最新版初三中考数学模拟试卷易错题及答案3414208
- 格式:doc
- 大小:619.00 KB
- 文档页数:17
2024年重庆一中中考数学三模试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是()A.8B.C.D.2.下列图形是中心对称图形的是()A. B.C. D.3.如图,已知直线,,,则的度数为()A.B.C.D.4.若反比例函数的图象经过第一、三象限,则k的取值范围是()A. B. C. D.5.如图,与是以点O为位似中心的位似图形,若,的面积为1,则的面积为()A.1B.2C.4D.86.的值在()A.和0之间B.0和1之间C.1和2之在D.2和3之间7.如图,用同样大小的棋子按以下规律摆放,第1个图有6颗棋子,第2个图有9颗棋子…那么,第9个图中的棋子数是()A.27B.30C.35D.388.如图,AB、AC是的切线,B、C为切点,D是上一点,连接BD、CD,若,,则的半径长为()A.B.C.3D.9.如图,在正方形ABCD中,点E在对角线BD上,过点D作且,连接EF,点G是EF的中点,连接AG、若,则一定等于()A.B.C.D.10.将所有字母均不为中的任意两个字母对调位置,称为“对调操作”.例如:“x、y对调操作”的结果为,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则或;③若,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:本题共8小题,每小题4分,共32分。
11.计算:______.12.如图,正六边形ABCDEF中,连接CF,那么的度数为______.13.一个口袋中有2个红球,1个黄球,1个白球,这些球除颜色外都相同,从中随机摸出一个球.记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率为______.14.电视剧《与凤行》播出第一天网上播放量达到亿次,以后每天的播放量按照相同的增长率增长,第三天播放量当日达到亿次,设平均每天的增长率是x,根据题意,可列方程为______.15.如图,在菱形ABCD中,连接AC,以点A为圆心,AB为半径的圆交AC于点E,以点C为圆心,CD为半径的圆交AC于点F,如果,,那么图中阴影部分的面积为______结果保留16.如图,将线段AB绕点A顺时针旋转一定的角度到AC,点D为线段AB上一点,连接CD并延长到点E,连接AE、BE,过点A作交BE的延长线于点F,如果,,,那么的面积是______.17.若关于x的一元一次不等式组有且只有两个偶数解,且关于y的分式方程有整数解,则所有满足条件的整数a的值之和是______.18.如果一个四位数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数S为“胜利数”.将“胜利数”S的千位数字与十位数字对调后,再将这个四位数的百位去掉,这样得到的三位数记为,记,例如:四位数1729,,不是“胜利数”,又如:四位数5432,,是“胜利数”,若能被7整除,令,则所有满足条件的t之和是______;若对于“胜利数”S,在能被7整除的情况下,记,则当取得最大值时,“胜利数”S是______.三、解答题:本题共8小题,共78分。
九年级数学中考模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中, 只有一项是符合题目要求,请将正确选项前的字母代号填写在答题卡相应位置.......上) 1.-32的相反数为 ( )A .9B .-9C .-6D .62.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是 ( )3.下列运算正确的是 ()A .x 2+x 4=x 6B .x 2·x 3=x 6C .(x 3) 3=x 6D .25+35=5 5 4.下列说法不正确的是 ( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 5.如图是一个三视图,则此三视图所对应的直观图是 ()6.将一副三角板按图中的方式叠放,则角 等于 ( ) A .75 B .60 C .45 D .307. 如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为 ( )A .22B .2C .1D .2A .B .C .D . A .B .C .D .第6题NMBA第10题图P O8. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ( ) ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①④B. ①③④C. ①②④D. ①②③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 因式分解:x 3y -xy 3= .10. 中国旅游研究院发布的2011年“五一”小长假旅游人气排行报告显示,江苏接待游客总人数约为1817.1万人次,1817.1万人次用科学计数法表示为 人次. 11. 函数y =3-x x 中自变量x 的取值范围是__________.12. 函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是__________. 13.已知一个圆锥的底面直径是6cm 、母线长8cm ,求得它的表面积为 cm 2.14. 如果两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,则较大三角形的周长为__________cm . 15. 有一组数据如下: 3, a, 4, 6, 7. 它们的平均数是5,那么这组数据的方差_________. 16. 直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.17.如图,ABC ∆内接于⊙O ,90,B AB BC ∠==,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知4=AB ,1=CP ,Q 是线第7题第17题段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQQR的值为_______________.18. 如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)先化简,再求值: x x x x x 2444222+-÷⎪⎪⎭⎫ ⎝⎛-+,其中1-=x .20. (8分)在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点A B C '''△是由格点ABC △通过怎样变换得到的?(2) 如果建立直角坐标系后,点A 的坐标为(5-,2),点B 的坐标为(50)-,,请求出过A 点的正比例函数的解析式,并写出图中格点DEF △各顶点的坐标.各班种树情况70405010203040506070801234班级种树棵数21. (8分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.22. (10分)红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题:(1)这四个班共种树__________棵树. (2)请你补全两幅统计图.(3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?甲 乙 丙 丁各班种树棵树的百分比 甲 35% 丁 丙乙 20%A BDO C H 23. (10分)如图,AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H . (1)如果O 的半径为4,143CD =,求BAC ∠的度数;(2)在(1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明理由.24. (10分)某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD 是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米, ∠DCF=40°.请计算停车位所占道路的宽度EF (结果精确到0.1米). 