2019届全国高考高三模拟考试卷数学(文)试题(一)(解析版)(可编辑修改word版)
- 格式:docx
- 大小:270.59 KB
- 文档页数:17
好教育云平台 一模测试卷 第1页(共10页) 好教育云平台 一模测试卷 第2页(共10页)2019届高三一模考试卷文科数学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.[2018·陕西四校联考]已知复数312iz =-(i 是虚数单位),则z 的实部为( ) A .35-B .35C .15-D .152.[2018·广西摸底]已知集合{}24A x x x =≤,{}340B x x =->,则A B =( ) A .(],0-∞B .40,3⎡⎫⎪⎢⎣⎭C .4,43⎛⎤⎥⎝⎦D .(),0-∞3.[2018·资阳一诊]空气质量指数AQI 是反映空气质量状况的指数,AQI 指数值越小,表明空气质量越好,其对应关系如下表:下图是某市10月1日—20日AQI 指数变化趋势下列叙述错误的是()A .这20天中AQI 指数值的中位数略高于100B .这20天中的中度污染及以上的天数占14C .该市10月的前半个月的空气质量越来越好D .总体来说,该市10月上旬的空气质量比中旬的空气质量好4.[2018·长春质监]已知等差数列{}n a 中,nS 为其前n 项的和,45S =,920S =,则7a =( ) A .3-B .5-C .3D .55.[2018·曲靖一中]曲线()ln 20y a x a =->在1x =处的切线与两坐标轴成的三角形的面积为4,则a 的值为( ) AB .2C .4D .86.[2018·衡水中学]如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( )A .1233AD AB -B .2133AD AB +C .2133AD AB -D .1233AD AB +7.[2018·遵义航天中学]如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .13B .23C .1D .438.[2018·黑龙江模拟]已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若3FP FQ =,则QF =( )A .83B .52C .3D .29.[2018·曲靖统测]若关于x 的不等式210x kx +->在[]1,2区间上有解,则k 的取值范围此卷只装订不密封班级 姓名 准考证号 考场号 座位号好教育云平台 一模测试卷 第3页(共10页) 好教育云平台 一模测试卷 第4页(共10页)是( ) A .(),0-∞B .3,02⎛⎫- ⎪⎝⎭ C .3,2⎡⎫-+∞⎪⎢⎣⎭D .3,2⎛⎫-+∞ ⎪⎝⎭10.[2018·广安诊断]在区间[]1,1-上随机取一个数k ,则直线()2y k x =-与圆221x y +=有两个不同公共点的概率为( )A .29BC .13D11.[2018·赣州模拟]在平面直角坐标系xOy 中,设1F ,2F 分别为双曲线()222210,0x y a b a b -=>>的左、右焦点,P 是双曲线左支上一点,M 是1PF 的中点,且1OM PF ⊥,122PF PF =,则双曲线的离心率为( )AB .2 CD12.[2018·陈经纶中学]已知矩形ABCD ,2AB =,BC x =,将ABD △沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,则( ) A .当1x =时,存在某个位置,使得AB CD ⊥ B.当x =AB CD ⊥ C .当4x =时,存在某个位置,使得AB CD ⊥ D .0x ∀>时,都不存在某个位置,使得AB CD ⊥二、填空题:本大题共4小题,每小题5分.13.[2018·三湘名校]已知:x ,y 满足约束条件1030210x y x y y --≥+-≤+≥⎧⎪⎨⎪⎩,则2z x y =-的最小值为________.14.[2018·拉萨中学]若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式____________.15.[2018·山东师大附中]已知sin π164x ⎛⎫-= ⎪⎝⎭,则sin 26πx ⎛⎫+= ⎪⎝⎭___________. 16.[2018·湖北七校联盟]已知()12sin ,64πf x x x ωω⎛⎫⎛⎫=+>∈ ⎪⎪⎝⎭⎝⎭R ,若()f x 的任何一条对称轴与x 轴交点的横坐标都不属于区间()π,2π,则ω的取值范围是___________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2018·衡水中学]如图,在ABC △中,P 是BC 边上的一点,60APC ∠=︒,AB =4AP PB +=.(1)求BP 的长; (2)若AC =,求cos ACP ∠的值.18.(12分)[2018·南昌模拟]中国海军,正在以不可阻挡的气魄向深蓝进军.在中国海军加快建设的大背景下,国产水面舰艇吨位不断增大、技术日益现代化,特别是国产航空母舰下水,航母需要大量高素质航母舰载机飞行员.为此中国海军在全国9省9所优质普通高中进行海航班建设试点培育航母舰载机飞行员.2017年4月我省首届海军航空实验班开始面向全省遴选学员,有10000名初中毕业生踊跃报名投身国防,经过文化考试、体格测试、政治考核、心理选拔等过程筛选,最终招收50名学员.培养学校在关注学员的文化素养同时注重学员的身体素质,要求每月至少参加一次野营拉练活动(下面简称“活动”)并记录成绩.10月某次活动中海航班学员成绩统计如图所示:。
2019届普通高等学校招生全国统一考试模拟卷文科数学本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A.πB.4πC.4πD.6π9.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A. B. C.(1,) D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccos A.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.答案详解一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.2.D z====-1+i,=-1-i,故选D.评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=×2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要.5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-22=0,解得q=-2.解析由S评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4,所以|BD|·d=4,即·2p·p=4,解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<+x(x>0).①令g(x)=+x,则g'(x)=+1=.由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥B C,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。
2019年普通高等学校招生全国统一考试广东省文科数学模拟试卷(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】先求出集合,再求两集合的交集即可.【详解】在集合中,得,即,在集合中在上递增,且,所以,即,则.故选:D.【点睛】本题考查了集合的交集及其运算,也考查了指数函数的单调性,属于基础题.2.复数(为虚数单位)的虚部为()A. B. C. D.【答案】A【解析】【分析】利用复数代数形式的乘除运算化简即可得答案.【详解】 =,所以z的虚部为.故选:A【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3.双曲线的焦点坐标为()A. B. C. D.【答案】A【解析】【分析】将双曲线化成标准方程,可得,,即可得焦点坐标.【详解】将双曲线化成标准方程为:,得,,所以,所以,又该双曲线的焦点在x轴上,所以焦点坐标为.故选:A【点睛】本题考查双曲线的简单性质,将双曲线的方程化为标准形式是关键,属于基础题.4.若,则()A. B. C. D.【答案】B【解析】【分析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公式得,所以 .故选:B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.5.已知函数在上单调递减,且当时,,则关于的不等式的解集为()A. B. C. D.【答案】D【解析】【分析】当时,由=,得,由函数单调性的性质,即可得的解集. 【详解】当时,由=,得或(舍),又因为函数在上单调递减,所以的解集为.故选:D【点睛】本题考查函数的单调性的应用,关键是理解函数单调性的性质,属于基础题.6.某几何体的三视图如图所示,则该几何体的体积为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】由三视图可知该几何体的直观图,从而求出几何体的体积.【详解】由三视图可知几何体为边长为2的正方体的一半,做出几何体的直观图如图所示,故几何体的体积为23=4.故选:B.【点睛】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状是解题的关键,属于中档题.7.设x1=18,x2=19,x3=20,x4=21,x5=22,将这5个数依次输入如图所示的程序框图运行,则输出S的值及其统计意义分别是()A. S=2,这5个数据的方差B. S=2,这5个数据的平均数C. S=10,这5个数据的方差D. S=10,这5个数据的平均数【答案】A【解析】【分析】根据程序框图,得输出的S是5个数据的方差,先求这5个数的均值,然后代入方差公式计算即可.【详解】根据程序框图,输出的S是x1=18,x2=19,x3=20,x4=21,x5=22这5个数据的方差,因为,∴由方差的公式S=.故选:A.【点睛】本题通过循环结构的程序框图考查了均值和方差,属于基础题.8.的内角所对的边分别是.已知,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】由余弦定理化简,得,再由基本不等式求解即可.【详解】因为,得,所以,所以当且仅当取等号,且为三角形内角,所以.故选:D【点睛】本题考查余弦定理解三角形和基本不等式的应用,属于基础题.9.已知,,三点不共线,且点满足,则()A. B.C. D.【答案】A【解析】【分析】运用向量的减法运算,把已知等式中的向量换为表示,整理后可求结果。
2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给的四个选项中,只有一项是符合题目要求的.1.已知集合,则( ){}{}21,0,1,21A B x x ,=-=≤A B ⋂=A.B.C. D.{}1,0,1-{}0,1{}1,1-{}0,1,2【答案】A 【解析】【分析】先求出集合B 再求出交集.【详解】由题意得,,则.故选A .{}11B x x =-≤≤{}1,0,1A B ⋂=-【点睛】本题考查了集合交集的求法,是基础题.2.若,则( )(1i)2i z +=z =A. B. C. D. 1i --1+i-1i-1+i【答案】D 【解析】【分析】根据复数运算法则求解即可.【详解】.故选D .()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A. B. C. D. 16141312【答案】D 【解析】【分析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D .12【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A. B. C. D. 0.50.60.70.8【答案】C 【解析】【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.5.函数在的零点个数为( )()2sin sin2f x x x =-[]0,2πA. 2B. 3C. 4D. 5【答案】B 【解析】【分析】令,得或,再根据x 的取值范围可求得零点.()0f x =sin 0x =cos 1x =【详解】由,得()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=或,,.在的零点个数sin 0x =cos 1x =[]0,2x π∈ 02x ππ∴=、或()f x ∴[]0,2π是3..故选B .【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.6.已知各项均为正数的等比数列的前4项和为15,且,则( ){}n a 53134a a a =+3a =A. 16 B. 8C. 4D. 2【答案】C 【解析】【分析】利用方程思想列出关于的方程组,求出,再利用通项公式即可求得的值.1,a q1,a q3a 【详解】设正数的等比数列{a n }的公比为,则,q 2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩解得,,故选C .11,2a q =⎧⎨=⎩2314a a q ∴==【点睛】应用等比数列前项和公式解题时,要注意公比是否等于1,防止出错.n 7.已知曲线在点处的切线方程为,则( )e ln x y a x x =+()1,ae 2y x b =+A. B. C.D.,1a e b ==-,1a eb ==1,1a e b -==1,1a eb -==-【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.b 【详解】详解:/ln 1,x y ae x =++/11|12x k y ae a e =-==+=∴=将代入得,故选D .(1,1)2y x b =+21,1b b +==-【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.8.如图,点为正方形的中心,为正三角形,平面平面N ABCD ECD ∆ECD ⊥是线段的中点,则( ),ABCD M EDA. ,且直线是相交直线BM EN =,BM ENB. ,且直线是相交直线BM EN ≠,BM ENC. ,且直线是异面直线BM EN =,BM END. ,且直线是异面直线BM EN ≠,BM EN 【答案】B 【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】,为中点为中点,,共面相交,选项C ,DBDE ∆∵N BD M DE ∴BM EN为错.作于,连接,过作于.EO CD ⊥O ON M MF OD ⊥F 连,平面平面.BF CDE ⊥ABCD 平面,平面,平面,,EO CD EO ⊥⊂CDE EO ∴⊥ABCD MF ⊥ABCE 与均为直角三角形.MFB ∴∆EON ∆设正方形边长为2,易知,012EO N EN ===.52MF BF BM ===∴==,故选B .BM EN ∴≠【点睛】本题为立体几何中等问题,考查垂直关系,线面、线线位置关系.9.执行如图所示的程序框图,如果输入的为,则输出的值等于( )ε0.01sA.B.C.D.4122-5122-6122-7122-【答案】D 【解析】【分析】根据程序框图,结合循环关系进行运算,可得结果.【详解】不成立11.0,01,0.01?2x S S x ===+=<不成立1101,0.01?24S x =++=<成立611101,0.00781250.01?22128S x =++++==< 输出,故选D .767111112121122212S -⎛⎫=++⋯+==- ⎪⎝⎭-【点睛】循环运算,何时满足精确度成为关键,加大了运算量,输出前项数需准确,此为易错点.10.