第1章 数字逻辑基础(4)
- 格式:ppt
- 大小:359.50 KB
- 文档页数:21
《数字电子技术》知识点第1章数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换。
举例1:()10= ( )2= ( )16= ( )8421BCD解:()10= 2= ( 16= 8421BCD4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变 1, 1变零;要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。
《数字逻辑教案》word版第一章:数字逻辑基础1.1 数字逻辑概述介绍数字逻辑的基本概念和特点解释数字逻辑在计算机科学中的应用1.2 逻辑门介绍逻辑门的定义和功能详细介绍与门、或门、非门、异或门等基本逻辑门1.3 逻辑函数解释逻辑函数的概念和作用介绍逻辑函数的表示方法,如真值表和逻辑表达式第二章:数字逻辑电路2.1 逻辑电路概述介绍逻辑电路的基本概念和组成解释逻辑电路的功能和工作原理2.2 逻辑电路的组合介绍逻辑电路的组合方式和连接方法解释组合逻辑电路的输出特点2.3 逻辑电路的时序介绍逻辑电路的时序概念和重要性详细介绍触发器、计数器等时序逻辑电路第三章:数字逻辑设计3.1 数字逻辑设计概述介绍数字逻辑设计的目标和方法解释数字逻辑设计的重要性和应用3.2 组合逻辑设计介绍组合逻辑设计的基本方法和步骤举例说明组合逻辑电路的设计实例3.3 时序逻辑设计介绍时序逻辑设计的基本方法和步骤举例说明时序逻辑电路的设计实例第四章:数字逻辑仿真4.1 数字逻辑仿真概述介绍数字逻辑仿真的概念和作用解释数字逻辑仿真的方法和工具4.2 组合逻辑仿真介绍组合逻辑仿真的方法和步骤使用仿真工具进行组合逻辑电路的仿真实验4.3 时序逻辑仿真介绍时序逻辑仿真的方法和步骤使用仿真工具进行时序逻辑电路的仿真实验第五章:数字逻辑应用5.1 数字逻辑应用概述介绍数字逻辑应用的领域和实例解释数字逻辑在计算机硬件、通信系统等领域的应用5.2 数字逻辑在计算机硬件中的应用介绍数字逻辑在中央处理器、存储器等计算机硬件部件中的应用解释数字逻辑在计算机指令执行、数据处理等方面的作用5.3 数字逻辑在通信系统中的应用介绍数字逻辑在通信系统中的应用实例,如编码器、解码器、调制器等解释数字逻辑在信号处理、数据传输等方面的作用第六章:数字逻辑与计算机基础6.1 计算机基础概述介绍计算机的基本组成和原理解释计算机硬件和软件的关系6.2 计算机的数字逻辑核心讲解CPU内部的数字逻辑结构详细介绍寄存器、运算器、控制单元等关键部件6.3 计算机的指令系统解释指令系统的作用和组成介绍机器指令和汇编指令的概念第七章:数字逻辑与数字电路设计7.1 数字电路设计基础介绍数字电路设计的基本流程解释数字电路设计中的关键概念,如时钟频率、功耗等7.2 数字电路设计实例分析简单的数字电路设计案例讲解设计过程中的逻辑判断和优化7.3 数字电路设计工具与软件介绍常见的数字电路设计工具和软件解释这些工具和软件在设计过程中的作用第八章:数字逻辑与数字系统测试8.1 数字系统测试概述讲解数字系统测试的目的和方法解释测试在保证数字系统可靠性中的重要性8.2 数字逻辑测试技术介绍逻辑测试的基本方法和策略讲解测试向量和测试结果分析的过程8.3 故障诊断与容错设计解释数字系统中的故障类型和影响介绍故障诊断方法和容错设计策略第九章:数字逻辑在现代技术中的应用9.1 数字逻辑与现代通信技术讲解数字逻辑在现代通信技术中的应用介绍数字调制、信息编码等通信技术9.2 数字逻辑在物联网技术中的应用解释数字逻辑在物联网中的关键作用分析物联网设备中的数字逻辑结构和功能9.3 数字逻辑在领域的应用讲述数字逻辑在领域的应用实例介绍逻辑推理、神经网络等技术中的数字逻辑基础第十章:数字逻辑的未来发展10.1 数字逻辑技术的发展趋势分析数字逻辑技术的未来发展方向讲解新型数字逻辑器件和系统的特点10.2 量子逻辑与量子计算介绍量子逻辑与传统数字逻辑的区别讲解量子计算中的逻辑结构和运算规则10.3 数字逻辑教育的挑战与机遇分析数字逻辑教育面临的挑战讲述数字逻辑教育对培养计算机科学人才的重要性重点和难点解析重点环节一:逻辑门的概念和功能逻辑门是数字逻辑电路的基本构建块,包括与门、或门、非门、异或门等。