参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84.25. (10分)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B 地,乙车从B地直达A地,下图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米?26. (10分)如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).27. (12分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.28.(12分)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,2),∠BCO=60°,OH⊥BC于点H.动点P从点C在x轴正半轴上,点B坐标为(2,3点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.答案选择题:1A 2. C 3.D 4. D 5B 6. A 7.B 8. C 填空题 9 xy(x+y)(x-y) 10 1.8171710⨯ 11 x>3 12 k>1 13 33π 14 25 15 2 16 16073 17 1或1312 185+12解答题:19. 解:原式)2()2)(2(442+-+÷-+=x x x x x x x )2)(2()2()2(2-++⋅-=x x x x x x 2-=x …………………4分 当1-=x 时,321-=--=原式.…………………6分20. 1)格点△A ′B ′C ′是由格点△ABC 先绕B 点逆时针旋转90,然后向右平移13个长度单位(或格)得到的.(先平移后旋转也行)…………………3分(2)设过A 点的正比例函数解析式为y =kx , 将A (-5,2)代入上式得 2=-5k , k =-52. ∴过A 点的正比例函数的解析式为:x y 52-= …………………5分 △DEF 各顶点的坐标为:D (2,-4),E (0,-8),F (7,-7). …………………8分21.(1)ABOCH列表如下:树状图………………… 4分(2)数字之和分别为:2,4,7,4,6,9,7,9,12.算术平方根分别是:2,2,7,2,6,3,7,3,23 设两数字之和的算术平方根为无理数是事件A ∴5()9P A……………………………8分22. (1)200 ………………………………2分(2)如图 ………………………………8分(3)90%×2000=1800(棵) 答:成活1800棵树. ………………10分 23. 解:解:(1)∵ AB 为⊙O 的直径,CD ⊥AB ∴ CH =21CD =23 在Rt △COH 中,sin ∠COH =OC CH =23∴ ∠COH =60° ∵ OA =OC ∴∠BAC =21∠COH =30° …………………5分 (2)圆周上到直线AC 的距离为3的点有2个.各班种树棵树的百分比甲35%丁25%丙20%乙20%种树苗棵数70404050010203040506070801234班级甲 乙 丙 丁因为劣弧AC 上的点到直线AC 的最大距离为2, ADC 上的点到直线AC 的最大距离为6,236<<,根据圆的轴对称性,A D C 到直线AC 距离为3的点有2个. …………………10分24. 解:在Rt △CDF 中,DC=5.4m∴DF=CD •sin40°≈5.4×0.64≈3.46 …………………3分 在Rt △ADE 中,AD=2.2,∠ADE=∠DCF=40°∴DE=AD •cos40°≈2.2×0.77≈1.69 …………………6分 ∴EF=DF+DE ≈5.15≈5.2(m )即车位所占街道的宽度为5.2m …………………10分 25(1)300,1.5; …………………2分 (2)由题知道:乙的速度为30602 1.5=-(千米/小时),甲乙速度和为300301801.5-=(千米/小时),所以甲速度为120千米/小时. 2小时这一时刻,甲乙相遇,在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动,3.5到5小时甲走完全程,乙在运动, 则D (2.5,30),E(3.5,210),F(5,300). 设CD 解析式为y kx b =+,则有202.530k b k b +=⎧⎨+=⎩,解得60120k b =⎧⎨=-⎩,60120y x ∴=-;同理可以求得:DE 解析式为180420y x =-;EF 解析式为60y x =.综上60120,(2 2.5)180420,(2.5 3.5)60,(3.55)x x y x x x x -<≤⎧⎪=-<≤⎨⎪<≤⎩. …………………6分图象如下.…………………7分(3)当0 1.5x <<时,可以求得AB 解析式为180300y x =-+, 当y=150时,得56x =小时,当2.5 3.5x <<时,代入180420y x =-得196x =小时. …………………10分26. (1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF …………………3分(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG 由(1)知, AE = BF ,∴ EF = BF = 2 FG …………………8分(3) DE + BF = EF …………………10分27.(1 )变小 ………………1分(2)问题一:AD=(3412-)cm问题二:设AD=x当FC 为斜边时,631=x 当AD 为斜边时,8649>=x 不合题意 当BC 为斜边 ,无解综上所述:当AD 的长是631时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 …………………9分问题三:假设∠FCD=15° 作∠CFE 角平分线可求得CD=12348>+不存在这样的位置,使得∠FCD=15°…………………12分28解:(1)∵AB ∥OC∴∠OAB=∠AOC=90°在Rt △OAB 中,AB=2,AO=23∴OB=4,∠ABO=60°∴∠BOC=60°而∠BCO=60°∴△BOC 为等边三角形∴OH=OBcos30°=4×23=23; …………………2分(2)∵OP=OH-PH=2 3-t∴Xp=OPcos30°=3- 23t Yp=OPsin30°= 3-∴S= 21•OQ•Xp= •t•(3-23 t ) =t t 23432+-(o <t <23)当t=3时,S 最大=; ………………5分(3)①若△OPM 为等腰三角形,则:(i )若OM=PM ,∠MPO=∠MOP=∠POC∴PQ ∥OC∴OQ=yp 即t=3- 解得:t=332 此时S=332 (ii )若OP=OM ,∠OPM=∠OMP=75°∴∠OQP=45° 过P 点作PE ⊥OA ,垂足为E ,则有:EQ=EP即t-(3 - t )=3-23t 解得:t=2此时S=33-(iii )若OP=PM ,∠POM=∠PMO=∠AOB ∴PQ ∥OA此时Q 在AB 上,不满足题意. …………………10分②线段PM 长的最大值为 . …………………12分。