已知是双曲线的一个焦点,点在上,为坐标原点,若F 22:145x y C -=P C O ,则的面积为( )=OP OFOPF A. B. C. D. 32527292【答案】B 【解析】【分析】设,因为再结合双曲线方程可解出,再利用三角形面积公式可()00,P x y =OP OFy 求出结果.【详解】设点,则①.又,()00,P x y 2200145x y -=3OP OF ===②.由①②得,即,22009x y ∴+=20259y =053y =.故选B .0115532232OPF S OF y ∆∴==⨯⨯= 【点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.11.记不等式组表示的平面区域为,命题;命题620x y x y +⎧⎨-≥⎩…D :(,),29p x y D x y ∃∈+….给出了四个命题:①;②;③;④:(,),212q x y D x y ∀∈+…p q ∨p q ⌝∨p q ∧⌝,这四个命题中,所有真命题的编号是( )p q ⌝∧⌝A. ①③ B. ①②C. ②③D. ③④【答案】A 【解析】【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由得即A (2,4),直线2,6y x x y =⎧⎨+=⎩2,4x y =⎧⎨=⎩与直线均过区域D ,则p 真q 假,有假真,所以①③真②④29x y +=212x y +=p ⌝q ⌝假.故选A.【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度.不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假.12.设是定义域为的偶函数,且在单调递减,则( )()f x R ()0,∞+A. 233251log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B. 233281log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C. 23325122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23325122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】【分析】由已知函数为偶函数,把,转化为同一个单调区间上,再233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭比较大小.【详解】是R 的偶函数,.()f x ()331log log 44f f ⎛⎫∴= ⎪⎝⎭,又在(0,+∞)单调递减,323log 4122-∴>=>()f x ,()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C .23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题解决问题的能力.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,则___________.(2,2),(8,6)a b ==- cos ,a b <>=【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】详解:.cos ,a b a b a b <>===【点睛】本题考点为平面向量的夹角,为基础题目,难度偏易.不能正确使用平面向量坐标的运算致误,平面向量的夹角公式是破解问题的关键.14.记为等差数列的前项和,若,则___________.nS {}n a n 375,13a a ==10S =【答案】100【解析】【分析】根据题意可求出首项和公差,进而求得结果.【详解】详解: 得317125,613a a d a a d =+=⎧⎨=+=⎩11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯=【点睛】本题考点为等差数列的求和,为基础题目,难度不大.不能构造等数列首项和公差的方程组致使求解不通,应设出等差数列的公差,为列方程组创造条件,从而求解数列的和.15.设为椭圆的两个焦点,为上一点且在第一象限.若12F F ,22:+13620x y C =M C 为等腰三角形,则的坐标为___________.12MF F △M 【答案】(【解析】【分析】根据椭圆的定义分别求出,设出的坐标,结合三角形面积可求出的坐标.12MF MF 、M M 【详解】由已知可得,2222236,36,16,4a b c a b c ==∴=-=∴=.11228MF F F c ∴===.122212,4MF MF a MF +=== 设点的坐标为,则,M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△又,解得,12014,42MF F S y =⨯=∴=△0y =,解得(舍去),2136x∴=03x =03x =-的坐标为.M \(【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.16.学生到工厂劳动实践,利用打印技术制作模型.如图,该模型为长方体3D 挖去四棱锥后所得的几何体,其中为长方体的中心,1111ABCD A B C D -O EFGH -O 分别为所在棱的中点,,打印所用原料密,,,E F G H 16cm 4cm AB =BC =, AA =3D 度为,不考虑打印损耗,制作该模型所需原料的质量为___________.30.9/g cm g 【答案】118.8【解析】【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量.【详解】由题意得,四棱锥O-EFGH 的底面积为,其高为点2146423122cm ⨯-⨯⨯⨯=O 到底面的距离为3cm ,则此四棱锥的体积为.又长方体11BB C C 211123123V cm =⨯⨯=的体积为,所以该模型体积为1111ABCD A B C D -22466144V cm =⨯⨯=,其质量为.22114412132V V V cm =-=-=0.9132118.8g ⨯=【点睛】此题牵涉到的是3D 打印新时代背景下的几何体质量,忽略问题易致误,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只,A B A B 小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计C 5.5()P C 值为.0.70(1)求乙离子残留百分比直方图中的值;,a b (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) ,;(2) ,.0.35a =0.10b = 4.056【解析】【分析】(1)由可解得和的值;(2)根据公式求平均数.()0.70P C =b 【详解】(1)由题得,解得,由0.200.150.70a ++=0.35a =,解得.0.050.151()10.70b P C ++=-=-0.10b =(2)由甲离子的直方图可得,甲离子残留百分比的平均值为,0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.18.的内角的对边分别为,已知.ABC ∆,,A B C ,,a b c sinsin 2A Ca b A +=(1)求;B (2)若为锐角三角形,且,求面积的取值范围.ABC ∆1c =ABC ∆【答案】(1);(2).3B π=【解析】【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到3B π=1sin 2ABC S ac B =⋅ 1225关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算ABCS C V ABC 2π的定义域,最后求解的值域.C ()ABC S C 【详解】(1)根据题意由正弦定理得,sinsin 2A C a b A +=sin sin sin sin 2A CA B A +=因为,故,消去得。
2019年高考模拟试题(一)文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,都是实数,那么“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线的焦点坐标为( )A .B .C .D .3.下列4个图从左到右位次是四位同学甲、乙、丙、丁的五能评价雷达图:甲 乙 丙 丁在从他们四人中选一位发展较全面的学生,则应该选择( ) A .甲 B .乙 C .丙D .丁4.设,满足约束条件,则目标函数的最小值为( )A .B .C .D . 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()A .B CD .a b 22a b>22a b >22(0)x py p =>,02p ⎛⎫⎪⎝⎭1,08p ⎛⎫⎪⎝⎭0,2p ⎛⎫ ⎪⎝⎭10,8p ⎛⎫ ⎪⎝⎭x y 36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥2z x y =-+4-2-0256.大致的图象是()A.B.C.D.7.函数(,是常数,的部分图象如图所示,为得到函数,只需将函数的图象()AC8.中任取一个元素,则函数,是增函数的概率为()A.B.C.D.9.已知函数(,)在处取得极小值,则的最小值为()A.4 B.5C.9 D.1010.在四面体中,若,体的外接球的表面积为()A.B.C.D.11.已知的前项和为,且,,成等差数列,数列的前项和为,则满足的最小正整数的值为()A.8 B.9 C.10 D.1112.已知不等式在上恒成立,且函数在上)())0,π()()sinf x xωϕ=+ωϕ0ω>cosy xω=()()sinf x xωϕ=+A aay x=()0,x∈+∞35453437()321132f x ax bx x=+-0a>0b>1x=14a b+ ABCD AB CD==2AC BD==AD BC== ABCD2π4π6π8π{}na n12nnS m+=+1a4a52a-{}nb nnT20172018nT>n12x m x-<-[]0,2()e xf x mx=-()3,+∞单调递增,则实数的取值范围为()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知实数x,y满足条件23x yx yxy-≥+≤≥≥⎧⎪⎪⎨⎪⎪⎩,则3x y+的最大值为__________.14.15.在ABC△中,M是BC的中点,3AM=,点P在AM上,且满足2AP PM=,则()PA PB PC⋅+的值为___________.16.已知ABC△中,角A、B、C所对的边分别是a、b、c且6a=,4sin5sinB C=,有以下四个命题:①ABC△的面积的最大值为40;②满足条件的ABC△不可能是直角三角形;③当2A C=时,ABC△的周长为15;④当2A C=时,若O为ABC△的内心,则AOB△.其中正确命题有__________(填写出所有正确命题的番号).三、解答题:共70分。
.2019 年新课标全国卷 3 数学(文科)模拟试卷一、选择题:本题共12 小题,每小题5分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M x 2 x 5 , N x log2 x 2 ,则M NA.1,2,3,4,5 B.2,3,4 C.x 0 x 5 D.x 2 x 4a b2.若a,b都是实数,且 11 i i,则a b 的值是A.-1 B.0 C.1 D.23.国家统计局统了我国近10 年(2009 年2018 年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是A.这10 年中有 3 年的GDP增速在9.00%以上B.从2010 年开始GDP的增速逐年下滑C.这10 年GDP仍保持 6.5%以上的中高速增长D.2013 年—2018 年GDP的增速相对于2009 年—2012 年,波动性较小4.已知向量 a 1,m ,b 2,3 ,且向量a,b满足 a b b,则mA.2 B.-3 C.5 D.-45.一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为A.45B.710C.35D.126.已知双曲线的左、右焦点分别为F1( c,0 ),F2( c, 0),过点F2 作x轴的垂线,与双曲线的渐近线在第一象限内的交点为P,线段PF2 的中点M 到原点的距离为2c,则双曲线的渐近线方程为A.y 2x B.1y x C.y 4x D.21y x42 27.在ABC 中,内角A,B,C满足sin B sin C cos2 A 122sin B sin C sin A 0 ,则A.78B.78C.34D.7168.如右图,执行程序框图,若输出结果为140,则判断框内应填A.n≤7? B.n>7? C.n≤6? D.n>6?9.如右图,在正方体ABCD-A1B1C1D1 中,M ,N 分别是棱B1C1,C1C 的中点,则异面直线B D1 与MN 所成的角的大小是A.30°B.45°C.60°D.90°目要求的。
19年全国3卷文数D. {0,1,2}D. 1+i 一、选择题:1. 已知集合 A = {—l,0,l,2}, 8 = {.巾2罚,则 “8=()A. {-1,0.1}B. {0.1}C. (-1.1)2. 若z (l + i ) = 2i ,则z=()A. -l-i B. -1+i C. 1-i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(A. —B. —C. 一6 4 34. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某 中学为了解本校学生阅读四大名著的情况,随机调查了 100学生,其中阅读过《西游记》或《红楼梦》的 学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. 0.5 B 0.6 C 0.7 D 0.85. 函数/⑴= 2siiu 」sin2x 在[0.2勿]的零点个数为()A. 2 B 3 C 4 D. 56. 已知各项均为正数的等比数列{%}的前4项和为15,且约=3与+4^・则闩=()A. 16B. 8C. 4D. 27. 已知曲线y = uc r +x\nx 在点(1,w )处的切线方程为y = 2x+b,则()A. a = e.h = -\B. a = e,b = \C. " = = 1D. u =广』? = 一18.如图,点N 为正方形ABCD 的中心,△£(?£)为正三角形,平面ECD ±平面ABCD.M 是线段 功的中点,则()A. BM = EN ,旦直线.可V 是相交直线c BM =EN,且直线BM.EN 是异面直线 9.执行如图所示的程序框图,如果输入的£为0.01,BM 手EN .且宜线BM,珈是相交直线 BM*EN ,且直线BM ,EN 是异而直线 则输出S 的值等于()B. 2一一r 2510.己知F 是双曲线\ = 1的一个焦点.点P 在C 上,。
