全国各地2017届高三文科数学模拟试卷精彩试题汇编04 Word版含解析
- 格式:doc
- 大小:364.00 KB
- 文档页数:5
1. (包头十校联考文科数学第11题) 在正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,则异面直线CP 与1BA 所成角θ的取值范围是( )A .02πθ<< B .02πθ<≤C .03πθ<≤解:D.2. (数学(文)卷·2017届广西钦州市高新区高三上学期期末考试第9题) 已知AB AC ⊥,1AB t =,AC t =,若P 点是ABC ∆ 所在平面内一点,且AB AC AP AB AC =+,当t 变化时,PB PC ⋅ 的最大值等于( )A .-2 B .0 C .2 D .4解:B.3. (江西省师大附中、临川一中2017届高三1月联考数学(文)试卷第12题) 已知函数kx x f =)( )1(2e x e≤≤,与函数2)1()(xe x g =,若)(xf 与)(xg 的图象上分别存在点N M ,, 使得MN 关于直线x y =对称,则实数k 的取值范围是( ) A. ],1[e e - B. ]2,2[e e - C. )2,2(e e - D. ]3,3[e e- 解:B.4. (江西省重点中学协作体2017届高三下学期第一次联考数学(文)试卷第8题) 设当θ=x 时,函数x x y cos sin 3-=取得最大值,则θsin = ( )A .1010-B .1010C .10103-D .10103 解:D.5. (数学(文)卷·2017届河北省涞水波峰中学2017届高三下学期周考第11题)四棱锥P ABCD -的三视图如下图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为 )A .12πB .24π C.36π D .48π 解:A.6. (数学(文)卷·2017届山西省实验中学高三上学期第四次月考第11题) 气象意义上的春季进入夏季的标志为:“连续五天每天日平均温度不低于22℃”,现在甲、乙、丙三地连续五天的日平均温度的记录数据(记录数据都是正整数,单位℃): 甲地:五个数据的中位数是24,众数为22;乙地:五个数据的中位数是27,平均数为24;丙地:五个数据中有一个数据是30,平均数是24,方差为10.则肯定进入夏季的地区有( )A .0个B .1个C .2个D .3个 解:B.7. (数学文卷·2017届北京市丰台区高三上学期期末考试第7题) 学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是( )A .《雷雨》只能在周二上演B . 《茶馆》可能在周二或周四上演C . 周三可能上演《雷雨》或《马蹄声碎》D . 四部话剧都有可能在周二上演 解:C.8. (数学文卷·2017届甘肃省河西五市部分普通高中高三第一次联合考试第9题) 已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数'()y f x =的图象如右图所示. 当12a <<时,函数()y f x a =-的零点个数为( )A .2 B .3 C .4 D .5 解:C.9. (数学文卷·2017届广东省普宁市华侨中学高三下学期摸底考试第12题) 定义在R 上的可导函数()f x 满足()11=f ,且()12>'x f ,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式()232c o s 2s i n 22x f x >-的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫- ⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭ D .⎪⎭⎫ ⎝⎛-3,3ππ 解:D.10. (数学文卷·2017届湖南省衡阳市八中高三第六次月考第11题) 数列{}n a 满足1a =与11[]{}n n n a a a +=+([]n a 与{}n a 分别表示n a 的整数部分与小数部分,如,1),则2017a =( )A .3024+.3024C .3022+.3022+解:A.11. (武昌区2017届高三元月调考数学文数第9题)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A. 甲B. 乙C.丙D.丁 解:B.12. (三省十校联考文科数学第16题) 函数262sin 4)(x x x x f --=π所有零点的和等于__________. 解:1813. (数学(文)卷·2017届广西钦州市高新区高三上学期期末考试第15题) 用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则(9)9g =;10的因数有1,2,5, 10,(10)5g =;那么2016(1)(2)(3)(21)g g g g ++++-= .解:2016413- 14. (数学(文)卷·2017届河北省涞水波峰中学2017届高三下学期周考第16题) 已知函数()()x x af x e a R e=+∈在区间[]0 1,上单调递增,则实数a 的取值范围是 . 解:[]1 1-,15. (数学文卷·2017届甘肃省河西五市部分普通高中高三第一次联合考试第16题)函数()y f x =满足对任意x R ∈都有(2)()f x f x +=-成立,且函数(1)y f x =-的图像关于点(1,0)对称,(1)4f =,则(2016)(2017)(2018)f f f ++的值为 .解:416. (数学文卷·2017届河南省新乡一中、鹤壁高中、开封高中、安阳一中高三1月尖子生联赛第15题) 设函数31,1()2,1x x x f x x -<⎧=⎨≥⎩,则满足()(())2f a f f a =的a 的取值范围是 . 解:2+3⎡⎫∞⎪⎢⎣⎭, 17. (数学文卷·2017届湖北省荆、荆、襄、宜四地七校考试联盟高三2月联考第16题) 若函数32()(0)f x ax bx cx d a =+++≠图象的对称中心为00(,())M x f x ,记函数()f x 的导函数为)(x g ,则有)(0='x g .若函数32()3f x x x =-,则12()()20172017f f +40324033()()20172017f f +++=________. 解:8066-18. (数学文卷·2017届湖北省荆州市高三上学期期末考试第16题) 对于实数x ,将满“01y ≤<且x y -为整数”的实数y 称为实数x 的小数部分,用符号x 〈〉表示.对于实数a ,无穷数列{}n a 满足如下条件:①1a a =〈〉; ②11(0)0(0)n nn n a a a a +⎧〈〉≠⎪=⎨⎪=⎩.(Ⅰ)若a=时,数列{}n a 通项公式为 ;(Ⅱ)当21>a 时,对任意*n N ∈都有n aa =,则a 的值为 ; 解:1n a =-215-。
2017届全国各地高三文科数学模拟试卷精彩试题汇编(20)1. (江西省红色七校2017届高三下学期第二次联考文科数学试卷第9题) 如图,ABCD 是边长为点E ,F 分别为边BC ,CD 的中点,将ABE ∆,ECF ∆,FDA∆分别沿AE ,EF ,FA 折起,使B ,C ,D 三点重合于点P ,若四面体PAEF 的四个顶点在同一个球面上,则该球的表面积是()A .6π B .12π C .18πD.解:C.2. (江西省红色七校2017届高三下学期第二次联考文科数学试卷第12题) 已知函数()()232log 2,0,33,,x x k f x x x k x a ⎧-≤<⎪=⎨-+≤≤⎪⎩若存在实数k ,使得函数()f x 的值域为,则实数a 的取值范围是()A.3,12⎡⎢⎣ B.2,1⎡+⎣ C .[]1,3 D .[]2,33. (南昌高三文科数学(模拟一)第12题)抛物线28y x =的焦点为F ,设1122(,),(,)A x y B x y 是抛物线上的两个动点,若124x x ++=,则AFB ∠的最大值为( ) A. 3π B. 34π C. 56π D. 23π 解:D.4. (数学(文)卷·2017届广东省清远市清新区滨江中学高三第一次模拟考试第12题)若直线0ax y -=(0a ≠)与函数22cos 1()2ln 2x f x x x+=+-图象交于不同的两点A ,B ,且点(6,0)C ,若点(,)D m n 满足DA DB CD +=,则m n +=( )A .1 B .2 C .3 D .0解:B.5. (数学(文)卷·2017届湖北省枣阳市白水高级中学高三下学期第一次月考第12题) 若存在两个正实数x ,y ,使得等式()()324ln ln 0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( )A .(),0-∞B .30,2e ⎛⎤ ⎥⎝⎦ C .3,2e ⎡⎫+∞⎪⎢⎣⎭ D .()3,0,2e ⎡⎫-∞+∞⎪⎢⎣⎭6. (数学(文)卷·2017届辽宁省大连市高三3月双基测试第12题) “一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )A .男护士B .女护士C .男医生D .女医生解:A.7. (数学文卷·2017届福建省福州市第八中学高三第六次质量检查第10题) 一圆锥底面半径为2,母线长为6,有一球在该圆锥内部且与它的侧面和底面都相切,则这个球的半径为( ) AB .1 C.2 D .解:B.8. (数学文卷·2017届湖北省华中师范大学新高考联盟高三2月教学质量测评第10题)设()()2232x x f x x e e x -=----,(e 为自然对数的底数),则函数()f x 的零点个数为( ) A. 6 B. 5 C. 4 D. 3解: A.9. (数学文卷·2017届湖北省黄冈市高三3月质量检测第12题)若函数⎪⎩⎪⎨⎧>-<+-≤≤-+-=)11( ),3(41)11( ,12)21(3)(3x x x x x x f x x 或对任意的]2,3[-∈m ,总有0)()1(>+-x f mx f 恒成立,则x 的取值范围是( ).A .⎪⎭⎫ ⎝⎛-31,21B .)2,1(-C .⎪⎭⎫ ⎝⎛--21,34 D .)3,2(- 解:A.10. (数学文卷·2017届湖南省衡阳市高三下学期第一次联考第11题)在ABC ∆中,2,,BC G O =分别是ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D.上述三种情况都有可能解:B.11. (数学文卷·2017届吉林省实验中学高三第五次模拟考试第12题)已知函数()1,0ln ,0x x x f x x x ⎧-<⎪=⎨⎪>⎩,则关于x 的方程()()()20f x f x a a R -+=∈⎡⎤⎣⎦的实数解的个数不可能是A. 2B. 3C. 4D. 5解:A.12. (数学文卷·2017届江西省百校联盟高三2月联考第12题)若函数()()12ln x f x a x e x x =-++存在唯一的极值点,且此极值大于0,则( ) A.10a e ≤<B.210a e ≤<C.211a e e -<<D.10a e ≤<或1a e=- 解:A. 13. (数学文卷·2017届四川省成都龙泉第二中学高三下学期入学考试第12题) 利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d (d=1,2,…,9)的概率为P ,下列选项中,最能反映P 与d 的关系的是( )A .P=lg (1+)B .P= C .P= D .P=×解:A 14. (2017届高三第二次湖北八校文数试卷第12题)已知函数()f x 在定义域R 上的导函数为()f x ',若方程()0f x '=无解,且()20172017,x f f x ⎡⎤-=⎣⎦当()sin cos g x x x kx =--在,22ππ⎡⎤-⎢⎥⎣⎦上与()f x 在R 上的单调性相同时,则实数k 的取值范围是 ( )A. (],1-∞-B. (-∞C. ⎡-⎣D. )+∞解:A15. (安徽省江南十校2017届高三3月联考文数试题第16题) 已知实数,x y 满足ln 230y x x y ≤⎧⎨--≤⎩,则4y z x +=的取值范围为 . 解:]1,0[16. (数学文卷·2017届东北三省三校高三第一次联合模拟考试第15题)若0a >,0b >,且21a b +=,且224a b -的最大值是 .解:17. (数学文卷·2017届湖北省七市教科研协作体高三下学期3月联合调考第16题)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为0kt P P e -=.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为 小时.解:1018. (数学文卷·2017届湖北省武汉市高中毕业生二月调研考试第15题)在平面直角坐标系中,设,,A B C 是曲线11y x =-上两个不同的点,且,,D E F 分别为,,BC CA AB 的中点,则过,,D E F 三点的圆一定经过定点 .解:(1,0)19. (数学文卷·2017届江西省赣中南五校高三下学期第一次联考第16题) 已知对任意平面向量=(x,y ),把绕其起点沿逆时针方向旋转角得到向量,叫做把点B 绕点A 逆时针方向旋转角得到点P .设平面内曲线C 上的每一点绕原点沿逆时针方向旋转后得到点的轨迹是曲线,则原来曲线C 的方程是___ .解:xy = -1。