(一).数字逻辑基础(1).进制与进制之间的转换(2).与逻辑和与门电路(3).或逻辑和或门电路(4).非逻辑和非门电路(5).与非门电路(6).集成门电路(7).逻辑代数定律与逻辑函数化简(二).组合逻辑电路(8).组合逻辑电路的分析与设计(9).编码器(10).译码器(11).加法器(12).数值比较器(13).数据选择器(三).时序逻辑电路(14).RS触发器(15).D触发器与数据寄存器(16).移位寄存器(17).JK触发器与计数器(四).555时基电路与石英晶体多谐振荡器(18).定时器(19).施密特触发器(20).多谐振荡器(五).数模与模数转换(21).数模转换电路DAC(22).模数转换电路ADC(六).半导体存储器(23).只读存储器ROM(24).随机存储器RAM(一).数字逻辑基础(1).进制与进制之间的转换1.在数字电路中,通常用数字来表示高电平,用数字来表示低电平。
2.某二进制数由4位数字组成,其最低位的权是,最高位的权是。
3.完成下列进制的转换:(00011111)2=()10 ;(10)10=()2 ;(1111)2=()8 ;(10)8=()2 ;(011111)2=()16 ;(2A)16=()2 。
(01010101)8421=()10 ;(32)10=()8421 ;4.二进制数只有()数码。
A.0 B.1C.0、1 D.0、1、25.十六进制数只有()数码。
A.0~F B.1~FC.0~16 D.1~166.一位十六进制数可以用()位二进制数来表示。
A.1 B.2C.4 D.16(2).与逻辑和与门电路7.“Y等于A与B”的逻辑函数式为。
8.与门电路是当全部输入为时,输出才为“1”。
9.开关串联的电路可以用“与”逻辑表示。
()10.门电路可以有多个输出端。
()11.门电路可以有多个输入端。
()(3).或逻辑和或门电路12.“Y等于A或B”的逻辑函数式为。
第一章 数字逻辑基础1-1. 将下列的二进制数转换成十进制数(1)、1011,(2)、10101,(3)、11111,(4)、1000011-2. 将下列的十进制数转换成二进制数(1)、8,(2)、27,(3)、31,(4)、1001-3. 完成下列的数制转换(1)、(255)10=( )2=( )16=( )8421BCD(2)、(11010)2=( )16=( )10=( )8421BCD(3)、(3FF )16=( )2=( )10=( )8421BCD(4)、(1000 0011 0111)8421BCD =()10=()2=()161-4. 完成下列二进制的算术运算(1)、1011+111,(2)、1000-11,(3)、1101×101,(4)、1100÷100 1-5. 设:AB Y 1=,B A Y 1+=,B A Y 1⊕=。
已知A 、B 的波形如图题1-5所示。
试画出Y 1、Y 2、Y 3对应A 、B 的波形。
图题1-51-6选择题1.以下代码中为无权码的为 。
A . 8421BCD 码B . 5421BCD 码C . 余三码D . 格雷码2.以下代码中为恒权码的为 。
A .8421BCD 码B . 5421BCD 码C . 余三码D . 格雷码3.一位十六进制数可以用 位二进制数来表示。
A . 1B . 2C . 4D . 164.十进制数25用8421BCD码表示为。
A.10 101B.0010 0101C.100101D.101015.在一个8位的存储单元中,能够存储的最大无符号整数是。
A.(256)10B.(127)10C.(FF)16D.(255)106.与十进制数(53.5)10等值的数或代码为。
A.(0101 0011.0101)8421BCDB.(35.8)16C.(110101.1)2D.(65.4)87.矩形脉冲信号的参数有。
A.周期B.占空比C.脉宽D.扫描期8.与八进制数(47.3)8等值的数为:A. (100111.011)2B.(27.6)16C.(27.3 )16D. (100111.11)29. 常用的BCD码有。
第一章数字逻辑基础第一节重点与难点一、重点:1.数制2.编码(1) 二—十进制码(BCD码)在这种编码中,用四位二进制数表示十进制数中的0~9十个数码。