2019届百师联盟全国高三模拟考(一)全国I 卷文科数学试题第I 卷(选择题)一、单选题1.已知复数z 满足()14i z i -=,则z =( )A .B .2C .4D .3 2.已知集合{}20,2131x A xB x x x +⎧⎫=≤=-≤⎨⎬-⎩⎭则()RC A B ⋂( ) A .[]1,2 B .()[),21,2-∞-U C .()[],21,2-∞-⋃D .(]1,2 3.已知命题:p []02,2x ∃∈-,2430x x -+≥,则p ⌝为( )A .[]02,2x ∃∉-,2430x x -+<B .[]02,2x ∀∉-,2430x x -+<C .[]2,2x ∀∈-,2430x x -+<D .[]2,2x ∀∈-,2430x x -+≥ 4.设α为锐角,若3cos 45πα⎛⎫+= ⎪⎝⎭,则5sin 12πα⎛⎫+ ⎪⎝⎭的值为( )A .310+BC .410D .410- 5.“角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )6.已知双曲线2222:1x yCa b-=(0a>,0b>)的渐近线与圆()22314x y+-=相切,则双曲线C的离心率为()A B.2 C D7.为研究某咖啡店每日的热咖啡销售量y和气温x之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x轴表示气温,y轴表示销售量),由散点图可知y与x的相关关系为()A.正相关,相关系数r的值为0.85B.负相关,相关系数r的值为0.85C.负相关,相关系数r的值为0.85-D.正相关,相关负数r的值为0.85-8.函数32sin()xx xg xe-=的图象大致为()A.B.C.D.9.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A .83B .163C .43D .810.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( )A .2B .2-C .1D .1-11.已知集合{}{}3,*,2,*n M x x n N N x x n n N ==∈==∈,将集合M N ⋃的所有元素从小到大一次排列构成一个新数列{}n c ,则12335...c c c c ++++=( ) A .1194 B .1695 C .311 D .1095 12.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.已知a =r a r 在b r ,则a r 与b r 的夹角为_________.14.抛物线2:2C x py =(0p >)的焦点到准线的距离为4,则抛物线的准线方程为___________.15.已知ABC ∆内角、、A B C 的对边分别为,4,a b c a b ABC ==∆、、外接圆的面积为4π,则ABC ∆的面积为_________.16.在三棱锥P ABC -中,三条侧棱PA PB PC 、、两两垂直,1,4PB PA PA PC =++=,则三棱锥P ABC -外接球的表面积的最小值为________.三、解答题17.已知{}n a 为各项均为整数的等差数列,n S 为{}n a 的前n 项和,若3a 为213a 和13a 的等比中项,749=S .(1)求数列{}n a 的通项公式;(2)若12n n n b a a +=,n T 为数列{}n b 的前n 项和,求n T . 18.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,2ABC π∠=,PE ⊥面ABCD ,3AD AE =,22AB BC AE ===,3PC =.(1)在线段PD 上是否存在点F ,使//CF 面PAB ,说明理由;(2)求三棱锥C PAE -的体积.19.某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:(1)(i )将22⨯列联表补充完整;(ii )据此列联表判断,能否有99%的把握认为“日平均走步数和性别是否有关”? (2)从样本中的运动达人中抽取7人参加“幸运抽奖”活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++ 20.已知椭圆()2222:10x y C a b a b+=>>,左、右焦点为12F F 、,点P 为C 上任意一点,若1PF 的最大值为3,最小值为1.(1)求椭圆C 的方程;(2)动直线l 过点2F 与C 交于P Q 、两点,在x 轴上是否存在定点A ,使22PAF QAF ∠=∠成立,说明理由.21.已知函数1()ln 1a f x x x+=-+,a R ∈. (1)当2a =-时,求函数()f x 在点()2,(2)f 处的切线方程;(2)若当0x >,()3f x ≥,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求曲线C 的直角坐标方程;(2)设点M 的极坐标为1,2π⎛⎫ ⎪⎝⎭,直线l 与曲线C 的交点为,A B ,求MA MB +的值. 23.已知函数()12f x x x =--+.(1)求不等式()2f x ≤的解集A ;(2)若不等式2()2f x x x m ≤+-对x A ∈恒成立,求实数m 的取值范围.参考答案1.A【解析】【分析】由复数除法求出z ,再由模的定义计算出模.【详解】44(1)22,1(1)(1)i i i z i z i i i +===-+=--+ 故选:A .【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.2.C【解析】【分析】解不等式确定集合,A B 中的元素,再由集合的运算法则计算.【详解】 由201x x +≤-得(2)(1)010x x x +-≤⎧⎨-≠⎩,∴21x -?,即[2,1)A =-,又{|2}(,2]B x x =≤=-∞,∴(,2)[1,)R A =-∞-+∞U ð,()(,2)[1,2]R A B =-∞-I U ð.故选:C .【点睛】本题考查集合的综合运算,掌握集合运算的定义是解题基础.3.C【解析】【分析】根据特称命题的否定是全称命题可得出答案.【详解】由于特称命题的否定是全称命题,故命题:p []02,2x ∃∈-,2430x x -+≥的否定是::p ⌝[]2,2x ∀∈-,2430x x -+<.故选:C.【点睛】本题考查特称命题的否定,意在考查学生的推断能力,属于基础题.4.A【解析】【分析】 先求出sin 4πα⎛⎫+⎪⎝⎭的值, 5sin sin 1246ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,再由两角和的正弦公式计算即可.【详解】 Q α为锐角,3cos 45πα⎛⎫+= ⎪⎝⎭,∴4sin 45απ⎛⎫+== ⎪⎝⎭,∴513sin sin sin cos 1246242410ααααπππππ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.【点睛】本题考查同角三角函数间的关系,考查两角和的正弦公式,考查逻辑思维能力和计算能力,属于常考题.5.B【解析】【分析】模拟程序运行,观察变量值可得结论.【详解】循环前1,10i n ==,循环时:5,2n i ==,不满足条件1n =;16,3n i ==,不满足条件1n =;8,4n i ==,不满足条件1n =;4,5n i ==,不满足条件1n =;2,6n i ==,不满足条件1n =;1,7n i ==,满足条件1n =,退出循环,输出7i =.故选:B .【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.6.C【解析】【分析】先根据双曲线的方程求得双曲线的渐近线,再利用圆心到渐近线的距离为圆的半径求得a 和b 的关系,代入e =中求得离心率即可. 【详解】渐近线方程为0bx ay -=,r ==2213b a ∴=,3e ∴==. 故选:C.【点睛】本题考查双曲线离心率的求法,考查逻辑思维能力和计算能力,属于常考题.7.C【解析】【分析】根据正负相关的概念判断.【详解】由散点图知y 随着x 的增大而减小,因此是负相关.相关系数为负.故选:C .【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.8.B【解析】【分析】确定函数的奇偶性排除,再求一些特殊的函数值,根据其正负排除一些选项.【详解】 由32sin ()()x x x f x f x e-+-==-,知()f x 为奇函数,排除D ;12sin1(1)0f e -=<,排除C ;322732sin 38202f e -⎛⎫=> ⎪⎝⎭,排除A . 故选:B【点睛】本题考查由函数解析式选择函数图象,解题时可通过确定函数的奇偶性、单调性等性质,特殊的函数值,函数值的正负,函数值的变化趋势等由排除法得出正确选项.9.A【解析】【分析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2, 直观图如图所示,1822233V =⨯⨯⨯=. 故选:A .【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.10.D【解析】【分析】()()4f x f x =+说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由()()4f x f x =+知函数()f x 的周期为4,又()f x 是奇函数,(2)(2)f f =-,又(2)(2)f f -=-,∴(2)0f =,∴()()()()()()201820192301011f f f f f f +=+=+-=-=-. 故选:D . 【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础. 11.D 【解析】 【分析】确定{}n c 中前35项里两个数列中的项数,数列{2}n 中第35项为70,这时可通过比较确定{3}n 中有多少项可以插入这35项里面即可得,然后可求和.【详解】35n =时,23570,370,3n n ⨯=<≤,所以数列{}n c 的前35项和中,{}3n有三项3,9,27,{}2n 有32项,所以123353231 (3927322210952)c c c c ⨯++++=+++⨯+⨯=. 故选:D . 【点睛】本题考查数列分组求和,掌握等差数列和等比数列前n 项和公式是解题基础.解题关键是确定数列{}n c 的前35项中有多少项是{2}n 中的,又有多少项是{3}n中的.12.B 【解析】 【分析】函数()y f x =的图象恒在x 轴的上方,0x e x a ->在()0,∞+上恒成立.即x ex a>,即函数xe y a=的图象在直线y x =上方,先求出两者相切时a 的值,然后根据a 变化时,函数xe y a=的变化趋势,从而得a 的范围.【详解】由题0x e x a ->在()0,∞+上恒成立.即xe x a>,xe y a=的图象永远在y x =的上方,设x e y a =与y x =的切点()00,x y ,则01x x e ae xa⎧=⎪⎪⎨⎪=⎪⎩,解得a e =,易知a 越小,xey a=图象越靠上,所以0a e <<.故选:B . 【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围. 13.6π【解析】 【分析】由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小. 【详解】a r 在b r方向上的投影为cos ,cos ,2a a b a b <>=∴<>==r r r r r ,即夹角为6π. 故答案为:6π. 【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键. 14.2y =-【分析】根据题意先求出p 的值,然后再写出准线方程即可. 【详解】焦点到准线的距离为4p =,准线方程为22py =-=-. 故答案为:2y =-. 【点睛】本题考查抛物线的定义,考查对基本知识的理解和掌握,属于基础题.15.【解析】 【分析】由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,A B ,从而有C ,于是可得三角形边长,可得面积. 【详解】设外接圆半径为r ,则24,2S r r =π=π=,由正弦定理24sin sin a b r A B ===,得sin 1A B ==,,,,326A B C πππ∴===∴2c =,a =12S ac ==.故答案为: 【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键. 16.14π 【解析】 【分析】设PA x =,可表示出,PB PC ,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.设PA x =则1,4PC x PC x =+=-,由,,PA PB PC 两两垂直知三棱锥P ABC -的三条棱,,PA PB PC 的棱长的平方和等于其外接球的直径的平方.记外接球半径为r ,∴2r ==当1x =时,2min min 2=414r r S ==π=π⎝⎭表. 故答案为:14π. 【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和. 17.(1)21n a n =-;(2)221nn + 【解析】 【分析】(1)利用已知条件列出方程组,求出1a 和d 的值,进而写出通项公式即可; (2)()()1221121212121n n n b a a n n n n +===--+-+,利用裂项相消法求和即可.【详解】(1)由题得()23213177137492a a a a a S ⎧=⋅⎪⎪⎨+⎪==⎪⎩,解得112a d =⎧⎨=⎩或1073a d =⎧⎪⎨=⎪⎩,因为数列{}n a 为各项均为整数,所以112a d =⎧⎨=⎩,即21n a n =-;(2)令()()1221121212121n n n b a a n n n n +===--+-+,所以111111112113355721212121n n T n n n n =-+-+-+-=-=-+++. 【点睛】本题考查等差等比数列的性质,考查等差数列的通项公式,考查裂项相消法求和,考查逻辑思维能力和运算能力,属于常考题. 18.(1)存在,理由见解析;(2)23. 【解析】 【分析】(1)取ED 中点Q ,分别连接CQ ,QF ,CF ,易得//AB CQ ,//QF AP ,然后可证 面//CQF 面PAB ,即//CF 面PAB ;(2)过E 作//EG AB 交BC 于G ,分别求出EC ,PE 的长度,在梯形ABCD 中,作EH BC ⊥于H ,再求出EH 的长度,利用等体积法C PAE P ACE V V --=计算得解.【详解】(1)当F 为PD 上靠近D 点的三等分点时,满足//CF 面PAB , 证明如下,取ED 中点Q ,分别连接CQ ,QF ,CF ,//AD BC Q ,3AD AE =,2BC =,2AE =,AQ BC ∴=,即易得//AB CQ ,AB Ì面PAB ,CQ ⊄面PAB , 所以//CQ 面PAB ,同理可得//QF AP ,AP ⊂面PAB ,QF Ë面PAB , 所以//QF 面PAB ,又CQ QF Q ⋂=,CQ ,QF ⊂面CQF ,所以面//CQF 面PAB ,又CF ⊂面CQF ,所以//CF 面PAB ;(2)过E 作//EH AB 交BC 于H ,PE ⊥Q 面ABCD ,2ABC π∠=,EH BC ∴⊥在Rt PEC ∆中,EC =2PE ==, 所以11121223323C PAE P ACE ACE V V S PE --∆==⋅=⨯⨯⨯⨯=. 【点睛】本题考查线面平行的证法,考查利用等体积法求三棱锥体积,考查空间想象能力和运算能力,属于常考题.19.(1)(i )列联表见解析;(ii )没有;(2)1021. 【解析】 【分析】(1)(i )根据题意补全22⨯列联表;(ii )代入数据计算2K ,对照临界值做出判断即可;(2)由分层抽样方法,利用列举法求出基本事件数,计算所求的概率值. 【详解】 (1)(i )(ii )由22⨯列联表得()2210035261425 5.229 6.63560404951K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为“日平均走步数和性别是否有关”; (2)由列联表知从运动达人中抽取的男用户人数为735549⨯=,女用户人数为714249⨯=, 男用户编号a ,b ,c ,d ,e ,女用户编号m ,n ,则抽取的两位幸运用户有:(),a b ,(),a c ,(),a d ,(),a e ,(),a m ,(),a n ,(),b c ,(),b d ,(),b e ,(),b m ,(),b n ,(),c d ,(),c e ,(),c m ,(),c n ,(),d e ,(),d m ,(),d n ,(),e m ,(),e n ,(),m n ,共21种,其中男女各一位的有10种,概率为1021, 所以这2位幸运用户恰好男用户和女用户各一位的概率为1021. 