初三考试数学模拟试题精选含详细答案一、压轴题1.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC= °;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含 m、n的代数式表示)2.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.3.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.4.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连接AD 、BE ,若∠ADP =∠BEP =60°,则∠CAD +∠CBE +∠ACB = 度.5.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).6.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=20°,∠ADC=26°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE , 若∠ABC=36°,∠ADC=16°,猜想∠P 的度数为 ;(拓展延伸)(4)在图4中,若设∠C=x ,∠B=y ,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P ) ;(5)在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、D 的关系,直接写出结论 .9.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.10.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加. 12.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.13.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .14.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)15.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).17.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:21 14 xx=+,求代数式x2+21x的值.解:∵21 14 xx=+,∴21xx+=4即21xx x+=4∴x+1x=4∴x2+21x=(x+1x)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求xy z+的值.解:令2x=3y=4z=k(k≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.18.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
精选文档初三数学中考模拟试卷(附详尽答案)一、选择题(共 16 小题, 1-6 小题,每题 2 分, 7-16 小题,每题 2 分,满分42 分,每小题只有一个选项切合题意)1.实数 a 在数轴上的地点以下图,则以下说法正确的选项是()A . a 的相反数是 2 B. a 的绝对值是 2C. a 的倒数等于 2 D . a 的绝对值大于 22.以下图形既可当作轴对称图形又可当作中心对称图形的是()A.B.C.3.以下式子化简后的结果为x6的是(3 3 3 3 3)3A . x +x B. x ?x C.( x D.D .)x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形(不重叠无空隙),若拼成的矩形一边长为3,则另一边长是()A . m+3B . m+6C . 2m+3D . 2m+65.对一组数据:1,﹣ 2, 4,2, 5 的描绘正确的选项是()A .中位数是 4 B.众数是 2 C.均匀数是 2 D.方差是 76.若对于 x 的一元二次方程kx 2﹣4x+2=0 有两个不相等的实数根,则k的取值范围是()A . k< 2 B. k≠0 C. k< 2 且 k≠0 D . k> 27.以下图,E, F, G,H 分别是 OA ,OB , OC,OD 的中点,已知四边形EFGH 的面积是 3,则四边形ABCD 的面积是()A. 6B. 9C. 12D. 188.如图,将△ ABC 绕点 A 按顺时针方向旋转某个角度获得△ APQ,使AP平行于CB,CB,AQ 的延伸线订交于点 D .假如∠ D=40 °,则∠ BAC 的度数为()A . 30°B. 40°C. 50°D. 60°9.一个立方体玩具的睁开图以下图.随意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC 中,∠C=90 °,∠ B=32 °,以 A 为圆心,随意长为半径画弧分别交AB ,AC 于点 M 和 N,再分别以M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连接 AP 并延伸交BC 于点 D,则以下说法:①AD 是∠ BAC 的均分线;② CD 是△ADC 的高;③点 D 在 AB 的垂直均分线上;④ ∠ADC=61 °.此中正确的有()A. 1个 B. 2个 C. 3个 D. 4个11.如图,正三角形 ABC (图 1)和正五边形 DEFGH (图 2)的边长同样.点 O 为△ABC 的中心,用 5 个同样的△ BOC 拼入正五边形 DEFGH 中,获得图 3,则图 3 中的五角星的五个锐角均为()A . 36°B . 42°C . 45°D . 48°12.如图, Rt △ OAB 的直角边 OB 在 x 轴上,反比率函数 y= 在第一象限的图象经过其顶点 A ,点 D 为斜边 OA 的中点,另一个反比率函数y 1= 在第一象限的图象经过点 D ,则 k的值为()A . 1B . 2C .D . 没法确立13.如图,已知平行四边形ABCD 中, AB=5 ,BC=8 , cosB= ,点 E 是 BC 边上的动点,当以 CE 为半径的圆 C 与边 AD 不订交时,半径CE 的取值范围是()A . 0< CE ≤8B . 0<CE ≤5C . 0< CE < 3 或 5< CE ≤8D . 3<CE ≤514.如图,已知在平面直角坐标系 xOy 中,抛物线 m :y=﹣ 2x 2﹣ 2x 的极点为 C ,与 x 轴两 个交点为 P , Q .现将抛物线 m 先向下平移再向右平移,使点 C 的对应点 C ′落在 x 轴上,点 P 的对应点 P ′落在轴 y 上,则以下各点的坐标不正确的选项是()A . C (﹣ , )B .C ′(1,0) C . P (﹣ 1,0)D . P ′(0,﹣ )15.随意实数 a ,可用 [a] 表示不超出 a 的最大整数,如 [4]=4, [ ] =1,现对 72 进行以下操作: 72→[ ]=8→[ ] =2→[ ]=1,这样对 72 只需进行 3 次操作后变成 1.近似地:对 数字 900 进行了 n 次操作后变成1,那么 n 的值为()A . 3B . 4C . 5D . 616.如图,在平面直角坐标系中, A 点为直线 y=x 上一点,过 A 点作 AB ⊥x 轴于 B 点,若OB=4 ,E 是 OB 边上的一点,且 OE=3,点 P 为线段 AO 上的动点,则 △BEP 周长的最小值 为()A . 4+2B . 4+C . 6D . 4二、填空题(共 4 小题,每题3 分,满分 12 分)17.计算: =.18.若 x=1 是对于 x 的方程 ax 2+bx ﹣ 1=0( a ≠0)的一个解,则代数式 1﹣ a ﹣ b 的值为.19.如图, A ,B ,C 是 ⊙O 上三点,已知 ∠ ACB= α,则 ∠ AOB= .(用含 α的式子表示)20.在 △ABC 中, AH ⊥ BC 于点 H ,点 P 从 B 点开始出发向C 点运动,在运动过程中,设线段 AP 的长为 y ,线段 BP 的长为 x (如图 1),而 y 对于 x 的函数图象如图2 所示. Q ( 1, )是函数图象上的最低点.小明认真察看图1,图 2 两图,作出以下结论:① AB=2 ;② AH= ;③ AC=2 ; ④ x=2 时, △ ABP 是等腰三角形; ⑤ 若 △ABP 为钝角三角形, 则 0< x < 1;此中正确的选项是 (填写序号).三、解答题(共 5 小题,满分58 分)22.( 10 分)(2015?邢台一模)如图,某城市中心的两条公路OM 和 ON,此中 OM 为东西走向, ON 为南北走向, A、 B 是两条公路所围地区内的两个标记性建筑.已知 A 、 B 对于∠MON 的均分线OQ 对称. OA=1000 米,测得建筑物 A 在公路交错口O 的北偏东53.5°方向上.求:建筑物 B 到公路 ON 的距离.(参照数据: sin53.5 °=0.8, cos53.5°=0.6, tan53.5°≈1.35)23.( 11 分)(2015?南宁校级一模)( 2015?邢台一模)中国是世界上13 个贫水国家之一.某校有 800 名在校学生,学校为鼓舞学生节俭用水,睁开“珍惜水资源,节俭每一滴水”系列教育活动.为响应学校呼吁,数学小组做了以下检查:小亮为认识一个拧不紧的水龙头的滴水状况,记录了滴水时间和烧杯中的水面高度,如图 1.小明设计了检盘问卷,在学校随机抽取一部分学生进行了问卷检查,并制作出统计图.如图 2 和图 3.经联合图 2 和图 3 回答以下问题:(1)参加问卷检查的学生人数为人,此中选 C 的人数占检查人数的百分比为.