“0 x ”是“02 x ”的充分条件,意思是有“0 x ”这个条件,就足以得到“02 x ”这个结论。
另一方面,没有“0 x ”这个条件,也可能有“02 x ”这个结论,如“0 x ”,这就说明“0 x ”不是“02 x ”的必要条件;有了“02 x ”这个条件,还不能得到“0 x ”这个结论,这就说明“02 x ”不是“0 x ”的充分条件。
因此,“0 x ”是“02 x ”的充分不必要条件,“02 x ”是“0 x ”的必要不充分条件。
注意:充分、必要条件是研究两个语句之间的逻辑关系,p是q的什么条件,是通过“若p,则q”这种形式的命题的真假来判断的。
4、用符号表示充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件。
(1)p是q的充分条件:p ⇒q ;(2)p是q的必要条件:q ⇒p ;(3)p是q的充分不必要条件:p ⇒q ,但是p ⇒/q ;(4)p是q的必要不充分条件:q ⇒p ,但是p ⇒/q ;(5)p是q的充要分条件:p⇒q,q ⇒p ;(6)p是q的既不充分也不必要条件:p ⇒/q ,q⇒/p四、数学运用1、例题例1 指出下列命题中,p是q的充分条件还是必要条件:(1)p:1 x ;q:12 x ;(2)p:四边形的对角线相等;q:四边形是矩形;(3)p:两个三角形相似;q:两个三角形对应角相等; (4)p:两条直线垂直;q:两条直线的斜率是-1。
《充分条件和必要条件》教学设计江苏省泰兴市第三高级中学数学组张秋云一、教材分析1.内容分析:充要条件是中学数学中最重要的数学概念之一,主要讨论命题的条件与结论之间的逻辑关系,为今后数学推理的学习打下基础。
因此,高考说明明确要求达到B级。
与老教材相比,苏教版新教材作了3方面的调整,①时间调整:将这部分内容从高一上学期移到高二选修2-1中,教学时间后移,学生的逻辑思维能力逐渐加强,从而更加能够接受和理解;②定义的处理:新教材的定义显得更简洁、精炼;③题量大幅增大。
新教材更好地贯彻了“淡化形式,注重实质”这一教学观。
在“充要条件”这节内容前,还安排了“四种命题”作为必要的知识铺垫。
这部分内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一基本数学概念。
2.学情分析:从学生学习的角度看,学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,我在讲解这节内容时,不一味拔高要求,追求一步到位,而是在今后的教学中滚动式地逐步深化,使之与学生的知识结构同步发展完善。
二、教学目标1.知识目标:①正确理解充分条件、必要条件、充要条件的概念。
②熟练理解四种命题及其真假的判别,并进一步理解充分条件、必要条件、充要条件的概念③在理解定义的基础上,自觉地对定义进行转化,转化成推理关系及集合的包含关系。
2.能力目标:①培养学生的观察与类比能力:“多观察”,“勤类比”,通过大量的问题,会观察其共性及个性;②培养学生的归纳能力:“善归纳”,对一些事例,观察后进行归纳总结出一般规律;③培养学生的建构能力:“重建构”,通过反复的观察分析和类比,把归纳出的结论,建构到自己的知识体系中。
3.情感目标:①通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受;②通过对命题的四种形式及充分条件,必要条件的理解,培养学生的辩证唯物主义观点;③通过“多观察、勤类比、善归纳、重建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
《充分条件与必要条件》教学设计一、教学目标:1.理解充分条件与必要条件的概念;2.能够分析、判断和运用充分条件与必要条件的关系;3.巩固并提高学生的逻辑思维能力。
二、教学内容:1.充分条件与必要条件的认识2.充分条件与必要条件的关系3.充分条件与必要条件的运用三、教学过程:1.引入活动(15分钟):a.教师出示一道题目:“如果一个三角形是等腰直角三角形,则这个三角形的两条腿相等。
”请学生思考这个命题是充分条件还是必要条件?b.学生讨论并列出答案。
c.教师引导学生理解充分条件与必要条件的概念,以及两者之间的关系。
2.概念解释(15分钟):a.教师详细解释充分条件与必要条件的定义,并通过形象的例子帮助学生理解。
b.教师提供几个充分条件与必要条件的例子,让学生尝试判定充分条件与必要条件。