【点睛】本题考查独立性检验及其计算,考查分层抽样,考查古典概率,考查逻辑思维能力和计算能力,属于常考题.20.(1)22143x y +=(2)存在;详见解析【解析】 【分析】(1)由椭圆的性质得3,1a c a c +=-=,解得,a c 后可得b ,从而得椭圆方程; (2)设()()()1122,,,,,0P x y Q x y A n ,当直线l 斜率存在时,设为()1y k x =-,代入椭圆方程,整理后应用韦达定理得1212,x x x x +,代入AP AQ k k +=0由恒成立问题可求得n .验证l 斜率不存在时也适合即得. 【详解】解:(1)由题易知1max 1min31PF a c PF a c ⎧=+=⎪⎨=-=⎪⎩解得21a c =⎧⎨=⎩,所以椭圆C 方程为22143x y +=(2)设()()()1122,,,,,0P x y Q x y A n当直线l 斜率存在时,设为()1y k x =-与椭圆方程联立得()22224384120kx k x k +-+-=,显然>0∆所以221212228412,4343k k x x x x k k -+=⋅=++ 因为22,0AP AQ PAF QAF k k ∠=∠∴+=()()()()()()1221121212110k x x n k x x n y y x n x n x n x n --+--∴+==---- 化简()()()222121222281824682120,0434343n k k n nk x x n x x n k k k --+-+++=∴-+=+++ 解得6240n -=即4n =所以此时存在定点()4,0A 满足题意 当直线l 斜率不存在时,()4,0A 显然也满足综上所述,存在定点()4,0A ,使22PAF QAF ∠=∠成立 【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法. 21.(1)1ln 214y x =++;(2)(],1e -∞--. 【解析】 【分析】(1)先求导,然后根据导数的几何意义求出切线斜率,最后由点斜式写出切线方程即可; (2)0x >,()3f x ≥,即只需min ()3f x ≥,对a 进行分类讨论, 求()f x 的最小值,解不等式求出范围即可. 【详解】(1)当2a =-时,1()ln 1f x x x=++,21()x f x x -'=,1(2)4f '∴=,()32ln 22f =+,所以切线方程为1ln 214y x =++;(2)当0x >,()3f x ≥,即只需min()3f x ≥,()21'()1x a f x x ++=+,当1a ≥-时,即10a --≤,()0f x '>,()f x ∴在()0,∞+上增,无最小值,舍去, 当1a <-时,即10a -->,()0f x '>,得1x a >--,()0f x '<,得01x a <<--, 此时()f x 在()1,1a ---上减,在()1a --+∞,上增,即()()min ()12ln 13f x f a a =--=+--≥,解得1a e ≤--, 综上(],1a e ∈-∞--. 【点睛】本题考查利用导数研究曲线上某点的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力和计算能力,属于常考题. 22.(1)()2211x y -+=(21 【解析】 【分析】(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程;(2)把M 点极坐标化为直角坐标,直线l 的参数方程是过定点M 的标准形式,因此直接把参数方程代入曲线C 的方程,利用参数t 的几何意义求解. 【详解】解:(1)2:cos C ρθ=,则22cos ρρθ=,∴222x y x +=,所以曲线C 的直角坐标方程为2220x y x +-=,即()2211x y -+=(2)点1,2M π⎛⎫⎪⎝⎭的直角坐标为()0,1M ,易知M l ∈.设,A B 对应参数分别为12,t t将12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩与22:20C x y x +-=联立得)21212110,1,1t t t t t t ++=∴+=⋅=120,0t t ∴<<12121MA MB t t t t +=+=+=【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题. 23.(1)3,2⎡⎫-+∞⎪⎢⎣⎭(2)114m ≤-【解析】 【分析】(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为2321m x x x ≤++--,求出2()321g x x x x =++--在3[,)2-+∞上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值. 【详解】 解:(1)1122x x x ≥⎧⎨---≤⎩或21122x x x -<<⎧⎨---≤⎩或2122x x x x ≤-⎧⎨-+++≤⎩ 解得1x ≥或312x -≤<或无解 综上不等式的解集为3,2A ⎡⎫=-+∞⎪⎢⎣⎭. (2)3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时,2()2f x x x m ≤+-,即2132x x x m -≤++- 所以只需2321m x x x ≤++--在3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时恒成立即可 令22223,1()321341,12x x x g x x x x x x x ⎧++≥⎪=++--=⎨++-≤<⎪⎩, 由解析式得()g x 在3[,)2-+∞上是增函数, ∴当32x =-时,min 11()4g x =- 即114m ≤-【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2019年高考文科数学模拟试卷及答案(共三套)2019年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .B .1C .D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3B .3C.3D .311、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。
2019年全国普通高等学校招生统一考前模拟文科数学试题(全国Ⅲ卷)一、选择题1.设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48},(B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C【解析】试题分析:由补集的概念,得C {0,2,6,10}A B =,故选C . 【考点】集合的补集运算. 2.若43i z =+,则||zz = (A )1 (B )1- (C )43i 55+ (D )43i 55-【答案】D【解析】试题分析:43i ||55z z ==-,故选D . 【考点】1、复数的运算;2、共轭复数;3、复数的模.3.已知向量1(2BA =uu v,1),2BC =uu u v 则ABC ∠=(A )300(B ) 450(C )600(D )1200【答案】A【解析】试题分析:由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以30ABC ∠=︒,故选A .【考点】向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A )各月的平均最低气温都在00C 以上 (B )七月的平均温差比一月的平均温差大(C )三月和十一月的平均最高气温基本相同(D )平均气温高于200C 的月份有5个 【答案】D【解析】试题分析:由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D . 【考点】1、平均数;2、统计图5.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 (A )815 (B )18 (C )115 (D )130【答案】C【解析】试题分析:开机密码的可能有(,1),(,2),(,3),(,4),(,5),(,1),(,2),(,3),(,4),(,5)M M M M M I I I I I ,(,1),(,2),(,3),(,4),(,5)N N N N N ,共15种可能,所以小敏输入一次密码能够成功开机的概率是115,故选C .【考点】古典概型. 6.若tan 13θ=,则cos 2θ=( ) (A )45-(B )15-(C )15 (D )45【答案】D【解析】试题分析:2222222211()cos sin 1tan 43cos 2cos sin 1tan 51()3θθθθθθθ---====+++. 【考点】1、同角三角函数间的基本关系;2、二倍角. 7.已知4213332,3,25a b c ===,则(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】试题分析:因为423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以222333345<<,即b a c <<,故选A .【考点】幂函数的单调性.8.执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3 (B )4 (C )5 (D )6 【答案】B【解析】试题分析:第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2,6,4,10a b a s =-===,2n =;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,2016,4a b a s n =-===>=,退出循环,输出4n =,故选B .【考点】程序框图. 9.在ABC △中,π4B =,BC 边上的高等于13BC ,则sin A = (A )310(B(C(D【答案】D【解析】试题分析:设BC 边上的高线为AD ,则3,2B C A D D C A D ==,所以AC .由正弦定理,知sin sin AC BC B A =3sin AD A =,解得sin A =,故选D .【考点】正弦定理.10.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B)54+(C )90 (D )81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【考点】空间几何体的三视图及表面积.11.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C )6π (D )323π【答案】B【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 【考点】1、三棱柱的内切球;2、球的体积.12.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23 (D )34【答案】A【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点||()FM k a c =-,||OE ka =,由OBECBM ∆∆,得1||||2||||OE OB FM BC =,即2(c)ka a k a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 【考点】椭圆方程与几何性质.二、填空题13.若,x y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则235z x y =+-的最大值为_____________.【答案】10-【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知当目标函数235z x y =+-经过点(1,1)A --时取得最小值,即min 2(1)3(1)510z =⨯-+⨯--=-.【考点】简单的线性规划问题.14.函数sin y x x =的图像可由函数2sin y x =的图像至少向右平移_____________个单位长度得到. 【答案】3π【解析】试题分析:因为sin 2sin()3y x x x π=-=-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 【考点】1、三角函数图象的平移变换;2、两角差的正弦函数.15.已知直线l :60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 【答案】4【解析】试题分析:由60x +=,得6x =-,代入圆的方程,并整理,得260y -+=,解得12y y ==120,3x x ==-,所以||AB ==l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.【考点】直线与圆的位置关系.16.已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程式_____________________________. 【答案】2y x =【解析】试题分析:当0x >时,0x -<,则1()x f x e x --=+.又因为()f x 为偶函数,所以1()()x f x f x e x -=-=+,所以1()1x f x e -'=+,则切线斜率为(1)2f '=,所以切线方程为22(1)y x -=-,即2y x =.【考点】1、函数的奇偶性;2、解析式;3、导数的几何意义.三、解答题17.已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(Ⅰ)求23,a a ;(Ⅱ)求{}n a 的通项公式. 【答案】(Ⅰ)41,2132==a a ;(Ⅱ)121-=n n a . 【解析】试题分析:(Ⅰ)将11a =代入递推公式求得2a ,将2a 的值代入递推公式可求得3a ;(Ⅱ)将已知的递推公式进行因式分解,然后由定义可判断数列{}n a 为等比数列,由此可求得数列{}n a 的通项公式. 试题解析:(Ⅰ)由题意得41,2132==a a . (Ⅱ)由02)12(112=---++n n n n a a a a 得)1()1(21+=++n n n n a a a a .因为{}n a 的各项都为正数,所以211=+n n a a . 故{}n a 是首项为1,公比为21的等比数列,因此121-=n n a . 【考点】1、数列的递推公式;2、等比数列的通项公式.18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=,7≈2.646.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -【答案】(Ⅰ)0.99r ≈,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系;(Ⅱ)1.82亿吨【解析】试题分析:(Ⅰ)根据相关系数r 公式求出相关数据后,然后代入公式即可求得r 的值,最后根据其值大小回答即可;(Ⅱ)利用最小二乘法的原理提供的回归方程,准确求得相关数据即可建立y 关于t 的回归方程,然后作预测. 试题解析:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y ,89.232.9417.40))((717171=⨯-=-=--∑∑∑===i i i i i i i iy t y t y y t t,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i ity y t tb , 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. 