绝密★启用前2017届全国各地高三最新模拟文化试题集数学试卷(带解析)考试围:xxx;考试时间:100分钟;命题人:xxx题号一二总分得分注意事项:1.答题前填写好自己的、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(数学文卷·2017届省皖智教育1号卷A10联盟高三下学期开年考试第3题)我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“”,那么剩下的部分所成的数列的通项公式为()A.12na n= B.12na n= C.12nna⎛⎫= ⎪⎝⎭D. 2nna=2.(江淮十校2017届高三第一次联考文数试题第7题)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦⨯矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,半径等于4米的弧田.按照上述方法计算出弧田的面积约为()A. 6平方米B. 9平方米C. 12平方米D. 15平方米3.(数学(文)卷·2017届新疆奎屯市第一高级中学高三上学期第二次月考试题第9题)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为()A. 13B.14C.15D.164.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )A .24里B .12里C .6里D .3里5.(数学文卷·2017届省二中高三上学期第二次考试第9题)《丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A. 55B. 52C. 39D. 266.(数学(文)卷·2017届省市洞口县第一中学高三上学期第三次模拟考试第9题)吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?( )A. 5B. 4C. 3D. 27.齐王与田忌赛马,每人各有三匹马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,共进行三场比赛,每次各派一匹马进行比赛,马不能重复使用,三场比赛全部比完后胜利场次多者为胜,则田忌获胜的概率为( )A. B. C. D.8.(数学文卷·2017届省资阳市高三上学期第一次诊断考试第9题)公元263年左右,我国数学家徽发现,当圆接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用徽的割圆术设计的程序框图,则输出的n 值为 (参考数据: 3 1.732=, sin150.2588︒≈, sin7.50.1305︒≈)A. 12B. 24C. 48D. 969.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是( )A .336B .510C .1326D .360310.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.411.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,2i e 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 12.(中学2016—2017学年度第一学期半月考高三文科数学试卷) 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广为矩形的屋脊形状的多面体(如图)”,下底面宽3AD =丈,长4AB =丈,上棱2EF =丈, EF ABCD P 平面. EF 与平面ABCD 的距离为1丈,问它的体积是 ( )A. 4立方丈B. 5立方丈C. 6立方丈D. 8立方丈13.(数学(文)卷·2017届省百所重点中学高三上学期阶段性诊断考试第9题) 若正整N 以正整m 的余数n 则记()mod N n m ≡例如()102mod4≡.下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i 等于( )A. 4B. 8C. 16D. 3214.(数学文卷·2017届省文博中学高三上学期期中考试第9题) 《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半.问何日相逢,各穿几何?题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半”如果墙足够厚,nS为前n天两只老鼠打洞长度之和,则5S ()A.153116B.153216C.153316D.126215.《算数书》竹简于上世纪八十年代在省江陵县家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:“置如其周,令相承也,又以高乘之,三十六成一”.该术相当于给出了圆锥的底面周长与高,计算其体积的近似公式,它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为()A. B. C. D.16.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推, 例如6613用算筹表示就是: ,则9117用算筹可表示为 A.B. C. D. 17.(数学(文)卷·2017届省六中高三上学期第二次月考第9题) 《九章算术》中,将底面是直角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的侧面积为( )A. 2B. 422+C. 442+D. 462+18.“勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家爽创制了一幅“勾股圆方图”,用形数结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角6πα=,现在向该正方形区域随机地投掷一枚飞镖,飞镖落在小正方形的概率是( )A. 312-B. 32C. 434-D.34 19.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问中间3尺的重量为( )(A )6斤 (B )9斤 (C )10斤 (D )12斤20.题) 我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列第二部:将数列①的各项乘n 得到数列(记为123,,,,.n a a a a L 12231+++n n a a a a a a -=L ( )A. B. C. D.21.(数学(文)卷·2017届省航天高级中学高三第五次模拟第8题) 南北朝时期的数学古籍《邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问:每等人比下等人多得几斤?”()A. B. C. D.22.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()(A(B(C(D23.“珠算之父”程大位是我国明代伟大是数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升.次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为()A.1.9升B.2.1升C.2.2升D.2.3升24.《九章算术》是我国数学史上堪与欧几里得《几何原本》相媲美的数学名著,其第五卷《商功》中有如下问题:“今有圆堡,周四丈八尺,高一丈一尺,问积几何?”这里所说的圆堡就是圆柱体,其底面周长是4丈8尺,高1丈13,估算该圆堡的体积为()A.1998立方尺B.2012立方尺C.2112立方尺D.2324立方尺25.《九章九术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.)A26.(省市八校2017届高三下学期2月联考数学文第8题) 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改2017年普通高等学校招生全国统一模拟考试文科数学考场:___________座位号:___________本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分150分,考试时间120分钟.第I 卷(选择题共60分)选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U AB =,则集合()UA B 中的元素共有( )(A) 3个 (B ) 4个 (C )5个 (D )6个(2)(2) 复数3223ii+=-( ) (A )1 (B )1- (C )i (D)i -(3)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )(A )17-(B )17 (C )16- (D )16(4)已知tan a =4,cot β=13,则tan(a+β)=( )…(A)711 (B)711- (C) 713 (D) 713- (5)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A. 2 B.26 C. 25D. 1 (6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f ( )(A )0 (B )1 (C )2 (D )4(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( ) A.①②③ B. ①③④ C. ②④ D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)若0tan >α,则( )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为( )(A)6π (B) 4π (C) 3π (D) 2π (11)设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+ ( )(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。