c.教师帮助学生纠正错误理解,确保学生正确理解充分条件与必要条件的概念。
3.关系分析(20分钟):a.教师提供一些命题,让学生分析这些命题是充分条件、必要条件还是兼具充分条件和必要条件。
b.学生进行小组讨论,并记录下自己的分析和判断结果。
c.教师引导学生总结充分条件与必要条件之间的关系,并讨论例题的解答方法。
4.综合应用(30分钟):a.教师提供一篇文章或一些实际问题,要求学生根据已学概念分析其中的充分条件和必要条件。
b.学生在小组内讨论并找出答案,然后向全班汇报。
c.教师对学生的分析过程和答案进行指导和评价。
5.拓展延伸(20分钟):a.教师提供一些挑战性问题,要求学生进行推理、判断和证明,并尝试运用充分条件与必要条件的关系进行解答。
b.学生进行小组竞赛,比较答案的正确性和时间消耗。
6.总结回顾(10分钟):a.教师对本节课的重点知识进行总结和回顾。
b.学生提问和解答,检查学生对充分条件与必要条件的理解是否准确。
四、教学方法:1.情境引入法:通过提问和讨论的方式激发学生的思考和兴趣。
2.合作学习法:通过小组合作和集体讨论的方式培养学生的合作与沟通能力。
一、教案基本信息教案名称:充分条件与必要条件教案学科领域:数学课时安排:2课时教学目标:1. 让学生理解充分条件和必要条件的概念。
2. 培养学生判断充分条件和必要条件的能力。
3. 使学生能够运用充分条件和必要条件解决实际问题。
教学重点:1. 充分条件和必要条件的定义。
2. 判断充分条件和必要条件的方法。
教学难点:1. 充分条件和必要条件的区别和联系。
2. 运用充分条件和必要条件解决实际问题。
教学准备:1. 教材或教学资源。
2. 教学PPT或其他多媒体教学工具。
二、教学过程第一课时:1. 导入新课:通过复习相关概念,引导学生回顾已学过的逻辑连接词,如“如果…………”等,为新课的学习做好铺垫。
2. 学习新课:(1)讲解充分条件和必要条件的定义。
(2)通过举例让学生判断充分条件和必要条件。
(3)引导学生总结判断充分条件和必要条件的方法。
3. 巩固练习:(1)让学生独立完成教材上的练习题。
(2)教师选取部分题目进行讲解和分析。
第二课时:4. 复习导入:通过复习上节课的内容,引导学生回顾充分条件和必要条件的概念及判断方法。
5. 深入学习:(1)讲解充分条件和必要条件的运用。
(2)让学生通过实际例子体会充分条件和必要条件在解决问题中的作用。
6. 课堂练习:(1)让学生独立完成教材上的练习题。
(2)教师选取部分题目进行讲解和分析。
7. 总结课堂:对本节课的内容进行总结,强调充分条件和必要条件在实际问题中的应用。
三、课后作业1. 完成教材上的课后练习题。
2. 结合生活实际,找出一道运用充分条件和必要条件解决问题的题目,并与同学交流分享。
四、教学评价1. 课后收集学生的课堂练习作业,评估学生对充分条件和必要条件的理解和运用能力。
2. 在下一节课开始时,让学生分享他们找出的实际问题题目,评估学生在实际问题中运用充分条件和必要条件的能力。
3. 结合学生的课堂表现,评价学生在学习过程中的参与度和进步情况。
六、教学策略1. 案例教学:通过具体的案例,让学生更好地理解充分条件和必要条件的概念及其应用。
充分条件与必要条件教案设计
一、教学内容
1、重点掌握充分条件与必要条件的概念
2、学习如何应用充分条件与必要条件,解决实际问题
四、教学过程
1、背景介绍:使学生了解什么是充分条件与必要条件
介绍有关充分条件与必要条件的概念,使学生正确理解充分条件与必要条件。
所谓充分条件,是指满足除所求结论以外的所有其他条件,而必要条件是指条件是否满足,不论其他条件是否满足,都可以得出所求结论。
2、讨论判断充分条件与必要条件的方法
我们可以通过构造定理证明来来判断充分条件与必要条件。
交流定理证明的思路,使学生去证明充分条件与必要条件的方法;然后给出示例,让学生去练习证明充分条件与必要条件的步骤,检验他们的回答是否正确。
3、应用实例定理证明
以某具体问题为例,让学生去分析判断充分条件与必要条件,同时给出答案检验他们的判断是否正确。
4、归纳总结
引导学生对今天完成的任务进行归纳总结,把今天所学习到的内容包括概念、方法、应用和实现等,形成总结。
五、教学反思
本次教学完成了课程设计的基本要求,学生反馈表示学习满意。