所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.【考点】线性相关与线性回归方程的求法与应用. 19.如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(Ⅰ)证明MN平面PAB ;(Ⅱ)求四面体N BCM -的体积. 【答案】(Ⅰ)见解析;【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM 的高,即点N 到底面的距离为棱PA 的一半,由此可顺利求得结果. 试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S . 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . 【考点】1、直线与平面间的平行与垂直关系;2、三棱锥的体积.20.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)12-=x y .【解析】试题分析:(Ⅰ)设出与x 轴垂直的两条直线,然后得出,,,,A B P Q R 的坐标,然后通过证明直线AR 与直线FQ 的斜率相等即可证明结果了;(Ⅱ)设直线l 与x 轴的交点坐标1(,0)D x ,利用面积可求得1x ,设出AB 的中点(,)E x y ,根据AB 与x 轴是否垂直分两种情况结合AB DE k k =求解. 试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---. 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=. 所以FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211ba x ab -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y . 【考点】1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法. 21.设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【答案】(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)首先求出导函数()f x ',然后通过解不等式()0f x '>或()0f x '<可确定函数()f x 的单调性(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的x 换为1x即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理.试题解析:(Ⅰ)由题设,()f x 的定义域为(0,)+∞,'1()1f x x=-,令'()0f x =,解得1x =. 当01x <<时,'()0f x >,()f x 单调递增;当1x >时,'()0f x <,()f x 单调递减.(Ⅱ)由(Ⅰ)知,()f x 在1x =处取得最大值,最大值为(1)0f =.所以当1x ≠时,ln 1x x <-.故当(1,)x ∈+∞时,ln 1x x <-,11ln 1x x <-,即11ln x x x-<<. (Ⅲ)由题设1c >,设()1(1)x g x c x c =+--,则'()1ln x g x c c c =--,令'()0g x =, 解得01lnln ln c c x c -=. 当0x x <时,'()0g x >,()g x 单调递增;当0x x >时,'()0g x <,()g x 单调递减. 由(Ⅱ)知,11ln c c c-<<,故001x <<,又(0)(1)0g g ==,故当01x <<时,()0g x >. 所以当(0,1)x ∈时,1(1)x c x c +->.【考点】1、利用导数研究函数的单调性;2、不等式的证明与解法.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C的参数方程为()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ|的最小值及此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22. 【解析】试题分析:(Ⅰ)利用同角三角函数基本关系中的平方关系化曲线C 1的参数方程普通方程,利用公式cos x ρθ=与sin y ρθ=代入曲线C 2的极坐标方程即可;(Ⅱ)利用参数方程表示出点P 的坐标,然后利用点到直线的距离公式建立||()PQ d α=的三角函数表达式,然后求出最值与相应的点P 坐标即可.试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. (Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值, 即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-.当且仅当2()6k k Z παπ=+∈时,()d αP 的直角坐标为31(,)22. 【考点】1、椭圆的参数方程;2、直线的极坐标方程.23.选修4-5:不等式选讲已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|,g x x =-当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【答案】(Ⅰ){|13}x x -≤≤;(Ⅱ)[2,)+∞.【解析】试题分析:(Ⅰ)利用等价不等式|()|()h x a a h x a ≤⇔-≤≤,进而通过解不等式可求得;(Ⅱ)根据条件可首先将问题转化求解()()f x g x +的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于a 的不等式求解即可.试题解析:(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+≤,得13x -≤≤.因此,()6f x ≤的解集为{|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, 所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥. ①当1a ≤时,①等价于13a a -+≥,无解.当1a >时,①等价于13a a -+≥,解得2a ≥.所以a 的取值范围是[2,)+∞.【考点】1、绝对值不等式的解法;2、三角形绝对值不等式的应用.。
绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试文科数学模拟试题卷(一)注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上并在指定地方粘贴条形码。
2.做答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.做答第Ⅱ卷时,请按题号顺序在各题目规定的答题区域内做答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
4.保持答题卡面清洁,不得折叠、不要弄破、弄皱,不准用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. {}{}{}====C B A C B A )(7,3,5,4,2,6,4,2,1则已知集合( ) {}4,3,2.A {}7,4,3.B {}7,4,3,2.C {}7,4,3,2,1.D2. i 是虚数单位,则复数ii+-121的模为( ) 10.A 10.B 410.C 210.D 3. 已知双曲线)0,0(12222>>=-b a by a x 的虚轴长为4,焦距为10,则双曲线的渐近线方程为( )A . x y 43±= B. x y 34±= C. x y 21212±= D.x y 221±= 4. 《易经》是中国传统文化中的精髓,右图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为( )81.A 41.B83.C 21.D 5.设函数⎪⎩⎪⎨⎧≥<-+=-1,21),2(log 21)(12x x x x f x ,则=+-)2019(log )2(2f f ( ).A .1011B .1010C .1009D .10126.等差数列{}n a 中,已知,35,973==S S 则=5S ( )20.A 30.B 15.C 10.D7. 函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><其中的图像如图所示,则使()()0f x m f m x +--=成立的m 的最小正值为( ) A .125π B .3π C .6π D .12π8. 已知正三棱柱的三视图如图所示,若该几何体存在内切球,且与三棱柱的各面均相切,则x 为( )34.A 6.B 32.C3.D9. 下图是1990 年2017 年我国劳动年龄(1564- 岁)人口数量及其占总人口比重情况:根据图表信息,下列统计结论不正确的是( )A .2000 年我国劳动年龄人口数量及其占总人口比重的年增幅均为最大B .2010 年后我国人口数量开始呈现负增长态势C .2013 年我国劳动年龄人口数量达到峰值D .我国劳动年龄人口占总人口比重极差超过6%10. 在直三棱柱111C B A ABC -中,1=AB ,3,5,21===AA AC BC ,M 为线段1BB 上的动点,当1MC AM +最小时,1MC 与面ABC 所成的角的正弦值是 ( ).A22 23.B 54.C 53.D11. 若函数x x x f cos sin 2)(+=在],0[α上是增函数,当α取最大值时,α2sin 的值等于( )54.A 53.B 52.C 521.D 12. 已知函数()xf x e ax b =--,若()0f x ≥恒成立,则b a +2的最大值为( )A . 42+e B . 2e C . e D .2e第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 不等式组 所表示的平面区域的面积等于__________. 14.已知a ,b 均为单位向量,若23-=a b ,则a 与b 的夹角为 .15. 在ABC ∆中,c A b B a =-cos cos ,4=+c b ,则ABC ∆ 面积的最大值是_______.16.已知抛物线)0(22>=p px y 上有三个不同的点C B A ,,,抛物线的焦点为F ,且满足=++,若边BC 所在直线的方程为0204=-+y x ,则=p .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)已知数列{}n a 是等差数列,且81a =,1624S =.(1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 是递增的等比数列且149b b +=,238b b =, 求()()()()1133552121n n a b a b a b a b --++++++++图第8题图⎪⎩⎪⎨⎧≥≥--≤-+00102y y x y x18.(本小题满分12分)如图,在三棱柱ABC DEF -中,四边形ABED 是菱形,四边形ADFC 是正方形,AC AB ⊥,2AB =,60BAD ∠=︒,点G 为AB 的中点. (1)求证:BF ∥平面CDG ; (2)求点F 平面CDG 的距离.19.(本小题满分12分)某商店销售某海鲜,统计了春节前后50天该海鲜的需求量x (1020x ≤≤,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为y 元. (1)求商店日利润y 关于需求量x 的函数表达式;(2)假设同组中的每个数据用该组区间的中点值代替. ①求这50天商店销售该海鲜日利润的平均数; ②估计日利润在区间[]580,760内的概率.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的短轴长等于32,椭圆上的点到右焦点F 最远距离为3.(1)求椭圆C 的方程; (2)设O 为坐标原点,过F 的直线与C 交于A B 、两点(A B 、不在x 轴上),若OB OA OE +=,且E 在椭圆上,求四边形AOBE 面积.21.(本小题满分12分)已知函数1)(--=ax e x f x,)1ln()(+=x x g .(1)讨论)(x f 的单调性,并证明当1=a 时,0)(≥x f 恒成立.(2)若0,0≥>x a 时,0)()(≥+x g x f 恒成立,试求实数a 的取值范围.选考题:请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)已知直线:(x t l t y =⎧⎪⎨=⎪⎩为参数),曲线1cos :(sin x C y θθθ=⎧⎨=⎩为参数).(1)设l 与1C 相交于A ,B 两点,求||AB ;(2)若把曲线1C 上各点的横坐标压缩为原来的12倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 距离的最小值.23.(本小题满分10分)已知0>m ,函数|||2|)(m x m x x f ++-=的值域为),9[+∞.(1)求实数m 的值.(2)若函数)(x f 的图像恒在函数a x x x g ++-=4)(2图像的上方,求实数a 的值.2019年普通高等学校招生全国统一考试理科综合能力测试模拟试答案(一)命题:夷陵中学文科数学组 审题:夷陵中学文科数学组 一、选择题:CDCCD ADBBA AB 二、填空题:13.41 14.3π15.2 16.8 三、解答题:17.(1)由已知得12712153a d a d +=+=⎧⎨⎩,16a ∴=-,1d =......................................................................3分所以通项公式为()6117n a n n =-+-⋅=-.......................................................................................6分.(2)由已知得:141498b b b b ⋅+==⎧⎨⎩,又{}n b 是递增的等比数列,故解得11b =,48b =,所以2q =,12n n b -∴=........................................................................................................................8分. ∴()()()()1133552121n n a b a b a b a b --++++++++ ()()13211321n n a a a b b b --=+++++++()()16422814164n n -=---++-+++++()()2146284172143nn n n nn --+--=+=-+-.................................................................................12分.18.