2017届全国各地高三文科数学模拟试卷精彩试题汇编(10)1.(金华一中学等名校协作体高三9月联考第7题)已知定义在R 上的偶函数)(x f 满足)()4(x f x f =+,且当20≤≤x 时,{}x x x x f -+-=2,2min )(2,若方程0)(=-mx x f 恰有两个实数根,则实数m 的取值范围是( )A.⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3131,Y B.⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,3131,YC.112,,233⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭UD.⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--2,3131,2Y解:C.2.(金华一中学等名校协作体高三9月联考第8题)已知函数ax ex x f -+=)(,x a e x x g --+=4)2ln()(,其中e 为自然对数的底数,若存在实数0x 使3)()(00=-x g x f 成立,则实数a 的值为( )A.12ln --B. 12ln -C. 2ln -D. 2ln 解:A.3.(数学卷·2017届浙江省建人高复高三上学期开学摸底考试第7题)矩形ABCD 中,AB <BC ,将△ABC 沿着对角线AC 所在的直线进行翻折,记BD 中点为M ,则在翻折过程中,下列说法错.误.的是( )A .存在使得AB ⊥DC 的位置 B .存在使得AB ⊥BD 的位置 C .存在使得AM ⊥DC 的位置D .存在使得AM ⊥AC 的位置4.( 东北育才学校2016-2017高三上学期第一次模拟考试第11题) 下列四个图中,函数y=10111n x x ++的图象可能是( )解:∵10ln x y x=是奇函数,向左平移一个单位得10ln 11x y x +=+∴10ln 11x y x +=+ 图象关于(-1,0)中心对称,故排除A 、D ,当x <-2时,y <0恒成立,排除B ,故选C . 5.(2017届重庆一中高三九月摸底考试第12题)定义在R 上的可导函数()f x 满足()11=f ,且()12>'x f ,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式()232cos 2sin 22xf x >-的解集为( )A .4,33ππ⎛⎫⎪⎝⎭ B .4,33ππ⎛⎫- ⎪⎝⎭ C .0,3π⎛⎫ ⎪⎝⎭D .⎪⎭⎫ ⎝⎛-3,3ππ6.(金华一中学等名校协作体高三9月联考第15题)如图,正方形1111D C B A ABCD -的棱长为3,在面对角线D A 1上取点M ,在面对角线D C 1上取点N ,使得MN //平面C C AA 11,当线段MN 长度取到最小值时,三棱锥11MND A -的体积为 .解:1.7.(数学卷·2017届浙江省建人高复高三上学期开学摸底考试第15题)记max{a ,b}=,设M=max{|x ﹣y 2+4|,|2y 2﹣x+8|},若对一切实数x ,y ,M≥m 2﹣2m 都成立,则实数m 的取值范围是 .解:∵M=max{|x ﹣y2+4|,|2y2﹣x+8|},∴2M≥|x﹣y2+4|+|2y2﹣x+8|≥|y2+12|≥12,∴M≥6, ∵对一切实数x ,y ,M≥m2﹣2m 都成立,∴m2﹣2m≤6,∴1﹣≤m≤1+,∴实数m 的取值范围是,故答案为:.8.( 数学(文)卷·2017届福建省福州外国语学校高三适应性考试(一)第15题) 1在一组样本数据112266(,),(,),,(,)x y x y x y L 的散点图中,若所有样本点(,)i i x y (1,2,,6)i =L 都在曲线213y bx =-附近波动.经计算6111i i x ==∑,6113i i y ==∑,62121i i x ==∑,则实数b 的值为 .解:579.(2017届四川省双流中学高三9月月考第16题)设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f ,则不等式)1(1)1(2-->+x f x x f 的解集为 .10.(江南“十校”2017届高三9月联考数学文第16题)已知数列{}n a 满足()*111223344521222113,,22n n n n n n n a a a n N S a a a a a a a a a a a a +-+==-∈=-+-++-L ,则10S = ___________.解:-435.11.(河南省安阳市高三9月调研测试试题第16题) 在△ABC 中,2AB =,3AC =,7BC =P ,Q 为BC 边上的动点且BP CQ =,则AP AQ ⋅u u u r u u u r的最大值为 .解:194.12.( 东北育才学校2016-2017高三上学期第一次模拟考试第21题) 已知函数sin ()2cos x f x bx x =-+(R b ∈).(Ⅰ)是否存在实数b ,使得()f x 在区间2(0,)3π上为增函数,2(,)3ππ上为减函数?若存在,求出b 的值;若不存在,请说明理由;(Ⅱ)若当0x ≥时,都有()0f x ≤恒成立,求b 的取值范围.(Ⅱ)(方法1) 22cos 2(12)cos 14()(2cos )b x b x bf x x -+-+-'=+首先令0)(≤'x f 得212cos ,(cos 2)x b x +≥+221112cos 111cos 2,[,1],2()3().3(cos 2)3x x t y t x t t ++=∈∴==-+令的最大值为即31≥b ,则0)(≤'x f 对0≥∀x 恒成立,这时)(x f 在[)+∞,0上递减,∴0)0()(=≤f x f .若0b <,则当0≥x 时,[0,)bx -∈+∞,是有界的x xcos 2sin +, bx x x x f -+=cos 2sin )(不可能恒小于等于0 ,若0=b ,则21)2(,cos 2sin )(=+=πf x x x f 但不合题意;若310<<b ,则0331)0(>-='bf ,01)(<--='b f π,∴),0(0π∈∃x ,使0)(0='x f ,并且),0(0x x ∈时,0)(>'x f ,这时)(x f 递增,0)0()(=>f x f ,不合题意;综上⎪⎭⎫⎢⎣⎡+∞∈,31b .(方法2) 22cos 2(12)cos 14()(2cos )b x b x bf x x -+-+-'=+,令△=[])31(4)41()21(42b b b b -=-+-,若△0≤,即31≥b ,则0)(≤'x f 对0≥∀x 恒成立,这时)(x f 在[)+∞,0上递减,∴0)0()(=≤f x f ,以下同(方法1)或者:.10)2(ππ≥≤b f 得令若311<≤b π,则0331)0(>-='b f ,01)(<--='b f π,∴),0(0π∈∃x ,使0)(0='x f ,并且),0(0x x ∈时,0)(>'x f ,这时)(x f 递增,0)0()(=>f x f ,不合题意,综上⎪⎭⎫⎢⎣⎡+∞∈,31b13.(南阳一中高三上学期第一次月考第22题)已知函数)0(1)1ln()(>+-+=a x axx x f . (Ⅰ)若函数在1=x 处的切线与x 轴平行,求a 的值; (Ⅱ)若0)(≥x f 在[)+∞,0上恒成立,求a 的取值范围; (Ⅲ)证明:201720161()2017e<(e 为自然对数的底数).(Ⅲ)要证,只需证,两边取自然对数得,>1,即证ln ,即证ln >0,即证ln ,由(Ⅱ)知1a=时,()ln(1)1xf x xx=+-+在[)+∞,0单调递增.又因,f(0)=0,所以f( ln所以<。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x 2+x ﹣12≤0},N={y|y=3x ,x ≤1},则集合{x|x ∈M 且x ∉N}为( ) A .(0,3] B .[﹣4,3]C .[﹣4,0)D .[﹣4,0]2.向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R ),则=( )A .2B .4C .D .3.已知,则f[f (1﹣i )]等于( )A .3B .1C .2﹣iD .3+i4.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为16,28,则输出的a=( )A .0B .2C .4D .145.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则等于( )A .11B .5C .﹣8D .﹣116.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A.13πB.16πC.25πD.27π7.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β8.已知tanx=,则sin2(+x)=()A.B.C.D.9.已知m,n是满足m+n=1,且使取得最小值的正实数.若曲线y=xα过点P(m, n),则α的值为()A.﹣1 B.C.2 D.310.△ABC的三内角A,B,C所对边长分别是a,b,c,若=,则角B的大小为()A.B.C.D.11.设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率()A.B. C.D.12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x,f(x))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+g()+…+g()=()A.2016 B.2015 C.4030 D.1008二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是.14.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为.15.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB= .16.已知函数f(x)=kx,,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=e对称,则实数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{an }为公差不为零的等差数列,其前n项和为Sn,满足S5﹣2a2=25,且a1,a4,a 13恰为等比数列{bn}的前三项(Ⅰ)求数列{an },{bn}的通项公式;(Ⅱ)设Tn 是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2Tk=成立,若存在,求出k的值;若不存在,说明理由.18.今年我校高二文科班学生共有800人参加了数学与地理的学业水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,…800进行编号:(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的三个人的编号:(下面摘取了第7行至第9行)(2)抽出100人的数学与地理的水平测试成绩如表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率是30%,求a、b的值;(3)在地理成绩为及格的学生中,已知a≥10,b≥8,求数学成绩为优秀的人数比及格的人数少的概率.19.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设几何体F﹣ABCD、F﹣BCE的体积分别为V1、V2,求V1:V2的值.20.已知函数f(x)=+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y﹣2=0(1)判断函数f(x)的单调性;(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[,2],f(x)≥t3﹣t2﹣2at+2与f(x)≤t3﹣t2﹣2at+2中恰有一个恒成立,求实数a的取值范围.21.已知椭圆的离心率,过椭圆的左焦点F 且倾斜角为30°的直线与圆x 2+y 2=b 2相交所得弦的长度为1. (I )求椭圆E 的方程;(Ⅱ)若动直线l 交椭圆E 于不同两点M (x 1,y 1),N (x 2,y 2),设=(bx 1,ay 1),=((bx 2,ay 2),O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:△MON 的面积为定值,并求出该定值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点分别为O 、P ,与圆C 2的交点分别为O 、Q ,求|OP|•|OQ|的最大值.[选修4-5:不等式选讲]23.(Ⅰ)若关于x 的不等式|x+1|﹣|x ﹣2|>|a ﹣3|的解集是空集,求实数a 的取值范围;(Ⅱ)对任意正实数x ,y ,不等式+<k恒成立,求实数k 的取值范围.2017届高三数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x2+x﹣12≤0},N={y|y=3x,x≤1},则集合{x|x∈M且x∉N}为()A.(0,3] B.[﹣4,3] C.[﹣4,0)D.[﹣4,0]【考点】集合的表示法.【分析】集合M为不等式的解集,集合N为指数函数的值域,分别求出,再根据新定义求集合{x|x∈M且x∉N}B即可.【解答】解:M={x|x2+x﹣12≤0}=[﹣4,3],N={y|y=3x,x≤1}=(0,3],所以集合{x|x∈M且x∉N}=[﹣4,0).故选:C.2.