《充分条件与必要条件》教学设计教学设计:《充分条件与必要条件》一、教学目标:1.了解充分条件与必要条件的定义;2.能够判断一个命题的充分条件和必要条件;3.能够运用充分条件和必要条件解决实际问题。
二、教学内容:1.充分条件和必要条件的定义;2.判断一个命题的充分条件和必要条件;3.运用充分条件和必要条件解决实际问题。
三、教学过程:第一步:导入新课(10分钟)1.引入话题,让学生思考一个问题:“如果一个命题成立,我们如何判断它的充分条件和必要条件?”2.激发学生的思考,让他们尝试回答这个问题。
第二步:引入新概念(15分钟)1.给出充分条件和必要条件的定义,并解释其意义。
充分条件:如果一个命题成立,那么它的充分条件一定成立。
必要条件:如果一个命题成立,那么它的必要条件一定成立。
2.以具体的例子来说明充分条件和必要条件的判断方法。
第三步:判断命题的充分条件和必要条件(20分钟)1.给出一些命题,让学生判断它们的充分条件和必要条件。
2.引导学生分析命题的前提和结论,从中找出充分条件和必要条件。
第四步:运用充分条件和必要条件解决实际问题(30分钟)1.给出一些实际问题,让学生运用充分条件和必要条件解决问题。
2.分组讨论,学生们交流各自的解题思路和答案。
第五步:课堂小结(10分钟)1.教师对本节课的主要内容进行小结,并强调充分条件和必要条件的重要性。
2.学生回答上课期间遇到的问题和困惑。
四、教学评价:1.每个学生参与判断命题的充分条件和必要条件;2.学生能够正确运用充分条件和必要条件解决实际问题;3.学生课后能够独立思考和判断命题的充分条件和必要条件。
五、教学资源:1.书本资料;2.计算机、投影仪等多媒体设备。
六、教学延伸:1.引导学生思考其他与充分条件和必要条件相关的问题,如充要条件、唯一充分条件等。
2.给学生布置相关作业,并在下节课进行讲解与答疑。
教学准备1. 教学目标1.知识与技能(1)正确理解充分条件、必要条件、充要条件三个概念.(2)能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系.(3)在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系.2.过程与方法(1)培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性.(2)培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律.(3)培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中.3.情感、态度与价值观(1)通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受.(2)通过对命题的四种形式及充分条件、必要条件的相对性,培养学生的辩证唯物主义观点.2. 教学重点/难点重点:充分条件、必要条件和充要条件三个概念的定义.难点:必要条件的定义、充要条件的充分必要性3. 教学用具多媒体4. 标签教学过程一、问题导思1.给出下列命题:(1)若x>a2+b2,则x>2ab.(2)若ab=0,则a=0.(3)若整数a是6的倍数,则整数a是2和3的倍数.命题(1)的条件成立,结论一定成立吗?命题(2)中呢?【提示】命题(1)中只要满足条件x>a2+b2,必有结论x>2ab成立;命题(2)中满足条件ab=0,不一定有结论a=0,还可能b=0.命题“如果p,则q”为真命题,我们就说由p成立可以推出q成立,记作p⇒q,读作“p推出q”.这时称p是q的充分条件,q是p的必要条件.2.若设p:整数a是6的倍数,q:整数a是2和3的倍数,则p是q的什么条件?q是p的什么条件?【提示】因为p⇒q且q⇒p,所以p是q的充分条件也是必要条件;同理,q是p的充分条件,也是必要条件.如果p⇒q且q⇒p,则称p是q的充分且必要条件,简称p是q的充要条件,记作p⇔q.p是q的充要条件,又常说成“q当且仅当p”或“p与q等价”二、典例精讲命题方向1 充分条件、必要条件、充要条件的判断例1.(1)(2013·陕西高考)设a,b为向量,则“|a·b|=|a||b|”是“a//b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)下面四个条件中,使a>b成立的充分不必要条件是( )A.a>b+1 B.a>b-1 C.a2>b2 D.a3>b3【解析】(1)当|a·b|=|a//b|时,若a,b中有零向量,显然a//b;若a,b均不为零向量,则|a·b|=|a||b||cosa,b|=|a||b|,∴|cosa,b|=1,∴a,b=π或0,∴a//b,即|a·b|=|a||b|⇒a//b.