解:(1)连接AF ,与CD 交于点H ,连接GH , 则GH 为ABF △的中位线,所以BF GH ∥,又BF ⊄平面CDG ,GH ⊂平面CDG ,所以BF ∥平面CDG ....................................................5分(2)由点H 为AF 的中点,且点F ∉平面CDG 可知,点F 到平面CDG 的距离与点A 到平面CDG 的距离相等, 由四边形ADFC 是正方形,AC AB ⊥,可得CA 是三棱锥C ADG -的高,由题意得,2CA =,1AG =,DG ,DG AG ⊥,所以111232C ADG V -=⨯⨯⨯, 在CDG △中,DG,CG =,DG CG ⊥,设点A 到平面CDG 的距离为h ,则1132A CDG V h -=⨯=,由C ADG A CDG V V --==,h ==,所以点F 到平面CDG .............................................................................12分 19.解:(1)商店的日利润y 关于需求量x 的函数表达式为:()()50143014,1420501014,1014x x y x x x ⎧⨯+⨯-≤≤⎪=⎨-⨯-≤<⎪⎩,化简得30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩..............................3分 (2)①由频率分布直方图得:海鲜需求量在区间[)10,12的频率是20.080.16⨯=; 海鲜需求量在区间[)12,14的频率是20.120.24⨯=; 海鲜需求量在区间[)14,16的频率是20.150.30⨯=; 海鲜需求量在区间[)16,18的频率是20.100.20⨯=; 海鲜需求量在区间[]18,20的频率是20.050.10⨯=; 这50天商店销售该海鲜日利润y 的平均数为:()()()11601400.1613601400.2415302800.30⨯-⨯+⨯-⨯+⨯+⨯+()()17302800.2019302800.10⨯+⨯+⨯+⨯83.2153.621915885698.8=++++=........................8分②由于14x =时,30142806014140700⨯+=⨯-=, 显然30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩在区间[]10,20上单调递增,58060140y x ==-,得12x =;76030280y x ==+,得16x =;日利润y 在区间[]580,760内的概率即求海鲜需求量x 在区间[]12,16的频率:0.240.30+=.......................................................................................................................12分分,:此时直线分,故,化简得)()(点在椭圆上,所以因为分点坐标为故又的中点为故分,由根与系数的关系,得联立,,,,,的方程:设直线的斜率不为直线)(分的方程为:,椭圆,得)由题意,(四边形12.........................................................................3)23221(22110, (0012914)3631438418................................................).........436,438(,2)433,434(6.....................................................................................4394360.096)43(1341)()(1.0).0,1(24 (1341)3233221.20224222222222212212222*********=⨯⨯⨯=====+=+-⨯++⨯+-+==++-+⎪⎪⎩⎪⎪⎨⎧+-=+-=+>∆=-++⎪⎩⎪⎨⎧=++=+==+⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧+==+=∆AOE AOBE S S x AB m m m m m m E m m m E m m m N AB m y y m m y y my y m y x my x y x B y x A my x AB AB F y x C c b a c b a c a b 21.解析:(1)①由题知a e x f x-=)('.............................................................................................1分 若0≤a ,则0)('>-=a e x f x ,故)(x f 在R 上单调递增若0>a ,)ln ,(a x -∞∈时)(x f 单调递减,),(ln +∞∈a x )(x f 单调递增...........................4分 ②当1=a 时,)(x f 在),0(+∞∈x 上单调递增,故0)0()(=≥f x f 即证...............................5分(2)令1)()()(-+=x g x f x h ,a x e x h x -++=11)('..........................................................6分 当2≤a 时, 由(1)知1+≥x e x 恒成立,故0211111)('≥-≥-+++≥-++=a a x x a x e x h x ,所以)(x h 在),0(+∞∈x 上单调递增,从而0)0()(=≥h x h 恒成立,.................................................................................................................................9分 当2>a ,令)()('x h x =ϕ,因为0≥x 时,0)1(1)(2'≥+-=x e x xϕ,故)(x ϕ在),0(+∞∈x 上单调递增,而02)0('<-=a h ,0ln 1)(ln '>+=aa a h 故存在)ln ,0(0a x ∈,使得0)(0'=x h ,从而)(x h 在),0(0x 上单调递减,)ln ,(0a x 上单调递增,又,0)0(=h 0)(0<x h ,此时0)(≥x h 不成立,不合题意。
高考模拟考试 文科数学一、选择题1.已知集合 A ={x|-2≤x ≤3},函数 f (x )=ln (1-x )的定义域为集合 B ,则 A ∩B = A .[-2,1] B .[-2,1) C .[1,3] D .(1,3]2.若复数 z ,z 在复平面内的对应点关于虚轴对称,z =1+i ,则 1 2 1z 1z2A .iB .-iC .1D .-13.已知等差数列{a }的前 5 项和为 15,a =6,则 a =n 6 2019A .2017B .2018C .2019D .20204.已知命题 p :x ∈R ,x >0,则 p 是A . x ∈R ,x <0B . x ∈R ,x <0C . x ∈R ,x ≤0D . x ∈R ,x ≤0 5.七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图 形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写 道:近又有七巧图,其式五,其数七,其变化之式多至千余.在 18 世纪,七巧板流传到了 国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为A .1 1 1 1B .C .D .478166.已知某几何体的俯视图是如图所示的边长为 1 的正方形,正视图与侧视图都是边长为 1 的正三角形,则此几何体的体积是A .3 3 3B .C .63 2D .1 37.如图所示的函数图象,对应的函数解析式可能是2 2 2 2 2A.y=2-x2-1B.y=2xsinx C.yxln xD.y=(x-2x)e8.函数y sin2x6的图象可由函数y 3sin2x cos2x的图象A.向右平移个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得3到B.向右平移6个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到1C.向左平移个单位,再将所得图象上所有点的纵坐标缩短到原来的,横坐标不变得到32D.向左平移61个单位,再将所得图象上所有点的纵坐标缩短到原来的,横坐标不变得到29.在边长为1的等边三角形ABC中,点P是边AB上一点,且BP=2PA,则CP CBA.112B.C.323D.110.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为A.6πB.12πC.32πD.48π11.已知P为双曲线C:x2y21a2b2(a>0,b>0)上一点,F,F为双曲线C的左、右12焦点,若|PF|=|F F|,且直线PF与以C的实轴为直径的圆相切,则C的渐近线方程为1 1224335A.y x B.y x C.y x D.y x345312.已知函数f(x)=2x-1,g x a c os x 2,x≥0x22a,x 0(a∈R),若对任意x∈[1,+∞),1总存在x∈R,使f(x)=g(x),则实数a的取值范围是212A.,122B.,C.,121,2D.31,27二、填空题13.焦点在x轴上,短轴长等于16,离心率等于3 5x2x3,2 4的椭圆的标准方程为________.0≤ 2x y ≤ 6 14.若 x ,y 满足约束条件3 ≤ x y ≤ 6,则 z =x -2y 的最大值为________.15.设数列{a }满足 a ·2a ·3a ·…·n a =2n123n,则 a =________. n16.如图,边长为 1 的正方形 ABCD ,其中边 DA 在 x 轴上,点 D 与坐标原点重合,若正 方形沿 x 轴正向滚动,先以 A 为中心顺时针旋转,当 B 落在 x 轴上时,再以 B 为中心顺时 针旋转,如此继续,当正方形 ABCD 的某个顶点落在 x 轴上时,则以该顶点为中心顺时针 旋转.设顶点 C (x ,y )滚动时形成的曲线为 y =f (x ),则 f (2019)=________.三、解答题(一)必考题17.如图,在平面四边形 ABCD 中,AB 4 2 , BC 2 2,AC =4.(1)求 cos ∠BAC ; (2)若∠D =45°,∠BAD =90°,求 CD .18.如图,四棱锥M -ABCD 中,MB ⊥平面 ABCD ,四边形 ABCD 是矩形,AB =MB ,E 、 F 分别为 MA 、MC 的中点.(1)求证:平面 BEF ⊥平面 MAD ;(2)若BC 2 A B 2 3,求三棱锥 E -ABF 的体积.19.某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分n数不小于 70 时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各 100 件进行检测,其结果如下表:质量指标检测分数[50,60)[60,70)[70,80)[80,90)[90 ,100]甲班组生产的产品件数乙班组生产的产品件数7818124040293268(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率; (2)根据以上数据,完成下面的2×2 列联表,并判断是否有 95%的把握认为该种产品的质 量与生产产品的班组有关?甲班组乙班组合计合格品 次品 合计(3)若按合格与不合格的比例,从甲班组生产的产品中抽取 4 件产品,从乙班组生产的产 品中抽取 5 件产品,记事件 A :从上面 4 件甲班组生产的产品中随机抽取 2 件,且都是合格 品;事件 B :从上面 5 件乙班组生产的产品中随机抽取 2 件,一件是合格品,一件是次品, 试估计这两个事件哪一种情况发生的可能性大.附:K 2n ad bc 2a b c da cb dP (K ≥k )k0.0503.8410.0106.6350.00110.82820.已知抛物线 C :x =4y 的焦点为 F ,直线:y =kx +b (k ≠0)交抛物线 C 于 A 、B 两点, |AF|+|BF|=4,M (0,3).(1)若 AB 的中点为 T ,直线 MT 的斜率为 k',证明:k·k'为定值; (2)求△ABM 面积的最大值.21.已知函数 f (x )=xe -alnx (无理数 e =2.718…).(1)若 f (x )在(0,1)单调递减,求实数 a 的取值范围;(2)当 a =-1 时,设 g (x )=x (f (x )-xe )-x +x -b ,若函数 g (x )存在零点, 求实数 b 的最大值. (二)选考题22xx 3 222.在平面直角坐标系xOy中,曲线C的参数方程为x3cosy si n(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点M的极坐标为22,33,直线l的极坐标方程为sin4220.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若N是曲线C上的动点,P为线段MN的中点,求点P 到直线l的距离的最大值.23.已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.(1)求实数a的值;(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.高三文科数学参考答案一、选择题BBCDC ADDCB AC二、填空题13.x2y211006414.1015.2n16.0三、解答题17.解:(1)在△ABC中,由余弦定理得:cos BACAB2AC2BC2A B AC2321685224428.(2)因为∠DAC=90°-∠BAC,所以sin∠DAC=cos∠BAC=528,所以在△ACD中由正弦定理得:CD ACsin DAC sin45,CD452282,所以CD=5.18.证明:(1)因为MB⊥平面ABCD,所以MB⊥AD,又因为四边形ABCD是矩形,所以AD⊥AB,因为AB∩MB=B,所以AD⊥平面MAB,因为BE 平面MAB,所以AD⊥BE,又因为AB=MB,E为MA的中点,所以BE⊥MA,因为MA∩AD=A,所以BE⊥平面MAD,又因为BE 平面BEF,所以平面BEF⊥平面MAD.(2)因为AD∥BC,所以BC⊥面MAB,又因为F为MC的中点,所以F到面MAB的距离h 12BC 3,又因为MB⊥平面ABCD,AB=MB=3,E为MA的中点,所以S△A BE 1△ABM211333224,所以VE ABF VF ABE13SABE133h 3344.19.解:(1)根据表中数据,甲班组生产该产品的不合格率为71810025%,乙班组生产该产品的不合格率为81210020%;(2)列联表如下:合格品次品合计甲班组7525100乙班组8020100合计15545200K2200752080251001001554520.717 3.841.所以,没有95%的把握认为此种产品的产品质量与生产产品的班组有关.(3)由题意,若按合格与不合格的比例,则抽取了4件甲班组产品,5件乙班组产品,其中甲、乙班组抽取的产品中均含有1件次品,设这4件甲班组产品分别为A,A,A,D,123其中A,A,A代表合格品,D代表次品,从中随机抽取2件,则所有可能的情况为A A,1 2312A A,A D,A A,A D,A D共6种,A事件包含3种,故P A;1312323设这5件乙班组产品分别为B ,B,B,B,E,其中B,B,B,B代表合格品,E12341234代表次品,从中随机抽取2件,则所有可能的情况为B B,B B,B B,B E,B B,B B,12131412324 B E,B B,B E,B E共10种,B事件包含4种,故P B;23434因为P(A)>P(B),所以,事件A发生的可能性大一些.20.(1)证明:联立y kx bx24y,消去y得,x-4kx-4b=0,△=16k+16b>0,即k+b>0,设A(x,y),B(x,y),由韦达定理得x +x=4k,x x=-4b,11221212因为|AF|+|BF|=4,由抛物线定义得y+1+y+1=4,得y+y=2,1212所以AB的中点坐标为T(2k,1),所以k'311 02k k,所以k·k'=-1.