向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则=()A.2 B.4 C.D.【考点】平面向量的基本定理及其意义.【分析】如图所示,建立直角坐标系.利用向量的坐标运算性质、向量相等即可得出.【解答】解:以向量,的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵=λ+μ(λ,μ∈R),∴,解之得λ=﹣2且μ=﹣,因此,则=4故选:B.3.已知,则f[f(1﹣i)]等于()A.3 B.1 C.2﹣i D.3+i【考点】函数的值.【分析】根据f(x)中的范围带值计算即可.【解答】解:∵1﹣i∉R∴f(1﹣i)=(1+i)(1﹣i)=2.那么:f[f(1﹣i)]=f(2)=1+2=3.故选A.4.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为16,28,则输出的a=()A.0 B.2 C.4 D.14【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=16,b=28,不满足a>b,则b变为28﹣16=12,由b <a ,则a 变为16﹣12=4, 由a <b ,则,b=12﹣4=8, 由a <b ,则,b=8﹣4=4, 由a=b=4, 则输出的a=4. 故选:C .5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则等于( )A .11B .5C .﹣8D .﹣11【考点】等比数列的性质.【分析】由题意可得数列的公比q ,代入求和公式化简可得. 【解答】解:设等比数列{a n }的公比为q ,(q ≠0) 由题意可得8a 2+a 5=8a 1q+a 1q 4=0,解得q=﹣2,故====﹣11故选D6.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π【考点】由三视图求面积、体积.【分析】几何体为底面为正方形的长方体,底面对角线为4,高为3.则长方体的对角线为外接球的直径.【解答】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.7.已知直线m和平面α,β,则下列四个命题中正确的是()A.若α⊥β,m⊂β,则m⊥αB.若α∥β,m∥α,则m∥βC.若α∥β,m⊥α,则m⊥βD.若m∥α,m∥β,则α∥β【考点】空间中直线与平面之间的位置关系.【分析】利用面面垂直、面面平行、线面平行的判定定理和性质定理分别分析解答.【解答】解:对于选项A,若α⊥β,m⊂β,则m与α可能平行或者斜交;故A错误;对于选项B,若α∥β,m∥α,则m∥β或者m⊂α;故B 错误;对于选项C,若α∥β,m⊥α,则由面面平行的性质定理可得m⊥β;故C正确;对于选项D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.8.已知tanx=,则sin2(+x)=()A.B.C.D.【考点】二倍角的正弦.【分析】由条件利用半角公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:tanx=,则sin2(+x)===+=+=+=,故选:D.9.已知m,n是满足m+n=1,且使取得最小值的正实数.若曲线y=xα过点P(m, n),则α的值为()A.﹣1 B.C.2 D.3【考点】基本不等式.【分析】由基本不等式易得m=且n=时取到最小值,可得=,解方程可得.【解答】解:∵正实数m,n是满足m+n=1,∴=()(m+n)=10++≥10+2=16,当且仅当=即m=且n=时取到最小值,∴曲线y=xα过点P(,),∴=,解得α=故选:B10.△ABC的三内角A,B,C所对边长分别是a,b,c,若=,则角B的大小为()A.B.C.D.【考点】余弦定理;正弦定理.【分析】利用正弦定理化简已知可得c2+a2﹣b2=﹣ac,由余弦定理可得cosB=﹣,结合范围B∈(0,π),即可解得B的值.【解答】解:在△ABC中,由正弦定理,可得:sinB=,sinA=,sinC=,∵=,可得: =,整理可得:c2+a2﹣b2=﹣ac,∴由余弦定理可得:cosB==﹣,∵B∈(0,π),∴B=.故选:B.11.设点P是双曲线﹣=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率()A.B. C.D.【考点】双曲线的简单性质.【分析】先由双曲线定义和已知求出两个焦半径的长,再由已知圆的半径为半焦距,知焦点三角形为直角三角形,从而由勾股定理得关于a、c的等式,求得离心率【解答】解:依据双曲线的定义:|PF1|﹣|PF2|=2a,又∵|PF1|=3|PF2|,∴|PF1|=3a,|PF2|=a,∵圆x2+y2=a2+b2的半径=c,∴F1F2是圆的直径,∴∠F1PF2=90°在直角三角形F1PF2中由(3a)2+a2=(2c)2,得故选 D12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x,f(x))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+g()+…+g()=()A.2016 B.2015 C.4030 D.1008【考点】利用导数研究函数的极值.【分析】由题意对已知函数求两次导数可得图象关于点(,1)对称,即f(x)+f(1﹣x)=2,即可得到结论.【解答】解:函数g(x)=,函数的导数g′(x)=x2﹣x+3,g″(x)=2x﹣1,由g″(x0)=0得2x﹣1=0解得x=,而g()=1,故函数g(x)关于点(,1)对称,∴g(x)+g(1﹣x)=2,故设g()+g()+…+g()=m,则g()+g()+…+g()=m,两式相加得2×2015=2m,则m=2015.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x,y满足:,z=2x﹣2y﹣1,则z的取值范围是[﹣,5).【考点】简单线性规划.【分析】根据画出不等式组表示的平面区域,利用数形结合结合目标函数的意义,利用平移即可得到结论.【解答】解:不等式对应的平面区域如图:(阴影部分).由z=2x﹣2y﹣1得y=x﹣,平移直线y=x﹣,由平移可知当直线y=x﹣,经过点C时,直线y=x﹣的截距最小,此时z取得最大值,由,解得,即C(2,﹣1),此时z=2x﹣2y﹣1=4+2﹣1=5,可知当直线y=x﹣,经过点A时,直线y=y=x﹣的截距最大,此时z取得最小值,由,得,即A(,)代入z=2x﹣2y﹣1得z=2×﹣2×﹣1=﹣,故z∈[﹣,5).故答案为:[﹣,5).14.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为 2 .【考点】抛物线的简单性质.【分析】由抛物线方程求出抛物线的焦点坐标和准线方程,结合抛物线的定义得答案.【解答】解:抛物线y2=4x的焦点坐标为F(1,0),准线方程为x=﹣1,∵抛物线y2=4x上的一点P到焦点的距离为5,由抛物线定义可知,点P到准线x=﹣1的距离是5,则点P到x轴的距离是4,∴△PFO的面积为=2,故答案为:2.15.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB= .【考点】正弦函数的图象.【分析】根据题意画出图形,结合图形,利用函数y=sinπx的对称性得出∠OAB=2∠OAC,结合二倍角公式求出tan∠OAB的值.【解答】解:如图所示;O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点,∴AB过点D,且∠OAB=2∠OAC;又A(,1),∴tan∠OAC=,∴tan∠OAB===.故答案为:.16.已知函数f(x)=kx,,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=e对称,则实数k的取值范围是[﹣,2e] .【考点】函数的图象.【分析】设M(x,kx),则N(x,2e﹣kx),推导出k=﹣lnx,由此利用导数性质能求出实数k的取值范围.【解答】解:∵函数f(x)=kx,g(x)=2lnx+2e(≤x≤e2),f (x )与g (x )的图象上分别存在点M ,N ,使得M ,N 关于直线y=e 对称, ∴设M (x ,kx ),则N (x ,2e ﹣kx ),∴2e ﹣kx=2lnx+2e ,∴k=﹣lnx ,k′=,由k′=0,得x=e ,∵≤x ≤e 2,∴x ∈[,e )时,k′<0,k=﹣lnx 是减函数;x ∈(e ,e 2]时,k′>0,k=﹣lnx 是增函数,∴x=e 时,k=﹣lne=﹣;x=e 2时,k=﹣lne 2=﹣;x=时,k=﹣ln =2e ,∴k min =﹣,k max =2e .∴实数k 的取值范围是[﹣,2e].故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{a n }为公差不为零的等差数列,其前n 项和为S n ,满足S 5﹣2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设T n 是数列{}的前n 项和,是否存在k ∈N *,使得等式1﹣2T k =成立,若存在,求出k 的值;若不存在,说明理由. 【考点】数列的求和;数列递推式.【分析】(I )利用等差数列与等比数列的通项公式及其前n 项和公式即可得出; (II )利用“裂项求和”与数列的单调性即可得出. 【解答】解:(Ⅰ)设等差数列{a n }的公差为d (d ≠0),∴,解得a 1=3,d=2, ∵b 1=a 1=3,b 2=a 4=9,∴.(Ⅱ)由(I)可知:a=3+2(n﹣1)=2n+1.n,∴=,∴,单调递减,得,而,所以不存在k∈N*,使得等式成立.18.今年我校高二文科班学生共有800人参加了数学与地理的学业水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,…800进行编号:(1)如果从第8行第7列的数开始向右读,请你依次写出最先检测的三个人的编号:(下面摘取了第7行至第9行)(2)抽出100人的数学与地理的水平测试成绩如表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩良好的共有20+18+4=42人,若在该样本中,数学成绩优秀率是30%,求a、b的值;(3)在地理成绩为及格的学生中,已知a≥10,b≥8,求数学成绩为优秀的人数比及格的人数少的概率.【考点】古典概型及其概率计算公式.【分析】(1)利用随机数表法能求出最先检测的3个人的编号.(2)由,能求出a、b的值.(3)由题意,知a+b=31,且a≥10,b≥8,满足条件的(a,b)有14组,其中数学成绩为优秀的人数比及格的人数少有6组,由此能求出数学成绩为优秀的人数比及格的人数少的概率.【解答】解:(1)依题意,最先检测的3个人的编号依次为785,667,199.…(2)由,得a=14,…∵7+9+a+20+18+4+5+6+b=100,∴b=17.…(3)由题意,知a+b=31,且a≥10,b≥8,∴满足条件的(a,b)有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8)共14组,且每组出现的可能性相同.….…其中数学成绩为优秀的人数比及格的人数少有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共6组.…∴数学成绩为优秀的人数比及格的人数少的概率为.…19.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设几何体F﹣ABCD、F﹣BCE的体积分别为V1、V2,求V1:V2的值.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)由面面垂直可得AD ⊥平面ABEF ,从而得到AD ⊥BF ,由直径的性质得BF ⊥AF ,故得出BF ⊥平面ADF ,从而得出平面DAF ⊥平面CBF ;(2)V F ﹣BCE =V C ﹣BEF ,设AD=a ,则可用a 表示出V 1,V 2.从而得出体积比.【解答】证明:(1)∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF=AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABEF ,∵BF ⊂平面ABE , ∴AD ⊥BF ,∵AB 是圆O 的直径,∴BF ⊥AF ,又AD ⊂平面ADF ,AF ⊂平面ADF ,AD ∩AF=A , ∴BF ⊥平面ADF ,∵BF ⊂平面BCF , ∴平面DAF ⊥平面CBF .