(2)在这所学校中选“比较注意,有时水龙头滴水”的大体有人.若在该校随机抽取一名学生,这名学生选 B 的概率为.请联合图 1 解答以下问题(3)在“水龙头滴水状况”图中,水龙头滴水量(毫升)与时间(分)能够用我们学过的哪一种函数表示?恳求出函数关系式.(4)为了保持生命,每人每日需要约2400 毫升水,该校选 C 的学生因没有拧紧水龙头, 2 小时浪费的水可保持多少人一天的生命需要?24.( 10 分)( 2015?邢台一模)如图,直线y=kx ﹣ 4 与 x 轴, y 轴分别交于B、 C 两点.且∠OBC=.(1)求点 B 的坐标及k 的值;(2)若点 A 时第一象限内直线y=kx ﹣ 4 上一动点.则当△ AOB的面积为6时,求点A的坐标;(3)在( 2)建立的条件下.在座标轴上找一点P,使得∠APC=90 °,直接写出P 点坐标.25.( 13 分)(2015?邢台一模)如图,足球上守门员在O 处开出一高球.球从离地面 1 米的A 处飞出( A 在 y 轴上),把球当作点.其运转的高度y(单位: m)与运转的水平距离x(单位: m)知足关系式 y=a( x﹣ 6)2+h .(1)①当此球开出后.飞翔的最高点距离地面 4 米时.求 y 与 x 知足的关系式.② 在① 的状况下,足球落地址 C 距守门员多少米?(取 4 ≈7)③ 以下图,若在① 的状况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与本来的抛物线形状同样,最大高度减少到本来最大高度的一半.求:站在距O 带你 6 米的 B 处的球员甲要抢到第二个落点 D 处的求.他应再向前跑多少米?(取 2 =5)(2)球员乙高升为 1.75 米.在距 O 点 11 米的 H 处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球着落至H 正上方时低于球员乙的身高.同时落地址在距 O 点 15 米之内.求 h 的取值范围.26.( 14 分)( 2015?南宁校级一模)已知矩形ABCD 中, AB=10cm ,AD=4cm ,作以下折叠操作.如图 1 和图 2 所示,在边 AB 上取点 M ,在边 AD 或边 DC 上取点 P.连结 MP.将△AMP 或四边形 AMPD 沿着直线 MP 折叠获得△A ′MP 或四边形 A ′MPD ′,点 A 的落点为点 A ′,点 D 的落点为点D′.研究:(1)如图 1,若 AM=8cm ,点 P 在 AD 上,点 A ′落在 DC 上,则∠ MA ′C 的度数为;(2)如图 2,若 AM=5cm ,点 P 在 DC 上,点 A ′落在 DC 上,①求证:△ MA ′P 是等腰三角形;②直接写出线段DP 的长.(3)若点 M 固定为 AB 中点,点 P 由 A 开始,沿 A﹣D﹣C 方向.在 AD ,DC 边上运动.设点 P 的运动速度为 1cm/s,运动时间为 ts,按操作要求折叠.①求:当 MA ′与线段 DC 有交点时, t 的取值范围;②直接写出当点 A ′到边 AB 的距离最大时,t 的值;发现:若点 M 在线段 AB 上挪动,点 P 仍为线段 AD 或 DC 上的随意点.跟着点 M 地点的不一样.按操作要求折叠后.点 A 的落点 A ′的地点会出现以下三种不一样的状况:不会落在线段DC 上,只有一次落在线段DC 上,会有两次落在线段DC 上.请直接写出点 A ′由两次落在线段 DC 上时, AM 的取值范围是.初三数学中考模拟试卷参照答案与试题分析一、选择题(共 16 小题, 1-6 小题,每题 2 分, 7-16 小题,每题 2 分,满分42 分,每小题只有一个选项切合题意)1.实数 a 在数轴上的地点以下图,则以下说法正确的选项是()A . a 的相反数是 2 B. a 的绝对值是 2C. a 的倒数等于 2 D . a 的绝对值大于 2考点:实数与数轴;实数的性质.剖析:依据数轴确立 a 的取值范围,选择正确的选项.解答:解:由数轴可知, a<﹣ 2,a 的相反数> 2,所以 A 不正确,a 的绝对值> 2,所以 B 不正确,a 的倒数不等于 2,所以 C 不正确,D 正确.应选: D .评论: 本题考察的是数轴和实数的性质,属于基础题,灵巧运用数形联合思想是解题的重点.2.以下图形既可当作轴对称图形又可当作中心对称图形的是( )A .B .C .D .考点 : 中心对称图形;轴对称图形.剖析: 依据轴对称图形与中心对称图形的观点求解.解答: 解: A 、是轴对称图形,也是中心对称图形,故此选项正确;B 、不是轴对称图形,也不是中心对称图形,故此选项错误;C 、不是轴对称图形,也不是中心对称图形,故此选项错误; D 、是轴对称图形,不是中心对称图形,故此选项错误. 应选: A .评论: 本题主要考察了中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合, 中心对称图形是要找寻对称中心, 旋转 180 度后与原图重合.3.以下式子化简后的结果为 x 6 的是( )A . x 3+x 3B . x 3?x 3C . ( x 3) 3D . x 12÷x2考点 : 同底数幂的除法;归并同类项;同底数幂的乘法;幂的乘方与积的乘方. 剖析: 依据同底数幂的运算法例进行计算即可.解答: 解: A 、原式 =2x 3,故本选项错误;6C 、原式 =x 9,故本选项错误;12﹣210D 、原式 =x =x ,故本选项错误.评论: 本题考察的是同底数幂的除法,熟知同底数幂的除法及乘方法例、归并同类项的法例、幂的乘方与积的乘方法例是解答本题的重点.4.如图,边长为( m+3)的正方形纸片,剪出一个边长为 m 的正方形以后,节余部分可剪 拼成一个矩形(不重叠无空隙) ,若拼成的矩形一边长为3,则另一边长是()A . m+3B . m+6C . 2m+3D . 2m+6 考点 : 平方差公式的几何背景.剖析: 因为边长为( m+3)的正方形纸片剪出一个边长为m 的正方形以后,节余部分又剪拼成一个矩形(不重叠无空隙) ,那么依据正方形的面积公式,能够求出节余部分的面积,而矩形一边长为 3,利用矩形的面积公式即可求出另一边长.解答: 解:依题意得节余部分为( m +3 ) 2﹣ m 2=( m+3+m )( m+3﹣m )=3( 2m+3 ) =6m+9 ,而拼成的矩形一边长为 3, ∴另一边长是=2m+3 .应选: C .评论: 本题主要考察了多项式除以单项式,解题重点是熟习除法法例.5.对一组数据: 1,﹣ 2, 4,2, 5 的描绘正确的选项是( )A . 中位数是 4B . 众数是 2C . 均匀数是 2D . 方差是 7考点 : 方差;算术均匀数;中位数;众数.剖析: 分别求出这组数据的均匀数、众数、中位数、方差,再对每一项剖析即可.解答: 解: A 、把 1,﹣ 2, 4,2,5 从小到大摆列为:﹣ 2,1,2,4, 5,最中间的数是 2,则中位数是 2,故本选项错误;B 、 1,﹣ 2, 4, 2, 5 都各出现了 1 次,则众数是 1,﹣ 2, 4, 2,5,故本选项错误;C 、均匀数 = ×( 1﹣ 2+4+2+5 ) =2,故本选项正确;D 、方差 S 2= [( 1﹣ 2)2+(﹣ 2﹣2) 2+( 4﹣ 2) 2+( 2﹣ 2) 2+(5﹣ 2) 2]=8,故本选项错误; 应选 C .评论: 本题考察了均匀数, 中位数,方差的意义. 均匀数均匀数表示一组数据的均匀程度. 中位数是将一组数据从小到大(或从大到小)从头摆列后, 最中间的那个数(或最中间两个数的均匀数);方差是用来权衡一组数据颠簸大小的量.6.若对于 x 的一元二次方程 kx 2﹣4x+2=0 有两个不相等的实数根, 则 k 的取值范围是 ()A . k < 2B . k ≠0C . k < 2 且 k ≠0D . k > 2考点 : 根的鉴别式;一元二次方程的定义.剖析: 依据一元二次方程的定义和根的鉴别式2△ 的意义获得 k ≠0 且 △ > 0,即(﹣ 4)﹣4×k ×2 >0,而后解不等式即可获得 k 的取值范围.解答: 解: ∵ 对于 x 的一元二次方程 kx 2﹣ 4x+2=0 有两个不相等的实数根,∴ k ≠0 且 △> 0,即(﹣ 4) 2﹣ 4×k ×2>0,解得 k < 2 且 k ≠0.∴ k 的取值范围为 k < 2 且 k ≠0. 应选 C .评论: 本题考察了一元二次方程 ax 2+bx+c=0 ( a ≠0)的根的鉴别式 △ =b 2﹣ 4ac :当 △> 0,方程有两个不相等的实数根;当 △ =0,方程有两个相等的实数根;当 △ < 0,方程没有实数根.