(2)由(1)得|x-x|=(x+x)-4x x=16(k121212AB 1k 2x x 41k 2k 2b,12设点M到直线l距离为d,+b),则d |b 3|1k2,而由(1)知,y+y=kx+b+kx+b=k(x+x)+2b=4k1212122+2b=2,即2k+b=1,即b=1-2k,由△=16k+16b>0,得0<k<1,所以SABMA B d 41k 2k 2b22|b 3|1k241k 221k2,令t=k,0<t<1,f(t)=(1+t)(1-t)=1+t-t-t ,0<t<1,f'(t)=1-2t-3t=(t+1)(-3t+1),0t 13时,f'(t)>0,f(t)为增函数;13t 1122522222222221122232时,f'(t)<0,f (t)为减函数;当t1 32 , f t3max 27,所以,S 的最大值为 △ABM16 69.21.解:(1)f 'xxexe xax xexxxa,由题意:f'(x )≤0,x ∈(0,1)恒成立,即(x +x )e -a ≤0,也就是 a ≥(x +x )e x 在(0,1)上恒成立,设 h (x )=(x +x )e ,则 h'(x )=e (2x +1)+(x +x )e =e (x +3x +1), 当 x ∈(0,1)时,x +3x +1>0,故 h'(x )>0,h (x )在(0,1)单调递增, h (x )<h (1)=2e ,因此 a ≥2e .(2)当 a =-1 时,f (x )=xe +lnx , g (x )=xlnx -x +x -b ,由题意:问题等价于 方程 b =xlnx -x +x 在(0,+∞)上有解, 先证:lnx ≤x -1(x >0), 事实上:设 y =lnx -x +1,则1 y ' 1 x,令 1 x1 0 , x =1,x ∈(0,1)时,y'>0 函数递增,x ∈(1,+∞)时,y'<0 函数递减, x =y =0, max |x =1 即 y ≤0,也就是 lnx ≤x -1.由此:k (x )=xlnx -x +x ≤x (x -1)-x +x =2x -x -x =-x (x -2x +1)≤0, 故当 x =1 时,k (1)=0,所以 b 的最大值为 0.22.解:(1)因为直线 l 的极坐标方程为sinπ42 2 0,即ρsin θ-ρcosθ+4=0. 由 x =ρcos θ,y =ρsinθ,可得直线 l 的直角坐标方程为 x -y -4=0.x 3 cos将曲线 C 的参数方程y si n消去参数 a ,22 x22 xx 2 x x 22x3 23 23 2 3 2 2 3 2得曲线 C 的普通方程为x 23y 21.(2)设 N ( 3 cos ,sin α),α∈[0,2π).点 M 的极坐标( 2 2 ,3π 4),化为直角坐标为(-2,2).则P (3 1 cos 1, sin 221).所以点 P 到直线 l 的距离d|31 π cos sin 6 | | sin() 6 |22 3 227 2 2,所以当5π67 2 时,点 M 到直线 l 的距离的最大值为 .223.解:(1)由|ax -2|≤4 得-4≤ax -2≤4,即-2≤ax ≤6,当 a >0 时,222 6 ax ,所以,解得 a =1;a a 66 a当 a <0 时,62 xaa62a,所以26 a,无解.所以实数 a 的值为 1.2x 1x 1(2)由已知 g (x )=f (x )+f (x +3)=|x +1|+|x -2|=31x 2, 2 x 1x 2不等式 g (x )-tx ≤2 即 g (x )≤tx +2,由题意知 y =g (x )的图象有一部分在直线 y =tx +2 的下方,作出对应图象由图得,当t<0时,t≤k;当t>0 时,t≥k,AM BM1又因为k=-1,k ,BM所以t≤-1 或t 12,即t∈(-∞,-1]∪[12,+∞).2AM。
22019 届全国高考高三模拟考试卷数学(文)试题(一)(解析版)注意事项:1. 答题前, 先将自己的姓名、准考证号填写在试题卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑, 写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答: 用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4. 考试结束后, 请将本试题卷和答题卡一并上交。
一、选择题:本大题共 12 小题, 每小题 5 分, 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.[2019·深圳期末]已知集合 A = {x y = log (x 2-8x + 15)}, B = {x a < x < a + 1} ,若 A B = ∅ ,则 a 的取值范围是()A . (-∞, 3]B . (-∞, 4]C . (3, 4)D . [3, 4]2.[2019·广安期末]已知i 为虚数单位, a ∈ R ,若复数 z = a + (1 - a )i 的共轭复数 z 在复平面内对应的点位于第三象限,且 z ⋅ z = 5 ,则 z = ( )A . -1 + 2iB . -1 - 2iC . 2 - iD . -2 + 3i3.[2019·潍坊期末]我国古代著名的《周髀算经》中提到:凡八节二十四气,气损益九寸九分六分分之一; 冬至晷(gu ǐ) 长一丈三尺五寸,夏至晷长一尺六寸.意思是:一年有二十四个节气,每相邻两个节气之间的 日影长度差为99 1分;且“冬至”时日影长度最大,为 1350 分;“夏至”时日影长度最小,为 160 分.则“立春”6 时日影长度为()A . 9531分B .1052 1分C .11512分D .1250 5分32 36页1 第3 0.24.[2019·恩施质检]在区间[-2, 7]上随机选取一个实数 x ,则事件“ log 2 x - 1 ≥ 0 ”发生的概率是()A.13B.59C.79D.895.[2019·华阴期末]若双曲线 mx 2 - y 2 = 1(m > 0) 的一条渐近线与直线 y = -2x 垂直,则此双曲线的离心率为()A .2B .5C .D . 26.[2019·赣州期末]如图所示,某空间几何体的正视图和侧视图都是边长为2 的正方形,俯视图是四分之三圆,则该几何体的体积为()A.π4B.π 2C. 3π4D. 3π27.[2019·合肥质检]函数 f ( x ) = x 2 + x sin x 的图象大致为()A .B .C .D . 8.[2019·江西联考]已知 a = 1.10.2 , b = log 1.1, c = 0.21.1 ,则( )A. a > b > cB. b > c > aC. a > c > bD. c > a > b9.[2019·汕尾质检]如图所示的程序框图设计的是求100a 99 + 99a 98 +⋯+ 3a 2 + 2a + 1 的一种算法,在空白的“ ”中应填的执行语句是( )52A . n = 100 + iB . n = 99 - iC . n = 100 - iD . n = 99 + i10.[2019·鹰潭质检]如图所示,过抛物线 y 2 = 2 px ( p > 0) 的焦点 F 的直线l ,交抛物线于点 A , B .交其准线l 于点C,若 BC = BF ,且 AF = + 1 ,则此抛物线的方程为( )A.y 2 = 2x B. y 2 = 2x C. y 2 = 3xD. y 2 = 3x11.[2019·陕西联考]将函数 y = sin ⎛ 2x + π ⎫ 的图象向右平移 π 个单位,在向上平移一个单位,得到 g ( x ) 的6 ⎪ 3 ⎝ ⎭ 图象.若 g ( x 1 ) g ( x 2 ) = 4 ,且 x 1 , x 2 ∈[-2π, 2π] ,则 x 1 - 2x 2 的最大值为()A.9π2B.7π 2C.5π 2 D. 3π 212.[2019·菏泽期末]如图所示,正方体 ABCD - A 'B 'C 'D ' 的棱长为 1, E , F 分别是棱 AA ' , CC ' 的中点, 过直线 E , F 的平面分别与棱 BB ' 、 DD ' 交于 M , N ,设 BM = x , x ∈[0,1] ,给出以下四个命题: ①平面 MENF ⊥ 平面 BDD 'B ' ;②当且仅当 x = 1时,四边形 MENF 的面积最小;2 ③四边形 MENF 周长 L = f ( x ) , x ∈[0,1] 是单调函数; ④四棱锥C ' - MENF 的体积V = h ( x ) 为常函数; 以上命题中假命题的序号为()213 7A .①④B .②C .③D .③④二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分.13.[2019·西安一模]已知向量a 与b 的夹角为60︒ , a = 3 , a + b = ,则 b =.14.[2019·醴陵一中]某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.则该小组人数的最小值为.15.[2019·广安一诊]某车间租赁甲、乙两种设备生产 A ,B 两类产品,甲种设备每天能生产 A 类产品 8 件和B 类产品 15 件,乙种设备每天能生产 A 类产品 10 件和B 类产品 25 件,已知设备甲每天的租赁费 300 元, 设备乙每天的租赁费 400 元,现车间至少要生产 A 类产品 100 件,B 类产品 200 件,所需租赁费最少为元.16.[2019·哈三中]设数列{a n } 的前 n 项和为 S n , a n +1 + a n = 2n + 1 , a 2 < 2 ,且 S n = 2019 ,则 n 的最大值为.三、解答题: 本大题共 6 大题, 共 70 分, 解答应写出文字说明、证明过程或演算步骤. 17.(12 分)[2019·濮阳期末]已知△ABC 的内角 A , B , C 所对的边分别为 a , b , c ,且c (1 + cos A ) = 3a sin C .(1) 求角 A 的大小;(2) 若 a = , b = 1 ,求△ABC 的面积.218.(12 分)[2019·揭阳一模]如图,在四边形 ABED 中, AB ∥DE , AB ⊥ BE ,点C 在 AB 上,且 AB ⊥ CD ,AC = BC = CD = 2 ,现将△ACD 沿CD 折起,使点 A 到达点 P 的位置,且 PE = 2 .(1) 求证:平面 PBC ⊥ 平面 DEBC ; (2) 求三棱锥 P - EBC 的体积.19.(12 分)[2019·合肥质检]为了了解 A 地区足球特色学校的发展状况,某调查机构得到如下统计数据:年份 x20142015201620172018足球特色学校 y (百个)0.300.601.001.401.70i(1) 根据上表数据,计算 y 与 x 的相关系数 r ,并说明 y 与 x 的线性相关性强弱(已知: 0.75≤ r ≤ 1,则认为 y 与 x 线性相关性很强; 0.3 ≤ r < 0.75 ,则认为 y 与 x 线性相关性一般; r ≤ 0.25 ,则认为 y 与 x 线性相关性较弱);(2) 求 y 关于 x 的线性回归方程,并预测 A 地区 2019 年足球特色学校的个数(精确到个)∑n( x - x )( y - y )nn参考公式: r =i =1 , ∑( x - x )2= 10 , ∑( y - y )2= 1.3 , ≈ 3.6056 ,b ˆ =ni =1( x i - x )( y i- y) , a ˆ = y - b ˆx .i i =1 ii =1n i =1 ( x - x )220.(12 分)[2019·鹰潭期末]已知椭圆C 的方程为 x 2 + y 2= 1(a > b > 0) , F , F 为椭圆C 的左右焦点,离a 2b 21 2心率为 2,短轴长为 2.2(1) 求椭圆C 的方程;(2) 如图,椭圆C 的内接平行四边形 ABCD 的一组对边分别过椭圆的焦点 F 1 , F 2 ,求该平行四边形 ABCD面积的最大值.∑ in( ) 2∑ in( )2i =1x - x i =1y - y 13 ∑ ∑21.(12 分)[2019·豫西名校]已知函数f (x)=a ln x +x2-ax (a ∈R ).(1)若x = 3 是f (x)的极值点,求f (x)的单调区间;(2)求g (x)=f (x)- 2x 在区间[1, e]上的最小值h (a).3请考生在 22、23 两题中任选一题作答, 如果多做, 则按所做的第一题记分. 22.(10 分)【选修 4-4:坐标系与参数方程】[2019·哈三中]已知曲线C 1 : x +3y = 和C 2 ⎧⎪x = ⎨⎪⎩ y = 6 cos,( 2 sin为参数).以原点O 为极点, x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1) 把曲线C 1 和C 2 的方程化为极坐标方程;(2) 设C 1 与 x , y 轴交于 M , N 两点,且线段 MN 的中点为 P .若射线OP 与C 1 , C 2 交于 P , Q 两点,求 P , Q 两点间的距离.23.(10 分)【选修 4-5:不等式选讲】[2019·江南十校]设函数 f ( x ) = lg ( 2x - 1 + 2 x + 1 - a ) . (1) 当 a = 4 时,求函数 f ( x ) 的定义域; (2) 若函数 f (x ) 的定义域为 R ,求 a 的取值范围.:22 + 12 5 2 2y 2019 届高三第三次模拟考试卷文 科 数 学(一)答 案一、选择题:本大题共 12 小题, 每小题 5 分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.【答案】D【解析】由题意,集合 A = {x y = log (x 2 - 8x + 15)} = {x x 2- 8x + 15 > 0} = {x x < 3或x > 5},B = {x a < x < a + 1} ;若 A B = ∅ ,则3 ≤ a 且 a + 1 ≤ 5 ,解得3 ≤ a ≤ 4 ,∴实数 a 的取值范围为[3, 4] .故选 D . 2.【答案】A【解析】由 z ⋅ z = 5 可得 a 2 + (1 - a )2= 5 ,解得 a = -1 或 a = 2 ,∴ z = -1 + 2i 或 z = 2 - i , ∵ z 在复平面内对应的点位于第三象限,∴ z = -1 + 2i .故选 A . 3.【答案】B【解析】一年有二十四个节气,每相邻两个节气之间的日影长度差为99 1分,6 且“冬至”时日影长度最大,为 1350 分;“夏至”时日影长度最小,为 160 分. ∴1350 + 12d = 160 ,解得 d = -1190, 12∴“立春”时日影长度为:1350 + ⎛ - 1190 ⎫⨯ 3 = 1052 1 (分).故选 B .12 ⎪ 2 ⎝ ⎭ 4. 【答案】B【解析】区间[-2, 7]的长度为7 - (-2) = 9 ;由log 2 x - 1 ≥ 0 ,解得 x ≥ 2 ,即 x ∈[2, 7] ,区间长度为7 - 2 = 5 ,事件“ log 25. 【答案】Bx - 1 ≥ 0 ”发生的概率是 P = 5.故选 B .9【解析】设双曲线 mx2- y 2= 1(m > 0) 为 x 2- 2a = 1 ,它的一条渐近线方程为 y = 1 x , a直线 y = -2x 的斜率为-2 ,∵直线 y = 1 x 与 y = -2x 垂直,∴ 1 ⨯ (-2) = -1 ,即 a = 2 ,∴ e = c= = .故选 B . a a a 2 26. 【答案】D【解析】由三视图可知,该几何体是底面半径为1 、高为2 的圆柱的 3,42 2 2 2 CF20.2 0.2∴该几何体的体积为 3 ⨯ π ⨯12 ⨯ 2 = 3π.故选 D .4 27. 