(2).连结OE ,OF ,则OE=OF=EF=1, ∴△AOF ,△OEF ,△BOE 是等边三角形,过F 作FM ⊥AB 于M ,则FM=,FM ⊥平面ABCD ,设AD=BC=a ,则V 1=V F ﹣ABCD ==.V 2=V F ﹣BCE =V C ﹣BEF ===.∴V 1:V 2=:=4:1.20.已知函数f(x)=+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y﹣2=0(1)判断函数f(x)的单调性;(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[,2],f(x)≥t3﹣t2﹣2at+2与f(x)≤t3﹣t2﹣2at+2中恰有一个恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)利用导数的意义求得m,进而求出单调区间;(2)f(x)在[p,1]上的最小值为f(1)=1,最小值f(p)=2,只需2a≥t2﹣t+对t∈[,2]恒成立或2a≤t2﹣t对t∈[,2]恒成立,利用导数求出函数的单调性,列出不等式,即可求得结论;【解答】解:(1)由f(x)=+nlnx(m,n为常数)的定义域为(0,+∞),∴f′(x)=﹣+,∴f′(1)=﹣+n=﹣1,把x=1代入x+y﹣2=0得y=1,∴f(1)==1,∴m=2,n=﹣,∴f(x)=﹣lnx,f′(x)=﹣﹣,∵x>0,∴f′(x)<0,∴f(x)的单调递减区间为(0,+∞),没有递增区间.(2)由(1)可得,f(x)在[p,1]上单调递减,∴f(x)在[p,1]上的最小值是f(1)=1,最大值是f(p)=2,∴只需t3﹣t2﹣2at+2≤1或≥2,即2a ≥t 2﹣t+对t ∈[,2]恒成立或2a ≤t 2﹣t 对t ∈[,2]恒成立,令g (t )=t 2﹣t+,则g′(t )=,令g′(t )=0,解得:t=1,而2t 2+t+1>0恒成立,∴≤t <1时,g′(t )<0,g (t )递减,1<t ≤2时,g′(t )>0,g (t )递增,∴g (t )的最大值是max{g (),g (2)},而g ()=<g (2)=,∴g (t )在[,2]的最大值是g (2)=,又t 2﹣t ∈[﹣,2],∴2a ≥或2a ≤﹣,解得:a ≥或a ≤﹣,故a 的范围是(﹣∞,﹣]∪[,+∞).21.已知椭圆的离心率,过椭圆的左焦点F 且倾斜角为30°的直线与圆x 2+y 2=b 2相交所得弦的长度为1. (I )求椭圆E 的方程;(Ⅱ)若动直线l 交椭圆E 于不同两点M (x 1,y 1),N (x 2,y 2),设=(bx 1,ay 1),=((bx 2,ay 2),O 为坐标原点.当以线段PQ 为直径的圆恰好过点O 时,求证:△MON 的面积为定值,并求出该定值.【考点】椭圆的简单性质.【分析】(I )运用离心率公式和直线与圆相交的弦长公式,结合a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程;(Ⅱ)讨论直线MN 的斜率存在和不存在,以线段PQ 为直径的圆恰好过点O ,可得⊥,运用向量的数量积为0,联立直线方程和椭圆方程,运用韦达定理,化简整理,由三角形的面积公式,计算即可得到定值.【解答】解:(I )由题意可得e==,过椭圆的左焦点F (﹣c ,0)且倾斜角为30°的直线方程为:y=(x+c ),由直线与圆x 2+y 2=b 2相交所得弦的长度为1,可得2=2=1,又a 2﹣b 2=c 2,解方程可得a=2,b=1,c=,即有椭圆的方程为+y 2=1;(Ⅱ)证明:(1)当MN 的斜率不存在时,x 1=x 2,y 1=﹣y 2,以线段PQ 为直径的圆恰好过点O ,可得⊥,即有•=0,即有b 2x 1x 2+a 2y 1y 2=0,即有x 1x 2+4y 1y 2=0,即x 12﹣4y 12=0, 又(x 1,y 1)在椭圆上,x 12+4y 12=4,可得x 12=2,|y 1|=,S △OMN =|x 1|•|y 1﹣y 2|=••=1;(2)当MN 的斜率存在,设MN 的方程为y=kx+t , 代入椭圆方程(1+4k 2)x 2+8ktx+4t 2﹣4=0, △=64k 2t 2﹣4(1+4k 2)(4t 2﹣4)=4k 2﹣t 2+1>0,x 1+x 2=﹣,x 1x 2=,又•=0,即有x 1x 2+4y 1y 2=0,y 1=kx 1+t ,y 2=kx 2+t ,(1+k 2)x 1x 2+4kt (x 1+x 2)+4t 2=0, 代入整理,可得2t 2=1+4k 2,即有|MN|=•=•=•,又O 到直线的距离为d=,S △OMN =d•|MN|=|t|•=|t|•=1.故△MON 的面积为定值1.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1和C 2的极坐标方程;(2)射线OM :θ=α与圆C 1的交点分别为O 、P ,与圆C 2的交点分别为O 、Q ,求|OP|•|OQ|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程. 【分析】(1)先分别求出普通方程,再写出极坐标方程; (2)利用极径的意义,即可得出结论. 【解答】解:(1)圆C 1和C 2的参数方程分别是(ϕ为参数)和(β为参数),普通方程分别为(x ﹣2)2+y 2=4,x 2+(y ﹣1)2=1,极坐标方程分别为ρ=4cos θ,ρ=2sin θ;(2)设P ,Q 对应的极径分别为ρ1,ρ2,则|OP|•|OQ|=ρ1ρ2=4sin2α, ∴sin2α=1,|OP|•|OQ|的最大值为4.[选修4-5:不等式选讲]23.(Ⅰ)若关于x 的不等式|x+1|﹣|x ﹣2|>|a ﹣3|的解集是空集,求实数a 的取值范围;(Ⅱ)对任意正实数x ,y ,不等式+<k恒成立,求实数k 的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)利用绝对值不等式,结合关于x的不等式|x+1|﹣|x﹣2|>|a﹣3|的解集是空集,即可求实数a的取值范围;(Ⅱ)利用柯西不等式,结合对任意正实数x,y,不等式+<k恒成立,求实数k的取值范围.【解答】解:(Ⅰ)∵||x+1|﹣|x﹣2||≤|(x+1)﹣(x﹣2)|=3,∴﹣3≤|x+1|﹣|x﹣2|≤3,∵关于x的不等式|x+1|﹣|x﹣2|>|a﹣3|的解集是空集∴|a﹣3|≥3,∴a≥6或a≤0;(Ⅱ)由柯西不等式可得(+)(8x+6y)≥()2,∴≤,∵对任意正实数x,y,不等式+<k恒成立,∴k>,即实数k的取值范围是(,+∞).。
高三数学(文科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}x y x B x x x A -==<--=2ln ,0322,则=B A ( )A .{}31<<-x xB .{}21<<-x xC .{}23<<-x x D .{}21<<x x2. =-02215sin 165cos ( ) A .21 B .22 C .23 D .33 3.已知i iz+=+221,则复数5+z 的实数与虚部的和为( ) A .10 B .10- C .0 D .5-4.“22bc ac >”是“b a >”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件5.将函数()13cos 2-⎪⎭⎫⎝⎛-=πx x f 的图象向右平移3π个单位,再把所有的点的横坐标缩短到原来的21倍(纵坐标不变),得到函数()x g y =的图像,则函数()x g y =的一个对称中心为( ) A .⎪⎭⎫⎝⎛0,6π B .⎪⎭⎫ ⎝⎛0,12π C. ⎪⎭⎫ ⎝⎛-1,6π D .⎪⎭⎫ ⎝⎛-1,12π 6.已知y x ,满足⎪⎩⎪⎨⎧≤≥-+≥-4040x y x y x ,则y x -4的最小值为( )A .4B .6 C. 12 D .167.已知21,F F 是双曲线()0,01:2222>>=-b a by a x C 的左、右焦点,若直线x y 3=与双曲线C 交于Q P ,两点,且四边形21QF PF 是矩形,则双曲线的离心率为( )A .525-B .525+ C. 13+ D .13-8.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的表面积是π17,则它的体积是( ) A .π8 B .356π C.314π D .328π9.圆:092222=-+++a ax y x 和圆:0414222=+--+b by y x 有三条公切线,若R b R a ∈∈,,且0≠ab ,则2214b a +的最小值为( ) A .1 B .3 C. 4 D .510.设函数()x f 的导函数为()x f ',且满足()()()e f xe xf x f x x==+'1,,则0>x 时,()x f ( )A .有极大值,无极小值B .有极小值,无极大值 C.既有极大值又有极小值 D .既无极大值也无极小值第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.下表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆˆ0.70.3yx =+,那么表中m 的值为 .12.观察下列各式 ,7,4,3,1:443322=+=+=+=+b a b a b a b a ,则=+1010b a .13.已知()1,4a a b a b a =+=⋅-=- ,则a 与b夹角是 .14.执行如图的程序框图,如果输入的n 是4,则输出的p 是 .15.已知()1-=x e x f ,又()()()()R t x tf x f x g ∈-=2,若满足()1-=x g 的x 有三个,则t的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)16.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下22⨯列联表:已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为53, (Ⅰ)请将上述列联表补充完整,并判断是否有9.99%的把握认为喜欢游泳与性别有关?并说明你的理由;(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率,参考公式:()()()()()21122122121112212211211222n n n n n n n n n n n n n χ-=++++,其中22211211n n n n n +++=.参考数据:17.量2cos ,4444x x x x m n ⎫⎫=⋅=⎪⎪⎭⎭,设()f x m n =⋅ , (Ⅰ)若()2fα=,求cos 3πα⎛⎫+⎪⎝⎭的值;(Ⅱ)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足()B c C b a cos cos 2=-,求()A f 的取值范围;18.六面体ABCDE 中,面⊥DBC 面ABC ,⊥AE 面ABC.(Ⅰ)求证://AE 面DBC ;(Ⅱ)若CD BD BC AB ⊥⊥,,求证:面⊥ADB 面EDC ;19.列{}n a 与{}n b 满足()N n b b a a n n n n ∈-=-++,211,12-=n b n ,且.21=a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n nn nn T b a c ,1-=为数列{}n c 的前n 项和,求.n T20.()().ln 222x x x ax x x f -++-= (Ⅰ)当2=a 时,求()x f 的单调区间;(Ⅱ)若()+∞∈,0x 时,()02>+x x f 恒成立,求整数a 的最小值;21. 在直角坐标系中,椭圆()01:2222>>=+b a by a x C 的左、右焦点分别为21,F F ,其中2F 也是抛物线x y C 4:22=的焦点,点P 为1C 与2C 在第一象限的交点,且352=PF , (Ⅰ)求椭圆的方程;(Ⅱ)过2F 且与坐标轴不垂直的直线交椭圆于N M ,两点,若线段2OF 上存在定点()0,t T 使得以TN TM ,为邻边的四边形是棱形,求t 的取值范围;试卷答案一、选择题1-5:BCCAD 6-10:BCDAD 二、填空题11. 8.2 12. 123 13. π65(或0150) 14.315.