也考察了一元二次方程的定义.7.以下图,E, F, G,H 分别是 OA ,OB , OC,OD 的中点,已知四边形EFGH 的面积是 3,则四边形ABCD 的面积是()A. 6B. 9C. 12D. 18考点:位似变换.剖析:利用位似图形的定义得出四边形 EFGH 与四边形 ABCD 是位似图形,再利用位似图形的性质得出答案.解答:解:∵ E,F,G,H分别是OA,OB,OC,OD的中点,∴四边形 EFGH 与四边形 ABCD 是位似图形,且位似比为:1: 2,∴四边形 EFGH 与四边形 ABCD 的面积比为:1:4,∵四边形 EFGH 的面积是 3,∴四边形 ABCD 的面积是12.应选: C.评论:本题主要考察了位似变换,依据题意得出位似比是解题重点.8.如图,将△ ABC 绕点 A 按顺时针方向旋转某个角度获得△ APQ,使AP平行于CB,CB,AQ 的延伸线订交于点 D .假如∠ D=40 °,则∠ BAC 的度数为()A . 30°B. 40°C. 50°D. 60°考点:旋转的性质.剖析:如图,第一由旋转变换的性质获得∠ PAQ=∠BAC;由平行线的性质获得∠PAQ= ∠ D=40 °,即可解决问题.解答:解:如图,由旋转变换的性质得:∠PAQ= ∠ BAC ;∵AP ∥BD ,∴∠ PAQ=∠ D=40 °,∴∠ BAC=40 °.应选 B.评论:该题主要考察了旋转变换的性质、平行线的性质等几何知识点及其应用问题,灵巧运用旋转变换的性质来剖析、判断、推理或解答是解题的重点.9.一个立方体玩具的睁开图以下图.随意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.考点:列表法与树状图法;专题:正方体相对两个面上的文字.剖析:由数字 3 与 4 相对,数字 1 与 5 相对,数字 2 与 6 相对,直接利用概率公式求解即可求得答案.解答:解:∵数字3与4相对,数字1 与 5 相对,数字 2 与 6 相对,∴随意掷这个玩具,上表面与底面之和为偶数的概率为:.应选 D.评论:本题考察了概率公式的应用.用到的知识点为:概率=所讨状况数与总状况数之比.10.如图,在△ABC 中,∠C=90 °,∠ B=32 °,以 A 为圆心,随意长为半径画弧分别交AB ,AC 于点 M 和 N,再分别以M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连接 AP 并延伸交BC 于点 D,则以下说法:①AD 是∠ BAC 的均分线;② CD 是△ADC 的高;③点 D 在 AB 的垂直均分线上;④ ∠ADC=61 °.此中正确的有()A. 1个 B. 2个 C. 3个 D. 4个考点:作图—基本作图.剖析:依据角均分线的做法可得① 正确,再依据直角三角形的高的定义可得② 正确,然后计算出∠CAD= ∠ DAB=29 °,可得 AD ≠BD ,依据到线段两头点距离相等的点在线段的垂直均分线上,所以③ 错误,依据三角形内角和可得④ 正确.解答:解:依据作法可得AD 是∠ BAC 的均分线,故① 正确;∵∠ C=90°,∴CD 是△ ADC 的高,故②正确;∵∠ C=90°,∠ B=32 °,∴∠ CAB=58 °,∵AD 是∠ BAC 的均分线,∴∠ CAD= ∠ DAB=29 °,∴AD ≠BD ,∴点 D 不在 AB 的垂直均分线上,故③ 错误;∵∠ CAD=29 °,∠ C=90°,∴∠ CDA=61 °,故④正确;共有 3 个正确,应选: C.评论:本题主要考察了基本作图,重点是掌握角均分线的做法和线段垂直均分线的判断定理.11.如图,正三角形 ABC (图 1)和正五边形 DEFGH (图 2)的边长同样.点 O 为△ABC 的中心,用 5 个同样的△ BOC 拼入正五边形 DEFGH 中,获得图 3,则图 3 中的五角星的五个锐角均为()A . 36°B. 42°C. 45°D. 48°考点:多边形内角与外角;等边三角形的性质.剖析:依据图 1 先求出正三角形 ABC 内大钝角的度数是 120°,则两锐角的和等于 60°,正五边形的内角和是 540°,求出每一个内角的度数,而后解答即可.解答:解:如图,图 1 先求出正三角形ABC 内大钝角的度数是180°﹣ 30°×2=120°,180°﹣ 120°=60°,60°÷2=30°,正五边形的每一个内角=( 5﹣2) ?180°÷5=108°,∴图 3 中的五角星的五个锐角均为:108°﹣ 60°=48 °.应选: D.评论:本题主要考察了多边形的内角与外角的性质,认真察看图形是解题的重点,难度中等.12.如图, Rt△ OAB 的直角边OB 在 x 轴上,反比率函数y=在第一象限的图象经过其顶点 A ,点 D 为斜边 OA 的中点,另一个反比率函数y1=在第一象限的图象经过点D,则 k的值为()A. 1B. 2C.D.没法确立考点:反比率函数图象上点的坐标特色.剖析:过点D作DE⊥ x轴于点E,由点D为斜边OA的中点可知DE 是△AOB 的中位线,设 A ( x,),则 D (,),再求出 k 的值即可.解答:解:过点 D 作 DE⊥x 轴于点 E,∵点 D 为斜边 OA 的中点,点 A 在反比率函数y= 上,∴DE 是△ AOB 的中位线,设 A ( x,),则 D(,),∴k= ? =1 .应选 A.评论:本题考察的是反比率函数图象上点的坐标特色,熟知反比率函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.13.如图,已知平行四边形ABCD 中, AB=5 ,BC=8 , cosB=,点E是BC边上的动点,当以 CE 为半径的圆 C 与边 AD 不订交时,半径CE 的取值范围是()A . 0< CE ≤8B . 0<CE ≤5C . 0< CE < 3 或 5< CE ≤8D . 3<CE ≤5 考点 : 直线与圆的地点关系;平行四边形的性质.剖析: 过 A 作 AM ⊥ BC 于 N ,CN ⊥ AD 于 N ,依据平行四边形的性质求出 AD ∥ BC , AB=CD=5 ,求出 AM 、CN 、 AC 、 CD 的长,即可得出切合条件的两种状况.解答: 解:过 A 作 AM ⊥BC 于 N ,CN ⊥AD 于 N ,∵四边形 ABCD 是平行四边形,∴AD ∥ BC , AB=CD=5 , ∴AM=CN ,∵AB=5 , cosB= =,∴BM=4 , ∵BC=8 , ∴CM=4=BC , ∵AM ⊥BC , ∴AC=AB=5 ,由勾股定理得: AM=CN==3,∴当以 CE 为半径的圆 C 与边 AD 不订交时,半径 CE 的取值范围是 0< CE < 3 或 5< CE ≤8,应选 C .评论: 本题考察了直线和圆的地点关系,勾股定理,平行四边形的性质的应用,能求出切合条件的全部状况是解本题的重点,本题综合性比较强,有必定的难度.14.如图,已知在平面直角坐标系xOy 中,抛物线 m :y=﹣ 2x 2﹣ 2x 的极点为 C ,与 x 轴两个交点为 P , Q .现将抛物线 m 先向下平移再向右平移,使点C 的对应点 C ′落在 x 轴上,点 P 的对应点 P ′落在轴 y 上,则以下各点的坐标不正确的选项是()A . C (﹣ , )B .C ′(1,0) C . P (﹣ 1,0)D . P ′(0,﹣ )考点 : 二次函数图象与几何变换.剖析: 依据抛物线 m 的分析式求得点 P 、 C 的坐标,而后由点P ′在 y 轴上,点 C ′在 x 轴上获得平移规律,由此能够确立点P ′、 C ′的坐标.解答: 解: ∵ y= ﹣ 2x 2﹣ 2x= ﹣ 2x ( x+1 )或 y= ﹣ 2( x+ 2 , ) + ∴P (﹣ 1, 0), O ( 0, 0), C (﹣ , ).又∵ 将抛物线 m 先向下平移再向右平移,使点 C 的对应点 C ′落在 x 轴上,点 P 的对应点 P ′落在 y 轴上,∴该抛物线向下平移了 个单位,向右平移了 1 个单位,∴C ′( , 0),P ′(0,﹣ ).综上所述,选项 B 切合题意. 应选: B .评论: 主要考察了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求娴熟掌握平移的规律: 左加右减,上加下减.并用规律求函数分析式.会利用方程求抛物线与坐标轴的交点.15.随意实数 a ,可用 [a] 表示不超出 a 的最大整数,如 [4]=4, [ ] =1,现对 72 进行以下操作: 72→[]=8→[] =2→[]=1,这样对 72 只需进行 3 次操作后变成 1.