常用的编码有8421BCD码、5421BCD码和余3码。
8421BCD码是由四位二进制数0000到1111十六种组合中前十种组合,即0000~1001来代表十进制数0~9十个数码,每位二进制码具有固定的权值8、4、2、1,称有权码。
余3码是由8421BCD码加3(0011)得来,是一种无权码。
(2)格雷码格雷码是一种常见的无权码。
这种码的特点是相邻的两个码组之间仅有一位不同,因而其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。
3.逻辑代数基础(1)逻辑代数的基本公式与基本规则逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工具,也是学习数字电路的必备基础。
逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函数的公式数目倍增。
(2)逻辑问题的描述逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。
(3)图形法化简逻辑函数图形法比较适合于具有三、四变量的逻辑函数的简化。
二、难点:1.给定逻辑函数,将逻辑函数化为最简用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运用四个基本方法—并项法、消项法、消元法及配项法对逻辑函数进行化简。
用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画包围圈时应把每个包围圈尽可能画大。
2.卡诺图的灵活应用卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、求函数的反函数和逻辑运算等。
3.电路的设计在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路呢?通常的步骤如下:1.根据命题,列出反映逻辑命题的真值表; 2.根据真值表,写出逻辑表达式; 3.对逻辑表达式进行变换化简; 4.最后按工程要求画出逻辑图。
数字电子技术》知识点数字电子技术》知识点第1章数字逻辑基础本章主要介绍数字电路的基础知识,包括数字信号、模拟信号的定义,数字电路的分类,数制、编码及其转换,基本逻辑运算的特点,数字电路逻辑功能的几种表示方法及相互转换,逻辑代数运算的基本规则等内容。
1.数字信号、模拟信号的定义数字信号是离散的,只有两种状态,即高电平和低电平,而模拟信号是连续的,可以有无限种状态。
2.数字电路的分类数字电路分为组合逻辑电路和时序逻辑电路。
组合逻辑电路的输出只与输入有关,而时序逻辑电路的输出还与时间有关。
3.数制、编码及其转换我们需要熟练掌握在10进制、2进制、8进制、16进制、8421BCD之间进行相互转换的方法。
举例1:将(37.25)10转换为2进制、16进制、8421BCD码解:(37.25)10 = (.01)2 = (25.4)16 =(xxxxxxxx.xxxxxxxx)8421BCD4.基本逻辑运算的特点我们需要掌握与运算、或运算、与非运算、或非运算、异或运算、同或运算、非运算等基本逻辑运算的特点。
5.数字电路逻辑功能的几种表示方法及相互转换我们需要掌握真值表、逻辑表达式、卡诺图、逻辑图、波形图、状态图等几种表示方法,并能够相互转换。
6.逻辑代数运算的基本规则我们需要掌握反演规则和对偶规则,能够求逻辑函数的反函数和对偶函数。
反演规则是将逻辑表达式中的“·”换成“+”,“+”换成“·”,“”换成“1”,“1”换成“”,原变量换成反变量,反变量换成原变量,得到函数的反函数。
对偶规则是将逻辑表达式中的“·”换成“+”,“+”换成“·”,“”换成“1”,“1”换成“”,而变量保持不变,得到函数的对偶函数。
本章内容是数字电路的基础,是后续研究的重要基础。
需要认真掌握并应用于实际操作中。
7.逻辑函数化简逻辑函数化简有两种方法:公式法和图形法。
公式法是利用逻辑代数的基本公式、定理和规则来化简逻辑函数;图形法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。