()+∞,2三、解答题16.解:(Ⅰ)由已知可得:喜欢游泳的人共6053100=⨯,不喜欢游泳的有:4060100=-人,又由表可知喜欢游泳的人女生20人,所以喜欢游泳的男生有402060=-人, 不喜欢游泳的男生有人,所以不喜欢游泳的女生有40-10=30人 由此:完整的列表如下:因为()22100403020105010.828604050503χ⨯-⨯==>⨯⨯⨯所以有9.99%的把握认为喜欢游泳与性别有关.(Ⅱ)从喜欢游泳的60人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,其中男生应抽取460640=⨯人,分别设为D C B A ,,,;女生应抽取246=-人,分别设为F E ,,现从这6人中任取2人作为宣传组的组长,共有15种情况,分别为:()()()()()()()()()()()()()()()F E F D E D F C E C D C F B E B D B C B F A E A D A C A B A ,,,,,,,,,,,,,,,若记=M “两人中至少有一名女生的概率”,则M 包含9种情况,分别为:()()()()()()()()()F E F D E D F C E C F B E B F A E A ,,,,,,,,,,所以().53159==M P 17.Ⅰ)()4cos 4sin 324cos22x x x x f += 12cos 2sin 3++=xx162sin 2+⎪⎭⎫⎝⎛+=πx()2f α= 2162sin =⎪⎭⎫ ⎝⎛+∴πa21cos 12sin 3262παπα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)()B c C b a cos cos 2=-()B C C B A cos sin cos sin sin 2=-∴()C B C B C B C A +=+=sin sin cos cos sin cos sin 2A C A sin cos sin 2=∴0sin ≠A 21cos =∴C 3π=∴C π320<<∴A 2626πππ<+<A162sin 21<⎪⎭⎫⎝⎛+<∴πA ()162sin 2+⎪⎭⎫ ⎝⎛+=πA A f()A f ∴取值范围为()3,2.18.(Ⅰ)过点D 作O BC DO ,⊥为垂足,∴面⊥DBC 面ABC ,面 DBC 面⊂=DO BC ABC ,面DBC ,⊥∴DO 面ABC ,又⊥AE 面ABCDO AE //∴又⊄AE 面DBC 上,⊂DO 面.DBC//AE ∴面.DBC(Ⅱ)∴面⊥DBC 面ABC ,面 DBC 面BC AB BC ABC ⊥=,,⊥∴AB 面DBC ,又⊂DC 面DBC ,DC AB ⊥∴,又⊂=⊥BD AB B BD AB CD BD ,,, 面ADB ,⊥∴DC 面ADB ,又⊂DC 面EDC ,∴面⊥ADB 面.EDC19.(Ⅰ)因为()12,211-=-=-++n b b b a a n n n n n , 所以()()412122211=+-+=-=-++n n b b a a n n n n ,所以{}n a 是等差数列,首项为21=a ,公差为4,即24-=n a n ,(Ⅱ)()()()n n nn n nnn n n n b a c 212122411-=--==-- n n c c c c T ++++= 321()n n 21225232132-++⋅+⋅+⋅= ①()14322122523212+-++⋅+⋅+⋅=n n n T ②①-②得:()13221222222221+--⋅++⋅+⋅+⋅=-n n n n T()()112122121422+---⎥⎦⎤⎢⎣⎡--+=n n n()12326+---=n n().23261+-+=∴n n n T20.(Ⅰ)由题意可得()x f 的定义域为()+∞,0,当2=a 时,()()x x x x x x f ln 2222-++-=,所以()()()()x x xx x x x x x f ln 2412ln 122222-=⋅-+-++-=' 由()0>'x f 可得()0ln 24:>-x x ,所以⎩⎨⎧>>-0ln 024:x x 或⎩⎨⎧<<-0ln 024x x解得1>x 或210<<x ; 由()0<'x f 可得()0ln 24:<-x x ,所以⎩⎨⎧<>-0ln 024:x x 或⎩⎨⎧><-0ln 024x x ,解得.121<<x 综上可知()x f :递增区间为()+∞⎪⎭⎫ ⎝⎛,1,21.0,递减区间为⎪⎭⎫ ⎝⎛1,21,(Ⅱ)若()+∞∈,0x 时,()02>+x x f 恒成立,则()0ln 22>-+x x x ax 恒成立, 因为0>x ,所以()0ln 12>-+x x a 恒成立, 即()x x a ln 12:-->恒成立,令()()x x x g ln 12--=,则()max x g a >, 因为()xx x x x x g 22ln 21ln 2+--=⎪⎭⎫ ⎝⎛-+-=', 所以()x g '在()+∞,0上是减函数, 且()01='g ,所以()x g 在()1,0上为增函数,在()+∞,1上是减函数,1=∴x 时,()0max =x g ,0>∴a ,又因为Z a ∈,所以.1min =a21.(Ⅰ)抛物线x y 42=的焦点为()0,13512=+=p x PF 32=∴p x 632=∴p y ⎪⎭⎫ ⎝⎛∴632,32P 又()0,12F ()0,11-∴F4353721=+=+∴PF PF 2=∴a 又1=c 3222=-=∴c a b∴椭圆方程是134:22=+y x . (Ⅱ)设直线MN 的方程为() ,1-=x k y 以TN TM ,为邻边得四边形是菱形,TN TM =∴,设()()2211,,y x N y x M ,则134,13422222121=+=+y x y x ,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=∴413,41322222121x y x y , ()()()()⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛-+-+-=+-∴222221212222212141134113,x t x x t x y t x y t x ,()()0241212221=---∴x x t x x 直线MN 与x 轴不垂直,21x x ≠∴,()()212181,241x x t t x x +=∴=+∴, 把()1-=x k y 代入椭圆方程并整理可得()01248432222=-+-+k x k x k ,2221438k k x x +=+∴,2243kk t +=∴, 当0≠k 时,()43181221+=+=k x x t , ,410,02<<∴>t k所以t 的取值范围是⎪⎭⎫ ⎝⎛41.0.。
2017年全国卷高三文科数学模拟考试卷含解析一.选择题(本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是()A.5 B.4 C.3 D.22.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣3.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是()A.{x∈R|0≤x≤log23} B.{x∈R|﹣2≤x≤2}C.{x∈R|0≤x≤log23,或x=2} D.{x∈R|﹣2≤x≤log23,或x=2}4.某几何体的三视图如图所示,则它的体积是()A.B.C.D.5.某地铁站每隔10分钟有一趟地铁通过,乘客到达地铁站的任一时刻是等可能的,乘客候车不超过2分钟的概率()A.B.C.D.6.函数y=x2+ln|x|的图象大致为()A.B.C.D.7.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为()A.6 B.9 C.12 D.158.如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣19.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 10.定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)>f′(x),且f(0)=2,则不等式f(x)<2e x的解集为()A.(﹣∞,0)B.(﹣∞,2)C.(0,+∞)D.(2,+∞)11.已知x>0,y>0且x+y=4,若不等式+≥m恒成立,则m的取值范围是()A.{m|m>} B.{m|m≥} C.{m|m<} D.{m|m≤} 12.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若“∀x∈[﹣,],m≤tanx+1”为真命题,则实数m的最大值为.14.设椭圆的两个焦点为F 1,F2,M是椭圆上任一动点,则的取值范围为.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于.16.在△ABC中,角A、B、C的对边分别为a、b、c,若c•cosB=a+b,△ABC的面积S=c,则边c的最小值为.三.解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.等差数列{a n}中,a2=8,S6=66(1)求数列{a n}的通项公式a n;(2)设b n=,T n=b1+b2+b3+…+b n,求T n.18.某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.(1)求第四个小矩形的高;(2)估计本校在这次统测中数学成绩不低于120分的人数;(3)已知样本中,成绩在[140,150]内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.19.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,AA1=AC=2,E、F分别为A1C1、BC的中点.(Ⅰ)求证:C1F∥平面EAB;(Ⅱ)求三棱锥A﹣BCE的体积.20.已知椭圆的离心率为,两焦点之间的距离为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB(O为坐标原点).21.已知函数f(x)=x3+ax2﹣a2x﹣1,a>0.(1)当a=2时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.请考生在第22-23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.23.已知函数f(x)=|2x+1|+|2x﹣3|.(I)若∃x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M (Ⅱ)在(I)的条件下,若正数a,b满足3a+b=M,证明:+≥3.参考答案及解析一.选择题(共12小题)故选:B.3.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是()A.{x∈R|0≤x≤log23} B.{x∈R|﹣2≤x≤2}C.{x∈R|0≤x≤log23,或x=2} D.{x∈R|﹣2≤x≤log23,或x=2}解:根据题意,得当x∈(﹣2,2)时,f(x)=2x,∴1≤2x≤3,∴0≤x≤log23;当x∉(﹣2,2)时,f(x)=x+1,∴1≤x+1≤3,∴0≤x≤2,即x=2;∴x的取值范围是{x∈R|0≤x≤log23,或x=2}.故选:C.4.某几何体的三视图如图所示,则它的体积是()A. B.C. D.解:由题意知,根据三视图可知,几何体是组合体,下面是正方体,棱长为2,体积为8;上面是斜高为2,底面边长为2的正四棱锥,所以底面积为4,高为=,故体积为.∴几何体的体积为8+.故选A.6.函数y=x2+ln|x|的图象大致为()A.B.C.D.解:∵f(﹣x)=x2+ln|x|=f(x),∴y=f(x)为偶函数,∴y=f(x)的图象关于y轴对称,故排除B,C,当x→0时,y→﹣∞,故排除D,或者根据,当x>0时,y=x2+lnx为增函数,故排除D,故选:A8.如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣1解:由题意正方形ABCD中,E为DC的中点,可知:=.则λ+μ的值为:.故选:A.9.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x解:双曲线C:﹣=1(a>0,b>0)的离心率e=,可得,∴,可得,双曲线的渐近线方程为:y=±.