近似地:对数字 900 进行了 n 次操作后变成1,那么 n 的值为()A . 3B . 4C . 5D . 6 考点 : 估量无理数的大小. 专题 : 新定义.剖析: 依据 [a]表示不超出 a 的最大整数计算,可得答案. 解答: 解: 900→第一次 [ ] =30→第二次 []=5→第三次 []=2→第四次 [ ]=1,即对数字 900 进行了 4 次操作后变成 1.应选: B .评论: 本题考察了估量无理数的大小的应用,主要考察学生的阅读能力和逆推思想能力.16.如图,在平面直角坐标系中, A 点为直线 y=x 上一点,过 A 点作 AB ⊥x 轴于 B 点,若OB=4 ,E 是 OB 边上的一点,且 OE=3,点 P 为线段 AO 上的动点,则 △BEP 周长的最小值 为()A. 4+2B. 4+C. 6D. 4考点:轴对称 -最短路线问题;一次函数图象上点的坐标特色.剖析:在y轴的正半轴上截取OF=OE=3 ,连结 EF,证得 F 是 E 对于直线y=x 的对称点,连结 BF 交 OA 于 P,此时△ BEP 周长最小,最小值为BF+EB ,依据勾股定理求得BF,因为 BE=1 ,所以△ BEP 周长最小值为 BF+EB=5+1=6 .解答:解:在 y 轴的正半轴上截取 OF=OE=3 ,连结 EF,∵A点为直线 y=x 上一点,∴OA 垂直均分EF,∴E、 F 是直线 y=x 的对称点,连结 BF 交 OA 于 P,依据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB ;∵OF=3 , OB=4 ,∴BF==5,∵E B=4 ﹣ 3=1 ,△BEP 周长最小值为BF+EB=5+1=6 .应选 C.评论:本题考察了轴对称的判断和性质,轴对称﹣最短路线问题,勾股定理的应用等,作出 P 点是解题的重点.二、填空题(共 4 小题,每题 3 分,满分 12 分)17.计算:=.考点:二次根式的加减法.剖析:先将二次根式化为最简,而后归并同类二次根式即可得出答案.解答:解:=3﹣=2.故答案为: 2 .评论: 本题考察二次根式的减法运算,难度不大,注意先将二次根式化为最简是重点.21﹣ a ﹣b 的值为 0 .18.若 x=1 是对于 x 的方程 ax +bx ﹣1=0( a ≠0)的一个解, 则代数式 考点 : 一元二次方程的解.剖析: 把 x=1 代入已知方程,可得: a+b ﹣ 1=0 ,而后合适整理变形即可.解答: 解: ∵ x=1 是对于 x 的方程 ax 2+bx ﹣ 1=0( a ≠0)的一个解,∴ a +b ﹣ 1=0, ∴ a +b=1,∴ 1﹣ a ﹣ b=1﹣( a+b )=1﹣ 1=0 . 故答案是: 0.评论: 本题考察了一元二次方程的解的定义.把根代入方程获得的代数式奇妙变形来解题是一种不错的解题方法.19.如图, A ,B ,C 是⊙ O 上三点,已知 ∠ ACB= α,则 ∠ AOB= 360°﹣ 2α .(用含 α的式子表示)考点 : 圆周角定理.剖析: 在优弧 AB 上取点 D ,连结 AD 、 BD ,依据圆内接四边形的性质求出 ∠ D 的度数, 再依据圆周角定理求出 ∠ AOB 的度数.解答: 解:在优弧 AB 上取点 D ,连结 AD 、 BD ,∵∠ ACB= α, ∴∠ D=180 °﹣ α,依据圆周角定理, ∠AOB=2 ( 180°﹣ α) =360°﹣2α. 故答案为: 360°﹣ 2α.评论: 本题考察的是圆周角定理及圆内接四边形的性质, 解答本题的重点是熟知以下观点:圆周角定理: 同弧所对的圆周角等于它所对圆心角的一半; 圆内接四边形的性质: 圆内接四边形对角互补.20.在 △ABC 中, AH ⊥ BC 于点 H ,点 P 从 B 点开始出发向 C 点运动,在运动过程中,设线段 AP 的长为 y ,线段 BP 的长为 x (如图 1),而 y 对于 x 的函数图象如图2 所示. Q ( 1,)是函数图象上的最低点.小明认真察看图1,图 2 两图,作出以下结论:① AB=2;② AH=;③ AC=2;④ x=2时,△ ABP是等腰三角形;⑤ 若△ABP为钝角三角形,则 0< x< 1;此中正确的选项是①②③④(填写序号).考点:动点问题的函数图象.剖析:(1)当x=0时,y的值即是AB 的长度;(2)图乙函数图象的最低点的y 值是 AH 的值;(3)在直角△ ACH 中,由勾股定理来求AC 的长度;(3)当点 P 运动到点 H 时,此时 BP( H)=1,AH=,在Rt△ ABH中,可得出∠B=60°,则判断△ ABP 是等边三角形,故BP=AB=2 ,即 x=2(5)分两种状况进行议论,① ∠ APB 为钝角,② ∠BAP 为钝角,分别确立 x 的范围即可.解答:解:( 1)当 x=0 时, y 的值即是 AB 的长度,故 AB=2 ,故①正确;(2)图乙函数图象的最低点的y 值是 AH 的值,故AH=,故② 正确;(3)如图乙所示: BC=6 , BH=1 ,则 CH=5 .又 AH= ,∴直角△ ACH 中,由勾股定理得: AC= = =2 ,故③正确;(4)在 Rt△ABH 中, AH= , BH=1 ,tan∠ B= ,则∠B=60 °.又△ ABP 是等腰三角形,∴△ ABP 是等边三角形,∴B P=AB=2 ,即 x=2.故④ 正确;(5)①当∠APB 为钝角时,此时可得 0<x< 1;②当∠ BAP 为钝角时,过点 A 作 AP⊥ AB ,则 BP==4,即当 4< x≤6 时,∠BAP 为钝角.综上可得0< x< 1 或 4< x≤6 时△ ABP 为钝角三角形,故⑤ 错误.故答案为:①②③④.评论:本题考察了动点问题的函数图象,有必定难度,解答本题的重点是联合图象及函数图象得出 AB 、 AH 的长度,第三问推知△ABP 是等边三角形是解题的难点.三、解答题(共 5 小题,满分58 分)22.( 10 分)(2015?邢台一模)如图,某城市中心的两条公路OM 和 ON,此中 OM 为东西走向, ON 为南北走向, A、 B 是两条公路所围地区内的两个标记性建筑.已知 A 、 B 对于∠MON 的均分线 OQ 对称. OA=1000 米,测得建筑物 A 在公路交错口 O 的北偏东 53.5°方向上.求:建筑物 B 到公路 ON 的距离.(参照数据: sin53.5 °=0.8, cos53.5°=0.6, tan53.5°≈1.35)考点:解直角三角形的应用-方向角问题.剖析:连结 OB,作 BD ⊥ ON 于 D,AC ⊥OM 于 C,则∠ CAO= ∠ NOA=53.5 °,解 Rt △AOC ,求出 AC=OA ?cos53.5°=600 米,再依据 AAS 证明△ AOC ≌ △ BOD ,得出 AC=BD=600 米,即建筑物 B 到公路 ON 的距离为 600 米.解答:解:如图,连结OB,作 BD ⊥ON 于 D, AC ⊥ OM 于 C,则∠ CAO= ∠ NOA=53.5 °,在 Rt△ AOC 中,∵∠ ACO=90 °,∴AC=OA ?cos53.5°=1000×0.6=600(米),OC=OA ?sin53.5°=1000 ×0.8=800 (米).∵A 、B 对于∠ MON 的均分线OQ 对称,∴∠ QOM= ∠QON=45 °,∴OQ 垂直均分AB ,∴OB=OA ,∴∠ AOQ= ∠ BOQ,∴∠ AOC= ∠ BOD .在△ AOC 与△ BOD 中,,∴△ AOC ≌ △ BOD ( AAS ),∴A C=BD=600 米.即建筑物 B 到公路 ON 的距离为600 米.评论:本题考察认识直角三角形的应用﹣方向角问题,轴对称的性质,全等三角形的判断与性质,正确作出协助线证明△AOC ≌△ BOD 是解题的重点.23.( 11 分)(2015?南宁校级一模)( 2015?邢台一模)中国是世界上13 个贫水国家之一.某校有 800 名在校学生,学校为鼓舞学生节俭用水,睁开“珍惜水资源,节俭每一滴水”系列教育活动.为响应学校呼吁,数学小组做了以下检查:小亮为认识一个拧不紧的水龙头的滴水状况,记录了滴水时间和烧杯中的水面高度,如图 1.小明设计了检盘问卷,在学校随机抽取一部分学生进行了问卷检查,并制作出统计图.如图 2 和图 3.经联合图 2 和图 3 回答以下问题:(1)参加问卷检查的学生人数为60人,此中选 C 的人数占检查人数的百分比为10%.(2)在这所学校中选“比较注意,有时水龙头滴水”的大体有440人.若在该校随机抽取一名学生,这名学生选 B 的概率为.请联合图 1 解答以下问题(3)在“水龙头滴水状况”图中,水龙头滴水量(毫升)与时间(分)能够用我们学过的哪一种函数表示?恳求出函数关系式.