当a//b时,a,b=0或π,∴|a·b|=||a||b|cosa,b|=|a||b|,其中,若a,b有零向量也成立,即a//b⇒|a·b|=|a||b|,综上知,“|a·b|=|a||b|”是“a//b”的充分必要条件.(2)若a>b+1,则a>b一定成立;但若a>b,a>b+1不一定成立,因此“a>b+1”是“a>b”的一个充分不必要条件;若a>b-1,则a>b不一定成立,不是充分条件;若a2>b2,则a>b不一定成立,不是充分条件;若a3>b3,则a>b一定成立;若a>b,则a3>b3也一定成立,因此“a3>b3”是“a>b”的一个充要条件.【答案】(1)C(2)A【小结】充分条件、必要条件和充要条件反映了条件p与结论q之间的因果关系,在具体判断时,常用如下方法:(1)定义法:①若p⇒q,但q⇒/p,则p是q的充分不必要条件;②若q⇒p,但p⇒/q,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充分必要条件,简称充要条件;④若p⇒/q,且q⇒/p,则p是q的既不充分也不必要条件.(2)集合法:如果p,q分别以集合A、集合B的形式出现,那么p,q之间的关系可以借助集合知识来判断.①若A⊆B,则p是q的充分条件;②若A⊇B,则p是q的必要条件;③若A=B,则p是q的充要条件;④若A⊆B,且B⊆A,则p既不是q的充分条件,也不是q的必要条件,即p是q的既不充分也不必要条件.(3)等价法:当某一命题不易直接判断条件与结论的充要关系时,可以利用原命题与其逆否命题的等价性来判断,即判断其逆否命题是否成立.三、变式训练(1)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)设集合A,B,则A⊆B是A∩B=A成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】(1)若φ=0,则f(x)=cosx是偶函数,但是若f(x)=cos(x+φ)(x∈R)是偶函数,则φ=π也成立.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.(2)由A⊆B,得A∩B=A;反过来,由A∩B=A,且(A∩B)⊆B,得A⊆B.因此,A⊆B是A∩B=A成立的充要条件.【答案】(1)A(2)C命题方向2 充分条件、必要条件、充要条件的应用例2.是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;否则,说明理由.【解析】由x2-x-2>0,解得x>2或x<-1.令A={x|x>2或x<-1},由题意得B⊆A,即-≤-1,即p≥4,此时x<-≤-1⇒x2-x-2>0,∴当p≥4时,“4x+p<0”是“x2-x-2>0”的充分条件.【小结】(1)设集合A={x|x满足p},B={x|x满足q},则p⇒q可得A⊆B;q⇒p可得B⊆A;p⇔q可得A=B,若p是q的充分不必要条件,则A⊆B.(2)由x2-2x-3>0得,x<-1或x>3.∴q:B={x|x<-1或x>3}.∵p⇒q而q⇒p,∴A B,∴-≤-1,∴m≥3,即m的取值范围是[3,+∞).命题方向3 充要条件的证明例3.已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1).求证:{an}为等比数列的充要条件是q=-1.【解析】充分性:当q=-1时,Sn=pn-1,当n≥2时,an=Sn-Sn-1=pn-1(p-1),当n=1时,也成立,∴数列{an}的通项公式为an=pn-1(p-1).又∵p≠0且p≠1,∴数列{an}为等比数列.必要性:当n=1时,a1=S1=p+q,当n≥2时,an=Sn-Sn-1=pn-1(p-1).∵p≠0且p≠1,又∵{an}为等比数列,综上可知,{an}是等比数列的充要条件是q=-1.【小结】有关充要条件的证明问题,要分清哪个是条件,哪个是结论,谁是谁的什么条件,由“条件⇒结论”是证明命题的充分性,由“结论⇒条件”是证明命题的必要性.证明要分两个环节:一是证充分性;二是证必要性.