故选:A.10.定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)>f′(x),且f(0)=2,则不等式f(x)<2e x的解集为()A.(﹣∞,0) B.(﹣∞,2) C.(0,+∞)D.(2,+∞)设g(x)=,则g'(x)=,∵f(x)>f′(x),∴g'(x)<0,即函数g(x)单调递减.∵f(0)=2,∴g(0)=f(0)=2,则不等式等价于g(x)<g(0),∵函数g(x)单调递减.∴x>0,∴不等式的解集为(0,+∞),故选:C.11.已知x>0,y>0且x+y=4,若不等式+≥m恒成立,则m的取值范围是()A.{m|m>} B.{m|m≥} C.{m|m<} D.{m|m≤}解:x>0,y>0且x+y=4,则:,那么(+)()=+1≥=,当且仅当2x=y=时取等号.∴+的最小值为.要使不等式+≥m恒成立,∴m.故选D.12.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log 2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.二.填空题(共4小题)13.若“∀x∈[﹣,],m≤tanx+1”为真命题,则实数m的最大值为0 .解:“∀x∈[﹣,],m≤tanx+1”为真命题,可得﹣1≤tanx≤1,∴0≤tanx+1≤2,实数m的最大值为:0故答案为:0.14.设椭圆的两个焦点为F 1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F 1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于8π.解:∵三棱柱ABC﹣A 1B1C1的侧棱垂直于底面,棱柱的体积为,AB=2,AC=1,∠BAC=60°,∴=∴AA1=2∵BC 2=AB2+AC2﹣2AB•ACcos60°=4+1﹣2,∴BC=设△ABC外接圆的半径为R,则,∴R=1∴外接球的半径为=∴球的表面积等于4π×=8π故答案为:8π16.在△ABC中,角A、B、C的对边分别为a、b、c,若c•cosB=a+b,△ABC的面积S=c,则边c的最小值为 1 .解:在△ABC中,由条件里用正弦定理可得sinCcosB=sinA+sinB=sin(B+C)+sinB,即2sinCcosB=2sinBcosC+2sinCcosB+sinB,∴2sinBcosC+sinB=0,∴cosC=﹣,C=.由于△ABC的面积为S=ab•sinC=ab=c,∴c=3ab.再由余弦定理可得c2=a2+b2﹣2ab•cosC,整理可得:9a2b2=a2+b2+ab≥3ab,当且仅当a=b时,取等号,∴ab≥,可得:c=3ab≥1,即边c的最小值为1.故答案为:1.三.解答题(共7小题)17.等差数列{a n}中,a2=8,S6=66(1)求数列{a n}的通项公式a n;(2)设b n=,T n=b1+b2+b3+…+b n,求T n.解:(1)设等差数列{a n}的公差为d,则有…(2分)解得:a1=6,d=2,…(4分)∴a n=a1+d(n﹣1)=6+2(n﹣1)=2n+4 …(6分)(2)b n===﹣…(9分)∴T n=b1+b2+b3+…+b n=﹣+﹣+…+﹣=﹣=…(12分)18.某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.(1)求第四个小矩形的高;(2)估计本校在这次统测中数学成绩不低于120分的人数;(3)已知样本中,成绩在[140,150]内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.(本小题满分12分)解:(Ⅰ)由频率分布直方图,第四个矩形的高是[1﹣(0.010+0.012+0.020+0.030)×10]÷10=0.028.…(4分)(Ⅱ)成绩不低于1(20分)的频率是1﹣(0.010+0.020)×10=0.7,可估计高三年级不低于1(20分)的人数为400×0.7=280人.…(7分)(Ⅲ)由直方图知,成绩在[140,150]的人数是0.012×10×50=6,记女生为A,B,男生为c,d,e,f,这6人中抽取2人的情况有AB,Ac,Ad,Ae,Af,Bc,Bd,Be,Bf,cd,ce,cf,de,df,ef,共15种.…(9分)其中男生女生各一名的有8种,概率为=.…(12分)19.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,AA1=AC=2,E、F分别为A1C1、BC的中点.(Ⅰ)求证:C1F∥平面EAB;(Ⅱ)求三棱锥A﹣BCE的体积.解:(Ⅰ)法一:取AB中点G,连结EG,FG,…(1分)∵E,F分别是A1C1,BC的中点,∴FG∥AC,且FG=AC;又∵AC∥A1C1,且AC=A1C1,∴FG∥EC1,且FG=EC1,∴四边形FGEC1为平行四边形,…(4分)∴C1F∥EG;又∵EG⊂平面ABE,C1F⊄平面ABE,∴C1F∥平面ABE;…(6分)法二:取AC中点H,连结C1H,FH,…(1分)则C1E∥AH,且C1E=AH,∴四边形C1EAH为平行四边形,∴C1H∥EA;又∵EA⊂平面ABE,C1H⊄平面ABE,∴C1H∥平面ABE,…(3分)∵H、F分别为AC、BC的中点,∴HF∥AB;又∵AB⊂平面ABE,FH⊄平面ABE,∴FH∥平面ABE;…(4分)又∵C1H∩FH=H,C1H⊂平面C1HF,FH⊂平面C1HF,∴平面C1HF∥平面ABE;…(5分)又∵C1F⊂平面C1HF,∴C1F∥平面ABE;…(6分)(Ⅱ)∵AA1=AC=2,BC=1,AB⊥BC,∴AB==;…(8分)∴三棱锥A﹣BCE的体积为V A﹣BCE=V E﹣ABC…(10分)=S△ABC•AA1=×××1×2=.…(12分)20.已知椭圆的离心率为,两焦点之间的距离为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB (O为坐标原点).解:(Ⅰ)解:椭圆焦点在x轴上,由题意可得2c=4,.则a=4,c=2.由b2=a2﹣c2=12,∴椭圆标准方程为:.…(5分)(Ⅱ)证明:由(Ⅰ)可得椭圆的右顶点为(4,0),由题意得,可设过(4,0)的直线方程为:x=my+4.…(7分)由,消去x得:y2﹣4my﹣16=0.设A(x1,y1),B(x2,y2),则.…(10分)∴,则•=0,则⊥故OA⊥OB.…(12分)21.已知函数f(x)=x3+ax2﹣a2x﹣1,a>0.(1)当a=2时,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求实数a的取值范围.解:(1)当a=2时,函数f(x)=x3+2x2﹣4x﹣1,求导:f′(x)=3x2+4x2﹣4=(3x﹣2)(x+2),令f′(x)=0,解得:x=,x=﹣2,由f′(x)>0,解得:x>或x<﹣2,由f′(x)<0,解得:﹣2<x<,∴函数f(x)的单调递减区间为(﹣2,),单调递增区间(﹣∞,﹣2),(,+∞);(2)要使f(x)≤0在[1,+∞)上有解,只要f(x)在区间[1,+∞)上的最小值小于等于0,由f′(x)=3x2+2ax2﹣22=(3x﹣a)(x+a),令f′(x)=0,解得:x1=>0,x2=﹣a<0,①当≤1,即a≤3时,f(x)在区间[1,+∞)上单调递增,∴f(x)在[1,+∞)上的最小值为f(1),由f(1)≤0,即1+a﹣a2﹣1≤0,整理得:a2﹣a≥0,解得:a≥1或a≤0,∴1≤a≤3.②当>1,即a>3时,f(x)在区间[1,]上单调递减,在[,+∞)上单调递增,∴f(x)在[1,+∞)上最小值为f(),由f()=+﹣﹣1≤0,解得:a≥,∴a>3.综上可知,实数a的取值范围是[1,+∞).22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t 1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.23.已知函数f(x)=|2x+1|+|2x﹣3|.(I)若∃x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M (Ⅱ)在(I)的条件下,若正数a,b满足3a+b=M,证明:+≥3.解:(I)函数f(x)=|2x+1|+|2x﹣3|,可得|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,当(2x+1)(2x﹣3)≤0,即﹣≤x≤时,f(x)取得最小值4.由题意可得m≥4,即实数m的最小值M=4;(Ⅱ)证明:正数a,b满足3a+b=4,即1=(3a+b),+=(+)(3a+b)=(3+3++)≥×(6+2)=×(6+2×3)=3,当且仅当b=3a=2时,取得等号.则+≥3.。
2017届全国各地高三文科数学模拟试卷精彩试题汇编(2)1.(吉林省吉林市第一中学2015-2016学年高二下学期期末验收试卷 数学文第11题) 函数b x ax x x f +++=23423243)(,若)(x f 仅在0=x 处有极值,则a 的取值范围是( ) A.[- B.(,[23,)-∞-+∞C .)32,32(- D .(,[23,)-∞-+∞解:A .2.(云南省玉溪一中2015-2016学年下学期高二期末考试试卷 数学(文)第11题)三个半径都是1的球放在一个圆柱内,每个球都接触到圆柱的底,则圆柱半径的最小值是( ) A.1332+ B. 1322+ C.13+ . D. 1433+ 解:A .3.(福建省师大附中2015-2016学年高二下学期期末考试数学(文)试题第10题) 函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )4.(福建省师大附中2015-2016学年高二下学期期末考试数学(文)试题第12题) 方程)0(|sin |>=k k xx 有且仅有两个不同的实数解)(,ϕθϕθ>,则以下结论正确的为( ) A. θϕϕcos sin = B .θϕϕcos sin -= C .θθϕsin cos = D. ϕθθsin sin -= 解:B .5.(广西钦州市2015-2016学年高二下学期期末考试数学(文)试题(B 卷)第6题) 某班生活委员为了解在春天本班同学感冒与性别是否相关,他收集了3月份本班同学的感冒数据,并制出下面一个2×2列联表:222( 2.072)0.15( 2.706)0.10( 6.635)0.010P K P K P K ≥≈≥≈≥≈参考数据由K 的观测值公式,可求得,根据给出表格信息和参考数据,下面判断正确的是( )A.在犯错概率不超过15%的前提下认为该班“感冒与性别有关” B .在犯错概率不超过15%的前提下不能认为该班“感冒与性别有关” C .有15%的把握认为该班“感冒与性别有关”D.在犯错概率不超过10%的前提下认为该班“感冒与性别有关” 解:A .6.(黑龙江省哈尔滨市第六中学2015-2016学年高二下学期期末数学(文)试题第12题) 曲线()()20f x axa =>与()ln g x x =有两条公切线,则a 的取值范围为( )A.10,e ⎛⎫ ⎪⎝⎭B .10,2e ⎛⎫ ⎪⎝⎭ C .1,+e ⎛⎫∞ ⎪⎝⎭D.1,+2e ⎛⎫∞ ⎪⎝⎭ 解:D .7.(江西省丰城中学2015-2016学年高二下学期期未考试数学(文)试题第10题)对函数c xbx a x f ++=tan )(,其中Z c R b a ∈∈,,,选取c b a ,,的一组值计算)1(-f 和)1(f 所得出的正确结果一定不是( ) A.4和6 B . 3和1 C . 2和4 D.1和2 解:D .8.(辽宁省沈阳铁路实验中学2015-2016学年高二下学期期末考试数学(文)试题第12题)已知函数()21log 3xf x x ⎛⎫=- ⎪⎝⎭,实数,,a b c 使()()()()0,0f a f b f c a b c ⋅⋅<<<<若实数0x 为方程()0f x =的一个解,那么下列不等式中,不可能成立的是( )A.0x a <B .0x b >C .0x c < D.0x c >9.(四川省华蓥市2015-2016学年高二下学期期末考试数学(文)试题第12题) 定义:如果函数()f x 在[],a b 上存在21,x x ,(b x x a <<<21),满足=')(1x f ab a f b f --)()( ,ab a f b f x f --=')()()(2,则称数为[],a b 上的“对望数”,函数()f x 为[],a b 上的“对望函数”.