(4)为了保持生命,每人每日需要约2400 毫升水,该校选 C 的学生因没有拧紧水龙头, 2 小时浪费的水可保持多少人一天的生命需要?考点:一次函数的应用;用样本预计整体;扇形统计图;条形统计图;概率公式.剖析:(1)依据A的人数除以占的百分比求出检查总人数;求出 C 占的百分比即可;(2)求出 B 占的百分比,乘以 800 获得结果;找出总人数中 B 的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)能够近似看做一次函数,设为y=kx+b ,把两点坐标代入求出k 与 b 的值,即可确立出函数分析式;(4)设可保持 x 人一天的生命需要,依据题意列出方程,求出方程的解即可获得结果.解答:解:( 1)依据题意得: 21÷35%=60(人),选 C 的人数占检查人数的百分比为×100%=10% ;(2)依据题意得:选“比较注意,有时水龙头滴水”的大体有 800×( 1﹣35%﹣ 10%)=440(人);。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.某居民区月底统计用电情况,其中用电45度的有3户,用电50度的有5户,用电42度的有6户,则平( ) 2.式x +4x -2中,x 的取值范围是( ) A .x≥-4B .x >2C .x≥-4且x≠2D .x>-4且x≠23.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,•除颜色外其他全部相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的概率为15%和45%,则口袋中白色球的个数很可能是( ) A .6B .16C .18D .244.是方程3x +ay =1的一个解,则a 的值是( ) A .B .-1C .2D .-25.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( )A .两枚骰子朝上一面的点数和为6B .两枚骰子朝上一面的点数和不小于2C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数6.若9x 2+kx+16是一个完全平方式,则k 的值等于( ) A.12 B.24 C.-24 D.±247.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( ) A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′ B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′ D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′8.已知235x x ++的值为 3,则代数式2391x x +-的值为( ) A .-9B .-7C .0D .39.下列长度的三条线段,能组成三角形的是( ) A . 1,2,3B .1,3,5C . 2,2,4D .2,3,410.如图 ,已知直线 AB 、CD 被直线 EF 所截,则∠AMN 的内错角为( ) A . ∠EMBB . ∠BMFC .∠ENCD .∠END11.如图,已知 AB ∥CD ,∠A = 70°,则∠1 的度数为( ) A . 70°B . 100°C .110°D . 130°12.下列事件中,是必然事件的是( ) A .任意抛掷一枚硬币,出现正面朝上B .从2、4、6、8、10这5张卡片中任抽一张是奇数C .从装有一个红球三个黄球的袋子中任取两球,至少有一个是黄球D .投掷一枚普通骰子,朝上一面的点数是313.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元14.下列现象中,不属于旋转变换的是( )A .钟摆的运动B .行驶中汽车车轮C .方向盘的转动D .电梯的升降运动 15.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( ) A .0x >B .0x <C .2x >D .2x <16.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,•交AC 于点E ,若BD+CE=9,则线段DE 的长为( ) A .9B .8C .7D .617.以下所给的数值中,为不等式-2x + 3<0的解的是( ) A .-2B .-1C .23 D .218.在方程组221x y my x -=⎧⎨-=⎩中,x 、y 满足0x y +>,则m 的取值范围在数轴上表示为( )A .B .C .D .19.在A ),B (22,-2),C (-22 D )四个点中,在第四象限的点的个数为( ) A .1个B .2个C .3个D .4个20.有一本书,每20页厚为1 mm ,设从第l 页到第2页的厚度为y (mm ),则( ) A .120y x =B .y=20xC .120y x =+ D .20y x=21.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( ) A .75°B .45°C .30°D .15°22.某居民楼的一个单元一共有l0户人家,每两个月对住户的用水进行统计,8月底时,轮到小明统计,小明对每户人家的水表进行了“抄表”,从而得到每个住户的用水量,结果有3户家庭用水39吨,4户家庭用水42吨,3户家庭用水45吨,则此单位住户的月平均用水量是( ) A .21吨B .39吨C .42吨D .45吨23.如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD=BE=CF ,△DEF 的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形 C .直角三角形D .不等边三角形24.计算 )A .B .CD . 25.下列说法正确的是( ) A .直棱柱的底面是四边形 B .直棱柱的侧棱平行且相等 C .直棱柱的侧面可能是三角形 D .直棱柱的侧面一定是正方形 26.下列说法中,错误的是 ( )A.如果C是线段AB的中点,那么AC=12 ABB.延长线段AB到点C,使AB=BC,则B是线段AC的中点C.直线AB是点A与点8的距离D.两点的距离就是连结两点的线段的长度27.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.14B.15C.16D.32028.数轴上A、B两点分别是8.2,365,则 A.B两点间的距离为()A.4145B.2145C.-1. 6 D.1. 629.杭州湾跨海大桥全长 36千米,其中 36千米属于()A.计数B.测量C.标号D.排序30.下列说法正确的是()A.两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数C.两正数相加,和为正数;两负数相加,和为负数D.两个有理数相加等于它们的绝对值相加31.某企业去年第一季度赚 82000 元,第二季度亏 5000 元,该企业去年上半年嫌的钱可用算式表示为()A.(+82000)+(+5000)B.(-82000) + (+5000)C.( -82000) +(-5000)D.(+82000) +(-5000)32.某一天,早晨的气温是-3℃,中午的气温比早晨上升了8℃,晚上的气温比中午下降了9℃,那么晚上的气温是()A.1℃B.-4℃C.-12℃D.-2℃33.若有理数0a b c++<,则()A.三个数中至少有两个负数B.三个数中有且只有一个负数C.三个数中最少有一个负数D.三个数中有两个负数34.下面结论中,错误的是()A.一个数的平方不可能是负数B.一个数的平方一定是正数C .一个非 0有理数的偶数次方是正数D .一个负数的奇数次方还是负数35. 一个底面为正方形的水池蓄水量为 4.86 m 3. 如果水池深1.5m ,那么这个水池底面的边长为( ) A . 3.24 mB . 1.8 mC .0.324 mD . 0.18 m36.在下列方程:①1-2x=2x-1;②12(1)2x x -=--;③-2x=-1 中,解为12x =的方程有0.30.3ax -( )A .0 个B .1 个C .2 个D .3 个37.设有12个型号相同的杯子,其中一等品7个,二等品3个,三等品2个.从中任意取一个,是二等品或三等品的概率是( ) A .127B .41 C .61 D .125 38.