四、变式训练已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.【证明】必要性:∵a+b=1,∴a+b-1=0,∴a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2-ab+b2)=(a+b-1)(a2-ab+b2)=0.充分性:∵a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0,又ab≠0,∴a≠0且b≠0,∴a2-ab+b2=∴a+b-1=0,即a+b=1.综上可知,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.五、当堂检测1.如果命题“若A则B”的否命题是真命题,而它的逆否命题是假命题,则A 是B的( )条件.A.充分而不必要的条件 B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【解析】因为逆否命题为假,那么原命题为假,即A /⇒B,又因否命题为真,所以逆命题为真,即B⇒A,所以A是B的必要不充分条件.【答案】B2.不等式成立的一个充分不必要条件是( )A.-1<x<0或x>1 B.x<-1或0<x<1 C.x>1 D.x >1【解析】画出y=x与y=的图象,两图象的交点为(1,1)、(-1,-1),依图知x->0⇔-1<x<0或x>1,显然x>1;但D/⇒x>1.【答案】D3.若集合A={x|x2-5x+4<0},B={x||x-a|<1},则“a∈(2,3)”是“B⊆A”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】A={x|x2-5x+4<0}={x|1<x<4},B={x|a-1<x<a+1}.若B⊆A,则满足解得2≤a≤3,所以“a∈(2,3)”是“B⊆A”的充分不必要条件,选A.【答案】 A4.已知p:x2-4x-5≤0,q:|x-3|<a(a>0).若p是q的充分不必要条件,求a的取值范围.【解】A={x|x2-4x-5≤0}={x|-1≤x≤5},B={x|-a+3<x<a+3},因为p是q的充分不必要条件,从而有A⊆B.故解得a>4.板书充分条件与必要条件。
《充分条件和必要条件》教学设计一、教学目标1、知识与技能目标(1)学生能够理解充分条件、必要条件的概念。
(2)能够准确判断给定命题中条件与结论之间的充分性和必要性关系。
2、过程与方法目标(1)通过实例分析,培养学生观察、归纳、抽象思维的能力。
(2)引导学生经历从具体到抽象、从特殊到一般的认知过程,提高逻辑推理能力。
3、情感态度与价值观目标(1)让学生在探究活动中体验数学的严谨性和逻辑性,感受数学的魅力。
(2)培养学生勇于探索、敢于创新的精神,增强学习数学的兴趣和信心。
二、教学重难点1、教学重点充分条件和必要条件的概念及判断方法。
2、教学难点理解充分条件和必要条件的本质,能够准确区分两者的关系。
三、教学方法讲授法、讨论法、实例分析法、练习法四、教学过程1、导入新课通过日常生活中的例子,如“如果今天下雨,那么地面会湿”,引导学生思考条件和结论之间的关系,从而引出充分条件和必要条件的概念。
2、讲解充分条件的概念给出命题“若 p,则q”,如果由 p 可以推出 q,那么就说 p 是 q 的充分条件。
例如,“若 x > 5,则 x >3”,因为 x > 5 时一定有 x > 3,所以“x >5”是“x >3”的充分条件。
通过多个类似的例子,让学生理解充分条件的含义。
3、讲解必要条件的概念同样给出命题“若 p,则q”,如果由 q 可以推出 p,那么就说 p 是 q 的必要条件。
例如,“若 x 是整数,则 x 是有理数”,因为 x 是整数时一定是有理数,所以“x 是有理数”是“x 是整数”的必要条件。
通过实例让学生明确必要条件的概念。
4、区分充分条件和必要条件通过对比分析,让学生理解充分条件强调的是条件能够充分地推出结论,而必要条件强调的是结论成立必须要具备的条件。
例如,“若一个三角形是等边三角形,则它是等角三角形”,等边三角形能充分推出等角三角形,所以“一个三角形是等边三角形”是“它是等角三角形”的充分条件;而一个三角形要是等角三角形,必然是等边三角形,所以“一个三角形是等边三角形”是“它是等角三角形”的必要条件。
1.2 充分条件与必要条件
一、教学目标
1.知识与技能:
正确理解充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件的概念;会判断命题的充分条件、必要条件.进一步会判断充分不必要条件、必要不充分条件、充要条件。
2.过程与方法:
充分感受和体会将实际问题抽象为数学概念的过程和思想,培养学生现问题的能力,通过对充分条件、必要条件的判定,提高分析问题、解决问题的能力;学会观察,敢于归纳,关于建构;充分培养学生的发散思维能力,挖掘学生的创新思维能力。
3.情感、态度与价值观:
通过“p⇒q”与“q⇒p”的判断,感受对立,统一的思想,培养辩证唯物主义观;通过学习本节课体验成功的愉悦,激发学习的兴趣;通过探究学习培养学生勇于探索、敢于创新的个性品质。
二、教学重点与难点
1.重点:充分条件、必要条件、充分不必要条件、必要不充分条件、充要条件的概念。
2.难点:判断命题的充分不必要条件、必要不充分条件、充要条件。
3.关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件。
三、教学方法及教学准备
1. 学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系,充要条件中的p、q与四种命题中的p、q要求是一样的,它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若a则b”形式的复合命题。
2. 由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键,教学中应始终注意以学生为主,让学生在自我思考,相互交流中去给概念、“下定义”,去体会概念的本质属性。
3. 教材中对“充分条件”、“必要条件”的定义没作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中教师可以具体的、简单的命题的条件与结论之间的关系来讲解“充分条件”的概念,从互为逆否命题的等价性来了解“必要条件”的概念。
4. 教学用具:多媒体
四、教学过程:
(一)复习回顾
1、四种命题的形式与关系
2、试写出命题“若x>1,则21
x>”的逆命题、否命题和逆否命题,并判断真假.
(二)创设情境,新课引入
1、p: b是a(男性)的父亲 q:a是b的儿子
2、p : 外面下雨 q :出门带雨伞
那么,p与q在数学中是什么样的关系呢?今天我们就来学习这个有意义的课题—充分条件与必要条件.
(三)师生互动,新课讲解
问题1:前面讨论了“若p则q”形式的命题的真假判断,请同学们判断下列命题的真假,并说明条件和结论有什么关系?
(1). p:x≠y;q:
22
≠
x y.
(2). p:x>0;q:2>
x0.
(3).p:三角形的三个角相等; q:三角形的三条边相等。
(4).p:两个三角形全等;q:两个三角形的面积相等。
推断符号“⇒”的含义
“若p则q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q 一定成立,记作p⇒q,或者q⇐p;如果由p推不出q,命题为假,记作p q.
简单地说,“若p则q”为真,记作p⇒q(或q⇐p);
“若p则q”为假,记作p q(或q p).
命题(2)、(3) (4)为真,是由p经过推理可以得出q,即如果p成立,那么q一定成立,此时可记作“p⇒q”,命题(1)为假,是由p经过推理得不出q,即如果p成立,
推不出q成立,此时可记作“p q.”
说明:“p⇒q”表示“若p则q”为真,可以解释为:如果具备了条件p,就是以保证q成立,即表示“p蕴含q”,理解为“p”为“q”的子集。
1.什么是充分条件?什么是必要条件?
一般地,如果已知p⇒q,那么就说:p是q的充分条件;q是p的必要条件;如果已知p⇒q,且q⇒p,那么就说:p是q的充分且必要条件,简记充要条件;如果已知p q,那么就说:p不是q的充分条件;q不是p的必要条件;
回答上述命题(1)(2)(3)(4)中的条件关系.
由上述命题的充分条件、必要条件的判断过程,可确定命题按条件和结论的充分性、必要性可分为四类:“充分而不必要条件”、“必要而不充分条件”、“充要条件”、“既不充分也不必要条件”
例1 指出下列各组命题中, p是 q的什么条件(在“充分而不必要条件”、“必要而不充分条件”、“充要条件”、“既不充分也不必要”中选出一种)?
(1)p:(x-2)(x-3)=0;q:x-2=0.