已知函数m x x x f +-=2331)(是[]0,m 上的“对望函数”,则实数m 的取值范围是( ) A .3(1,)2B .33(1,)(,3)22C .(2,3)D .3(,3)2解:D .10.( 2016年新洲一中黄陂一中高二下学期期末联考(文科)数学第10题)从3双不同的鞋中任取2只,则取出的2只鞋不能成双的概率为( )A .35 B .815 C .45 D .715解.C .11.(黑龙江鹤岗一中2015-2016学年下学期高二期末考试试卷 数学(文)试卷第21题) 已知函数)0(1)(>--=a ax e x f x,(e 为自然对数的底数)(1)求函数)(x f 的最小值;(2)若0)(≥x f 对任意的R x ∈恒成立,求实数a 的值;(3)在(2)的条件下,证明:))(1ln(1...31211*∈+>++++N n n n. 解:(1)由题意, 由得.当时,;当时,.∴在单调递减,在单调递增 ,即在处取得极小值,且为最小值, 其最小值为(2)对任意的恒成立,即在上,.由(1),设,所以.由得.易知在区间上单调递增,在区间上单调递减, ∴在处取得最大值,而.因此的解为,∴ .(3)由(2)得,即,当且仅当时,等号成立,令则,所以累加得.12.(河南师范大学附属中学2015-2016学年高二下学期期末考试数学(文)试题第21题) 2 函数()ln 1f x x ax =-+(a 为实常数)在1x =处的切线与直线2016y =平行.(1)求a 的值; (2)求()f x 的单调区间;(3)证明当(1,)x ∈+∞时,11ln x x x-<<. 13.(黑龙江省牡丹江市第一高级中学2015-2016学年高二下学期期末考试数学(文)试题第20题) 已知函数22233,(0)()2()3,(0)x x ax a x f x e x a x ⎧++-<=⎨--+>⎩,a ∈R .(1)若函数()y f x =在1x =处取得极值,求a 的值;(2)若函数()y f x =的图象上存在两点关于原点对称,求a 的范围.解:(1)当0x >时,()f x =22()3x e x a --+,()2()xf x e x a '=-+ ∵()y f x =在1x =处取得极值 ,∴(1)0f '=,即2(1)0e a -+=解得:1a e =-,经验证满足题意,∴1a e =-.(2)()y f x =的图象上存在两点关于原点对称,即存在y =22()3x e x a --+图象上一点00(,)x y 0(0)x >,使得00(,)x y --在2233y x ax a =++-的图象上 则有0200220002()333x y e x a y x ax a ⎧=--+⎨-=-+-⎩ ,02220002()333x e x a x ax a --+=-+-+ ,化简得: 002x e a x =,即关于0x 的方程在(0,)+∞内有解 ;设2()xe h x x =(0)x >,则22(1)()x e x h x x -'=,∵0x >,∴当1x >时,()0h x '>;当01x <<时,()0h x '<即()h x 在(0,1)上为减函数,在(1,)+∞上为增函数,∴()(1)2h x h e ≥=,且x →+∞时,()h x →+∞;0x →时, ()h x →+∞,即()h x 值域为[2,)e +∞,∴2a e ≥时,方程02x e a x =在(0,)+∞内有解,∴2a e ≥时,()y f x =的图象上存在两点关于原点对称.高考一轮复习微课视频手机观看地址:http://xkw.so/wksp。
x 2017 年高考文科数学模拟试题(1)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5 毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷(选择题,共 60 分)一.选择题.( 本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合M={-1,0,1},N={0,1,2}.若x∈M 且x∉N,则x 等于( )A.1 B.-1 C.0 D.22. 设A=⎧x ∈R1≥⎫,B={x∈R|ln(1-x)≤0},则“x∈A”是“x∈B”的( )⎨1⎬⎩⎭A. 充分不必要条件B.既不充分也不必要条件C.充要条件D.必要不充分条件3.定义在R 上的函数g(x)=e x+e-x+|x|,则满足g(2x-1)<g(3)的x 的取值范围是( )A.(-∞,2) B.(-2,2) C.(-1,2) D.(2,+∞)PA PC AB PB4.在△ABC 所在的平面内有一点P,如果2 +=-,那么△PBC 的面积与△ABC 的面积之比是( )1A.23B.42C.31D.35.如图所示是一个算法的程序框图,当输入x 的值为-8 时,输出的结果是( )A.-6 B.9 C.0 D.-3a16b6.若不等式x2+2x<b+a 对任意a,b∈(0,+∞)恒成立,则实数x 的取值范围是( )A.(-4,2) B.(-∞,-4)∪(2,+∞)C.(-∞,-2)∪(0,+∞) D.(-2,0)7.点M,N 分别是正方体ABCD A1B1C1D1的棱A1B1,A1D1的中点,用过点A,M,N 和点D,N,C1 的两个截面截去正方体的两个角后得到的几何体如图所示,则该几何体的主视图、左视图、俯视图依次为( )22 2 2 2A .①③④B .②④③C .①②③D .②③④x 2 y 28. 已知双曲线a 2-b 2=1(a >0,b >0)的渐近线与圆 x 2+(y -3)2=1 相切,则双曲线的离心率为( )A .2B . 3C D .3 9. 《九章算术》之后,人们进一步地用等差数列求和公式来解决更多的问题.《张邱建算经》卷上第22 题为:今有女善织,日益功疾(注:从第 2 天起每天比前一天多织相同量的布),第一天织 5 尺布,现在 一月(按 30 天计),共织 390 尺布,则第 2 天织的布的尺数为( )161 161 8180A.B .C .D .2931151510. 我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点 A (-3,4),且法向量为 n =(1,-2)的直线(点法式)方程为 1×(x +3)+(-2) ×(y -4)=0,化简得 x -2y +11=0。
2017届全国各地高三文科数学模拟试卷精彩试题汇编(4)
1.( 数学卷·2017届山西重点中学协作体高三暑假第一次联考第2题)若定义域为的奇函数在区间上没有最小值,则实数的取值范围是( ) .
A. B. C. D.
解:D.
2.( 数学文卷·2017届江西省新余一中、宜春一中高三7月联考第9题) 已知函数
()2ln x
f x x
x
=-,则函数
()
y f x
=的大致图像为()
解:A.
3.( 数学文卷·2017届四川省成都市高三摸底测试(零诊)第12题) 如图1,已知正方体
1111
ABCD A B C D
-的棱长为a,,,
M N Q分别是线段
1111
,,
AD B C C D上的动点,当三棱锥Q BMN
-的俯视图如图2所示时,三棱锥Q BMN
-四个面中面积最大的是()A.MNQ
∆ B.BMN
∆ C.BMQ
∆ D.BNQ
∆
解:D.
4.( 河北省定州中学2017届新高三上学期周练(二)数学试题第15题) 某同学在借助计算器求“方程
的近似解(精确
)”时,设
,算得
,
;在以下过程中,他用“二分法”又取了4个x 的值,计算了其函数值的正负,并
得出判断:方程的近似解是
.那么他所取的x 的4个值中最后一个值是
.
5.( 数学文卷·2017届四川省成都市高三摸底测试(零诊)第16题) 已知函数()f x 的导函数为'
()f x ,e 为自然对数的底数,若函数()f x 满足'ln ()()x xf x f x x +=,且1
()f e e
=,则不等式1
()f x x e e
->-的解集是_____________. 解:(0,)e
6.( 河北省定州中学2017届新高三上学期周练(四)数学试题第16题) 已知函数
()()224,04log 22,46
x x x f x x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,若存在1x ,2R x ∈,当12046x x ≤<≤≤时,
()()12f x f x =,则()12x f x 的取值范围是 .
解:本题考查分段函数的图象、分段函数的最值、导数的知识在求最值中的运用.检测建立目标函数的解析式,以及求目标函数最大值的思想和方法.检测转化与化归的数学思想和方法及运用所学知识去分析问题和解决问题的能力.
因为()()12f x f x =12
14x x +-=,所以()12x f x 可化为
)40(4)4()(1312112111<≤-=+-=x x x x x x x h ,因此)3
8
(338)(112111/--=-=x x x x x h ,
于是当)38,0[1∈x 时,)(,0)(11/x h x h >单调递增;当)4,3
8(1∈x 时,)(,0)(11/
x h x h <单调
递减;即当381=
x 时,)(1x h 取最大值27
256)38(=h ;当01=x 取最小值0)0(=h ,所以()12x f x 的取值范围是]27
256
,
0[. 7.( 数学文卷·2017届福建省莆田第十七中学新高三上学期第一次月考第21题) 已知f (x )是定义在上的奇函数,f (1)=1,且若∀a 、b ∈,a+b ≠0,恒有
>0,(1)
证明:函数f (x )在上是增函数;(2)若对∀x ∈及∀a ∈,不等式f (x )≤m 2
﹣2am+1恒成立,求实数m 的取值范围.
解:(1)证明:任取x1、x2∈,且x1<x2,则f (x1)﹣f (x2)=f (x1)+f (﹣x2) ∵
>0,即
>0,
∵x1﹣x2<0,∴f (x1)﹣f (x2)<0.则f (x )是上的增函数; (2)要使f (x )≤m2﹣2am+1对所有的x ∈,a ∈恒成立,
只须f (x )max ≤m2﹣2am+1,即1≤m2﹣2am+1对任意的a ∈恒成立, 亦即m2﹣2am ≥0对任意的a ∈恒成立.令g (a )=﹣2ma+m2, 只须
,解得m≤﹣2或m≥2或m=0,即为所求.
8.( 数学文卷·2017届江西省九江一中高三7月暑期阶段性测试第21题) 已知函数()ln x
f x x
k =-(0k >).(1)求()f x 的最小值;(2)若2k =,判断方程()10f x -=在区间
1,1e ⎛⎫ ⎪⎝⎭
内实数解的个数;(3)证明:对任意给定的0M >,总存在正数0x ,使得当0
x x
>时,恒有ln 2
x
M x
->
.
(3)证明:由(1)知:min (ln )1ln 33x
x -=-,所以0x >时,1ln 3ln 3
x
x -+≥ ① 由
1ln 323
x x
M ->-+得:6(1ln 3)x M >-+,所以6(1ln 3)0x M >-+>时,1ln 323
x x
M ->-+ ②
由①②知:取06(1ln 3)0x M =-+>,则当0x x >时,有
1ln 3ln 23
x x
M x ->-+≥即ln 2
x
M x ->成立. 9.( 数学文卷·2017届四川省成都市高三摸底测试(零诊)第21题) 已知函数()x
f x e ax =-,其中, 2.71828
a R e ∈=为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若1a =,
证明:当12x x ≠,且12()()f x f x =时,120x x +<.
(2)当1a =时,()x f x e x =-的定义域为(,)-∞+∞,'()1x f x e =-, 由'()10x f x e =-=,解得0x =.当x 变化时,'()f x ,()f x 变化情况如下表:
∵12x x ≠,且12,则12(不妨设12). 设函数1
()()()()2,0x
x
x x
F x f x f x e x e x e x x e -=--=--+=-
-<. ∴'
1()2x
x F x e e =+
-.∵当0x <时,01x
e <<,∴12x x e e
+>. ∴当0x <时,'()0F x >.∴函数()F x 在(,0)-∞上单调递增. ∴()(0)0F x F <=,即当0x <时,()()f x f x <-.
∵10x <,∴11()()f x f x <-.又12()()f x f x =,∴21()()f x f x <-.
∵()f x 在(0,)+∞上单调递增,20x <,且10x <-,又21()()f x f x <-, ∴21x x <-.∴120x x +<。