【答案】A【解析】∵ f (-x ) = x 2 - x sin (-x ) = x 2 + x sin x = f ( x ) ,∴ f ( x ) 为偶函数,选项 B 错误, f ( x ) = x 2 + x sin x = x ( x + sin x ) ,令 g ( x ) = x + sin x ,则 g '( x ) = 1 + cos x ≥ 0 恒成立, ∴ g (x ) 是单调递增函数,则当 x > 0 时, g ( x ) > g (0) = 0 , 故 x > 0 时, f (x ) = xg ( x ) , f '( x ) = g ( x ) + xg '( x ) > 0 , 即 f (x ) 在(0, +∞) 上单调递增,故选 A . 8. 【答案】C【解析】 a = 1.10.2 > 1.10 = 1 , b = log 1.1 < log 1 = 0 , 0 < c = 0.21.1 < 0.20 = 1,故 a > c > b .故选 C . 9.【答案】C【解析】由题意, n 的值为多项式的系数,由 100,99 直到 1,由程序框图可知,输出框中“ ”处应该填入 n = 100 - i .故选C . 10.【答案】A【解析】如图,过 A 作 AD 垂直于抛物线的准线,垂足为 D ,过 B 作 BE 垂直于抛物线的准线,垂足为 E , P 为准线与 x 轴的交点,由抛物线的定义, BF = BE , AF = AD = + 1,∵ BC = BF ,∴ BC = BE ,∴ ∠DCA = 45︒ ,∴ AC = AD = 2 + , CF = 2 + - - 1 = 1 ,∴ PF = = 2 , 即 p = PF = 2 2 ,∴抛物线的方程为 y 2 = 2 2x ,故选 A . 1. 【答案】D2 2 2【解析】将函数 y = sin ⎛2x + π ⎫ 的图象向右平移 π 个单位,再向上平移一个单位,6 ⎪ 3 ⎝ ⎭ 得到 g ( x ) = sin ⎛ 2x - 2π + π ⎫+ 1 = -cos 2x + 1的图象,故 g ( x ) 的最大值为 2,最小值为 0,3 6 ⎪ ⎝ ⎭ 若 g (x 1 ) g ( x 2 ) = 4 ,则 g ( x 1 ) = g ( x 2 ) = 2 ,或 g ( x 1 ) = g ( x 2 ) = -2 (舍去).故有 g (x 1 ) = g ( x 2 ) = 2 ,即cos 2x 1 = cos 2x 2 = -1 , 又 x , x ∈[-2π, 2π] ,则2x = π , 2x = -π ,则 x - 2x 取得最大值为 π + π = 3π.故选 D .1 2 1 2 1 22 212. 【答案】C【解析】①连结 BD , B 'D ' ,则由正方体的性质可知, EF ⊥ 平面 BDD 'B ' , ∴平面 MENF ⊥ 平面 BDD 'B ' ,∴①正确;②连结 MN ,∵ EF ⊥ 平面 BDD 'B ' ,∴ EF ⊥ MN ,四边形 MENF 的对角线 EF 是固定的, ∴要使面积最小,则只需 MN 的长度最小即可,此时当 M 为棱的中点时,即 x = 1时,此时 MN 长度最小,对应四边形 MENF 的面积最小,∴②正确;2③∵ EF ⊥ MN ,∴四边形 MENF 是菱形,当 x ∈ ⎡0, 1 ⎤时, EM 的长度由大变小,⎣⎢ 2 ⎥⎦ 当 x ∈ ⎡ 1 ,1⎤时, EM 的长度由小变大,∴函数 L = f ( x ) 不单调,∴③错误;⎢⎣ 2 ⎥⎦ ④连结C 'E , C 'M , C 'N ,则四棱锥可分割为两个小三棱锥,它们以C 'EF 为底,以 M , N 分别为顶点的两个小棱锥,∵三角形C ' EF 的面积是个常数, M , N 到平面C ' EF 的距离是个常数, ∴四棱锥C ' - MENF 的体积V = h ( x ) 为常函数,∴④正确, ∴四个命题中③假命题,故选 C .二、填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分.13. 【答案】1【解析】根据题意,设 b = t , (t > 0) ,向量a 与b 的夹角为60︒ , a = 3 ,则a ⋅ b = 3t ,2⎨ ⎩⎨又由 a+ b = ,则(a + b )2= a 2 + 2a ⋅ b + b 2 = 9 + 3t + t 2 = 13 ,变形可得: t 2 + 3t - 4 = 0 ,解可得t = -4 或 1, 又由t > 0 ,则t = 1 ;故答案为 1.14. 【答案】12【解析】设男学生人生为 x ,女学生人数为 y ,教师人数为 z ,且 x , y , z ∈ N * , 则2z > x > y > z ,当 z = 1 时, 2 > x > y > 1 不成立;当 z = 2 时, 4 > x > y > 2 不成立; 当 z = 3 时, 6 > x > y > 3 ,则 x = 5 , y = 4 ,此时该小组的人数最小为 12.15. 【答案】3800【解析】设甲种设备需要生产 x 天,乙种设备需要生产 y 天, 该公司所需租赁费为 z 元,则 z = 300x + 400 y ,⎧4x + 5 y ≥ 50甲、乙两种设备生产 A ,B 两类产品的情况为⎪3x + 5 y ≥ 40 ,做出不等式表示的平面区域,⎪x ∈ N , y ∈ N由⎧4x + 5 y = 50,解得(10, 2) ,⎩3x + 5 y = 40当 z = 300x + 400 y 经过的交点(10, 2) 时,目标函数 z = 300x + 400 y 取得最低为 3800 元. 故答案为3800 .16. 【答案】63【解析】数列{a n - n } 是以-1 为公比,以 a 1- 1为首项的等比数列,n (n + 1)1 - (-1)n数列{a n - n } 的前 n 项和为 S n - (1 + 2 +⋯+ n ) = S n - = (a 1 - 1) ⋅ ,2 2137 3 n (n + 1)1 - (-1)nn (n + 1)S n = (a 1 - 1) ⋅ + ,2 2n (n + 1)当 n 为偶数时, S n == 2019 ,无解; 2n (n + 1) n (n + 1)当 n 为奇数时,由 S n = + (a 1 - 1) = 2019 ,可得 a 1 = 2020 - ,2 2 由 a n +1 + a n = 2n + 1 可得 a 2 + a 1 =3 , a 1 = 3 - a 2 ,∵ a 2 < 2 ,∴ a 1 > 1 ,即 a 1 = 2020 - > 1 ⇒ n (n + 1) < 4038 ,2结合 n ∈ N ,可得 n ≤ 63 ,∴使得 S n = 2019 的 n 的最大值为63 ,故答案为63 .三、解答题: 本大题共 6 大题, 共 70 分, 解答应写出文字说明、证明过程或演算步骤.17.【答案】(1) A = π;(2) S = 3 3 .3 4 【解析】(1)∵ c (1 + cos A ) = 3a sin C ,由正弦定理可得sin C (1 + cos A ) = 3sin A sin C ,即 3 sin A - cos A = 1 ,∴ sin ⎛A - π ⎫ = 1 , A 是△ABC 的内角,∴ A - π = π ,∴ A = π . 6 ⎪ 2 6 63 ⎝ ⎭ (2)∵ a = , b = 1 .由余弦定理可得 a 2 = b 2 + c 2 - 2bc cos A , 即1 + c 2 - c = 7 ,可得c 2 - c - 6 = 0 ,又c > 0 ,∴ c = 3 ,∴△ABC 的面积 S = 1 bc sin A = 1⨯1⨯ 3 ⨯3 = 3 3 .18.【答案】(1)见解析;(2) 2 2 2 4.【解析】(1)证明:∵ AB ⊥ BE , AB ⊥ CD ,∴ BE ∥CD , ∵ AC ⊥ CD ,∴ PC ⊥ CD ,∴ PC ⊥ BE , 又 BC ⊥ BE , PC BC = C ,∴ EB ⊥ 平面 PBC , 又∵ EB ⊂ 平面 DEBC ,∴平面 PBC ⊥ 平面 DEBC ; (2)解法 1:∵ AB ∥DE ,结合CD ∥EB 得 BE = CD = 2 ,由(1)知 EB ⊥ 平面 PBC ,∴ EB ⊥ PB ,由 PE = 2 得 PB = = 2 ,∴△PBC 为等边三角形,∴ S △PBC = 3 ⨯ 22 = ,4∴V= V= 1 S ⋅ EB = 1 ⨯ 3 ⨯ 2 = 2 3, P - EBCE - PBC3 △PBC 3 32 3 3 2 PE 2 - EB 23 3 2 2 2 2 ∑ i y y + 2 解法 2:∵ AB ∥DE ,结合CD ∥EB 得 BE = CD = 2 , 由(1)知 EB ⊥ 平面 PBC ,∴ EB ⊥ PB ,由 PE = 2 ,得 PB = = 2 ,∴△PBC 为等边三角形,取 BC 的中点O ,连结OP ,则 PO = ,∵ PO ⊥ BC ,∴ PO ⊥ 平面 EBCD ,∴V = 1 S ⋅ PO = 1 ⨯ 1 ⨯ 22 ⨯ = 2 3.P - EBC3 △EBC 3 2 319.【答案】(1)相关性很强;(2) yˆ = 0.36x - 724.76 ,208 个.【解析】(1) x = 2016 , y = 1,nr =i =1 x i - x )(y i - y )=(-2) ⨯ (-0.7) + (-1) ⨯ (-0.4) + 1⨯ 0.4 + 2 ⨯ 0.7 =3.6> 0.75 , 10 ⋅ 3.6056∴ y 与 x 线性相关性很强.(2) b ˆ = ni =1( x i - x )( y i - y ) = (-2) ⨯ (-0.7) + (-1) ⨯ (-0.4) + 1⨯ 0.4 + 2 ⨯ 0.7 = 0.36 , n i =1 ( x - x )24 + 1 + 0 + 1 + 4a ˆ = y -b ˆx = 1 - 2016 ⨯ 0.36 = -724.76 ,∴ y 关于 x 的线性回归方程是 y ˆ = 0.36x - 724.76 . 当 x = 2019 时, y ˆ = 0.36x - 724.76 = 2.08 (百个),即 A 地区 2019 年足球特色学校的个数为 208 个.20.【答案】(1) x 2 + 22= 1 ;(2)2 . 【解析】(1)依题意得2b = 2 , e = c = a 2,解得 a = , b = c = 1 ,2∴椭圆C 的方程为 x 2 + 22= 1 .(2)当 AD 所在直线与 x 轴垂直时,则 AD 所在直线方程为 x = 1 ,联立 x y 22 = 1 ,解得 y = ± ,此时平行四边形 ABCD 的面积 S = 2 ;2当 AD 所在的直线斜率存在时,设直线方程为 y = k ( x - 1) ,x 2 + 22 2 2 2 联立 y 2= 1 ,得(1 + 2k ) x - 4k x + 2k 4k 2- 2 = 0 ,2k 2 - 2 设 A ( x 1, y 1 ) , D ( x 2 , y 2 ) ,则 x 1 + x 2 = 1 + 2k 2 , x 1 x 2 = , 1 + 2k 22 PE 2 - EB 2 ∑ i n( ) 2∑ in( )2i =1x - x i =1y - y 1.3∑ ∑1 + k 2x + x - x x ( )21 2 1 2 (1 + k 2 )k 2 2 (1 + 2k 2 )2t + 1 ⨯ t - 12 2 t 22 ( ) t( ) 2 2 2 ⎢ ⎭ ⎝则 AD = = 2 2 (k 2 + 1) = 1 + 2k 2 ,两条平行线间的距离 d = -2k, 1 + k 22 2 k 2 + 1 则平行四边形 ABCD 的面积 S = ⋅ 1 + 2k 2 -2k = 4 ,1 + k 2令t = 1 + 2k 2 , t > 1 ,则 S = 4 2 ⨯ = 2, 1 ∈(0,1) , t 开口向下,关于1单调递减,则S = (0, 2 2 ),综上所述,平行四边形 ABCD 的面积的最大值为2 .21.【答案】(1) f (x ) 的单调递增区间为⎛ 0, 3 ⎫ , (3, +∞) ,单调递减区间为⎛ 3 , 3⎫; 2 ⎪ 2 ⎪⎧-a - 1, ⎝ ⎭ ⎝ ⎭ a ≤ 2(2) h (a ) ⎪ = ⎪a ln a - 1 a 2 - a , 2 < a < 2e . min⎨ ⎪ 2 4 ⎪⎩(1 - e )a + e 2 - 2e, a ≥ 2e ' a2x 2 - ax + a【解析】(1) f ( x ) 的定义域为(0, +∞) , f ( x ) = + 2x - a = , x x ∵ x = 3 是 f ( x ) 的极值点,∴ f '(3) = 18 - 3a + a= 0 ,解得 a = 9 ,3∴ f ' 2x 2 - 9x + 9 x == (2x - 3)( x - 3) , x x 当0 < x < 3 或 x > 3 时, f '( x ) > 0 ;当 3< x < 3 时, f '( x ) < 0 .2 2∴ f ( x ) 的单调递增区间为⎛ 0, 3 ⎫ , (3, +∞) ,单调递减区间为⎛ 3 , 3⎫.2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭2' 2x 2 - ax + a (2x - a )( x - 1) (2) g ( x ) = a ln x + x - ax - 2x ,则g ( x ) = - 2 = , x x令 g '( x ) = 0 ,得 x = a 或 x = 1 . 2 ①当 a≤ 1 ,即 a ≤ 2 时, g ( x ) 在[1, e ] 上为增函数, h (a ) 2min= g (1) = -a - 1 ;②当1 < a < e ,即2 < a < 2e 时, g ( x ) 在⎡1, a ⎫ 上单调递减,在⎛ a , e ⎤上单调递增,∴ h (a ) 2 ⎣ ⎪ = g ⎛ a ⎫ = a ln a - 1 a 2 - a ;⎥⎦ min⎪ ⎝⎭ 2 4 ③当 a≥ e ,即 a ≥ 2e 时, g ( x ) 在[1, e ] 上为减函数,∴ h (a ) 2min= g (e ) = (1 - e ) a + e 2 - 2e .1 + k2 ⎛ 4k 2 ⎫28k 2 - 8 ⎝ 1 + 2k 2 ⎭1 + 2k2 ⎪ - 2 1 - t ⎪ ⎛ 1 ⎫2 ⎝ ⎭3 + =⎧-a - 1, a ≤ 2综上, h (a ) ⎪ = ⎪a ln a - 1 a 2 - a , 2 < a < 2e .min⎨ ⎪ 2 4 ⎪⎩(1 - e )a + e 2 - 2e, a ≥ 2e请考生在 22、23 两题中任选一题作答, 如果多做, 则按所做的第一题记分.22.【答案】(1) C : sin ⎛+ π ⎫=3 , C: 2 =6;(2)1.1 6 ⎪221 + 2sin 2⎝ ⎭【解析】(1)∵ C 的参数方程为⎧⎪x =6 cos为参数),∴其普通方程为2x 2 y 21 ,6 2 ⎨ ⎪⎩ y = ,( 2 sin又C 1 : x + 3y = ,∴可得极坐标方程分别为C : sin ⎛+ π ⎫=3 , C: 2 =6.1 6 ⎪221 + 2sin 2(2)∵ M( ⎝ ⎭3, 0) , N (0,1) ,∴ P ⎛ 3 , 1 ⎫,∴ OP 的极坐标方程为= π, 2 2 ⎪ 6⎝⎭把= π 代入sin ⎛+ π ⎫ = 3 得 = 1, P ⎛1, π ⎫, 6 6 ⎪ 2 1 6⎪ ⎝ ⎭ ⎝ ⎭把= π 代入 2 = 6 得 = 2 ,Q ⎛ 2, π ⎫ , 6 1 + 2sin 2 26 ⎪ ⎝ ⎭ ∴ PQ = 2 - 1 = 1,即 P , Q 两点间的距离为1 .23.【答案】(1) ⎛ -∞, - 5 ⎫ ⎛ 3 , +∞⎫;(2) a < 3 .4 ⎪ 4 ⎪ ⎝ ⎭ ⎝ ⎭【解析】(1)当 a = 4 时, f ( x ) 定义域基本要求为 2x - 1 + 2 x + 1 > 4 , 当 x ≤ -1 时,1 - 2x - 2x - 2 > 4 ⇒ x < - 5;4当-1 < x < 1时,1 - 2x + 2x + 2 > 4 ,无解;2 当 x ≥ 1 时, 2x - 1 + 2x + 2 > 4 ⇒ x >3 ,2 4综上: f ( x ) 的定义域为⎛ -∞, - 5 ⎫ ⎛ 3 , +∞⎫;4 ⎪ 4 ⎪ ⎝ ⎭ ⎝ ⎭(2)由题意得 2x - 1 + 2 x + 1 > a 恒成立⇒ a < ( 2x - 1 + 2 x + 1 )min ,( 2x - 1 + 2 x + 1 )min= 2x - 1 + 2x + 2 ≥ (2x - 1) - (2x + 2) = 3 ,∴a 3 .。