(2)p:同位角相等; q:两直线平行.
x9.
(3)p:x=3; q:2=
(4)p:四边形的对角线相等;q:四边形是平行四边形。
(学生板演讲街,教师点评)
例2.指出命题中p是q的什么条件?
P:|x|≠3 q:x≠3
解:(学生板演讲街,教师点评)
2.充分条件与必要条件的判断方法:
(1)直接利用定义判断:即“若p⇒q成立,则p是q的充分条件,q是p的必要条件”.(条件与结论是相对的)
(2)利用等价命题关系判断:“p⇒q”的等价命题是“⌝q⇒⌝p”。
即“若┐q⇒┐p 成立,则p是q的充分条件,q是p的必要条件”。
3.用集合的思想理解充分与必要条件
给定两个条件p ,q,要判断p是q的什么条件,也可考虑集合:A={x |x满足条件q},B={x |x满足条件p}
①A ⊆B,则p 为q 的充分条件,q 为p 的必要条件;
②B=A, 则p 为q 的充要条件,q 为p 的充要条件;
4.分析比较充分条件、必要条件与充分不必要条件、必要非充分条件和充要条件的区别和判定
命题:若p ,则q
(1)若p ⇒q ,且q p .则P 是q 的充分不必要条件 (2)若p q ,且q ⇒p .则p 是q 的必要不充分条件
(3)若p ⇒q ,且q ⇒p .则p 是q 的充要条件,q 也是p 的充要条件
(4)若p q ,且q p .则p 是q 的既不充分与不必要条件
(四)课堂小结,巩固反思
1、本节主要学习了推断符号“⇒”的意义,充分条件与必要条件的概念,以及判断充分条件与必要条件的方法.
(1)若p ⇒q (或若┐q ⇒┐p ),则p 是q 的充分条件;若q ⇒p (或若┐p ⇒┐q ),则p 是q 的必要条件.
(2)条件是相互的;
(3)p 是q 的什么条件,有四种回答方式:
① p 是q 的充分而不必要条件;② p 是q 的必要而不充分条件;
③ p 是q 的充要条件; ④ p 是q 的既不充分也不必要条件。
2、 注意的问题
(1)对本节的教学,不可拔高追求一次到位,而在今后的教学中滚动式逐步深化。
(2)从具体的、简单的例子由浅入深,突破难点,抓住重点,讲练结合。
五、布置作业:
1.利用定义填空:
(1)x>-1___x>1;
(2)2=+x 3x 4 ___x=43+x ;
(3)两个角是对顶角________两个角相等;
(4)a=b____a+c=b+c.
2. 从“充分而不必要的条件”、“必要而不充分的条件”与“充要条件”中选出适当的一种填空:
(1) “两三角形全等” 是“两三角形相似”的 ;
(2)“a=b ”是 “ac=bc ”的 ;
(3)“a ≠0”是 “ab ≠ 0”的 ;
(4)“四边形的两条对角线相等”是“四边形是矩形”的 .
3.判断下列命题的真假:
(1) “a>b ” 是 “22>a b ”的充分条件;
(2) “a>b ” 是 “22>a b ”的必要条件;
(3) “a>b ” 是 “22c c >a b ”的充分条件;
(4) “a>b ” 是 “a+c>b+c ”的充要条件;
(5)关于x 的方程
2++=ax bx c 0一个根为1的充分且必要条件是 六、关于教学设计的思考
1. 本节课重难点是判断命题的充分条件,必要条件,充要条件的方法,所以这节课效果的好坏,体现在对这两点实现的程度上,因此,作业应围绕这两方面设计。
2. 充分条件、必要条件、充要条件是高中数学中几个重要的数学概念,它们之间有紧密的联系,如分开讲则不利于学生掌握,分析教材,联系实际,将本节内容安排了两个课时,第一课时讲清定义及简单的判断方法,第二节课加强这几个“条件”的应用,提高逻辑思维能力,本教案为第一课时。
3. 本节概念课理论较强,一般学生感到枯燥无味,因此,激发兴趣是关键,不断启发是手段,从而使学生为主体,教师为主导,师生互动达到教学目的。
七、板书设计:
为及时体现教材中的知识点和要点,便于学生理解掌握,板书设计如下:。