张明对沙河口区快餐公司的发展情况作了调查,制成了该地区快餐公司个数情况和平均年销量的情况统计图,由图(1)、图(2)中的信息,知2006年共销售盒饭( )A .50万盒B . 118万盒C .120万盒D .无法估计39.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数的图象,图中 s 和t 分别表示运动的路程和时间,根据图象判断快者的速度比慢者的速度每秒快( ) A . 2.5mB .2mC .1.5 mD . 1m40.对角的表示方法理解错误的是( )A .角可用三个大写字母表示,顶点字母写在中间,每边上的点的字母写在两旁B .任何角都可用一个顶点字母表示C .记角有时可在靠近顶点处加上弧线,注上数字来表示D .记角有时可在靠近顶点处加上弧线,注上希腊字母表示 41.如图,以下四个图形中,∠1和∠2是对顶角的共有 ( )A .0个B .l 个C .2个D .3个42.将方程12x 3123x -+-=去分母,正确的结果是( ) A .3(1)2(23)1x x --+= B .3(1)2(23)6x x --+= C .31431x x --+=D .31436x x --+=43.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( ) A .120°B .100°C .80°D .50°44.将如图所示的图形按照顺时针方向旋转90°后所得的图形是( )45.下列事件中,确定事件的个数是( )①下周日是晴天;③人没有氧气就会窒息而死;③三角形的面积=12底×高;④掷一 枚硬币,正面朝上.A .1 个B .2 个C .3 个D .4 个46.已知31216a a -+有一个因式为4a +,则把它分解因式得( ) A .2(4)(1)a a a +++ B .2(4)(2)a a ++C .2(4)(2)a a +-D .2(4)(1)a a a +-+47.下列关于分式263x χ--的说法,正确的 ( ) A . 当3x =时,分式有意义 B . 当3x ≠时,分式没有意义 C . 当3x =时,分式的值为零D . 分式的值不可能为零48.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +-- 49.不解方程判断方程21230111x xx -+=+--的解是( ) A .OB .1C .2D .1350.在扇形统计图中,若将圆均匀地分成10份,则每份的圆心角的度数是 ( ) A .10°B .18°C .36°D .72°51.如图,AB 是⊙O 的直径,点 C .D 在半圆,且∠BAC=20°,则∠ADC 的度数是( ) A .110°B .l00°C .120°D .90°52.如图所示,电线杆 AB 的中点C 处有一标志物,在地面D 点处测得标志的仰角为 45°,若点 D 到电线杆底部点B 的距离为a, 则电线杆 AB 的长可表示为( ) A .aB . 2aC .32a D .52a53.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正方形54.在小数2.78654349353中,所出现的各个数字里,频数最大的数字是( ) A .1B .3C .5D .955.已知在正方形网格中,每个小方格都是边长为 1 的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点 C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数为( ) A .3个B .4个C . 5个D .6个56.下列命题中,是真命题的为( ) A .两条对角线相等的四边形是矩形 B .两条对角线垂直的四边形是菱形 C .两条对角线垂直且相等的四边形是正方形 D .两条对角线相等的平行四边形是矩形57.若x x x x -⋅-=--32)3)(2(成立,则x 的取值范围为( ) A .x ≥2 B .x ≤3 C .2≤x ≤3 D .2<x <358.一枚均匀的正方体骰子,六个面分别标有数字 1、2、3、4、5、6,连续抛掷两次,朝上的数字分别是 m 、n ,若把m 、n 作为点A 的横纵坐标,则点 A (m ,n )在函数2y x =的图象上的概率是( )A.118B.112C.16D.1359. 400 米比赛有 4 条跑道,其中两条是对比赛成绩起积极影响的好跑道,其余两条是普通跑道,4 名运动员抽签决定跑道,则小明第一个抽抽到好跑道的概率是()A.12B.13C.14D.3460.如图,梯形ABCD的周长为60cm,AD∥BC,若AE∥DC交BC于E,AD=7.5cm,则△ABE的周长是()A.55cm B.45cm C.35cm D.25cm61.过任意四边形的三个顶点能画圆的个数最多有()A.1 个 B.2 个 C.3 个 D.4 个62.下列说法中错误的是()A.同一底上两个角相等的梯形是等腰梯形B.对角线相等的四边形是等腰梯形C.是轴对称图形的梯形一定是等腰梯形D.直角梯形一定不是等腰梯形63.如图,△ABC 中,延长 BC 到点 D,使 CD=BC,E 是 AC 中点,DE 交 AB 于点 F,则DEDF=()A.23B.34C.35D.4564.下面说法正确的是()A.弦相等,则弦心距相等B.弧长相等的弧所对的弦相等C.垂直于弦的直线必平分弦D.圆的两条平行弦所夹的弧长相等65.已知△ABC∽△A'B'C',且它们的相似比是 3,则下列命题正确的是()A.∠A 是∠A′的3倍B.∠A′是∠A 的3倍C.A'B'是 AB 的3倍D.AB是A'B'的 3倍66.△ABC 中,A = 47°,AB = 1.5 cm,AC=2 cm,△DEF 中,E = 47°,ED =2.8 cm,EF=2. 1 cnn,这两个三角形()A.相似B.不相似C.全等D.以上都不对67.下列图形不相似的是()A.所有的圆B.所有的正方形C.所有的等边三角形D.所有的菱形68.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()BA .325 B .49C .1720 D .2569.下列各式正确的是( ) A .sin30°+sin30°=sin60°B .tan60°-tan30°=tan30°C .cos (60°-30°)=cos60°-cos30°D .3tg30°70. 当锐角∠A>300 时,cosA 的值( ) A .小于12B . 大于12C .D .71.如图,△ABC 的三边分别切⊙O 于D ,E ,F ,若∠A=50°,则∠DEF=( ) A .65°B .50°C .130°D .80°72.2c 的顶点在x 轴上,则 c 的值为( ) A .9B .3C .-9D .073.1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数) A .0.16 B .0.24 C .0.3D .0.474. 三角形两边的长分别是 8 和 6,第三边的长是方程212200x x -+=的一个实数根,则三角形的周长是( ) A . 24B . 24 和 26C . 16D . 2275.如图,直线PAPB ,是⊙O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为() A .厘米B .5厘米C .D 厘米 76.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A .10,3,1-B .10,7,1-C .12,5,1-D .2,3,177.下列立体图形的主视图是矩形的是( ) A .圆锥B .球C .圆柱D .圆台78.下列方程是一元二次方程的是( )A .12=+y xB .()32122+=-x x x C .413=+xx D .022=-x 79.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1-C .21 D .1或1-80.下面几何体的俯视图正确的是( )A .B .C .D .81.“两条直线相交成直角,就叫做两条直线互相垂直”,这个句子是( ) A .定义B .命题C .公理D .定理82.如图,AB ,CD 相交于点0,则下列条件中能得到AC ∥BD 且AC=BD 的是( ) A .∠A=∠B ,∠C=∠D B .OA=B C .OC=ODD .∠A=∠B ,OA=OB83.在以下的几何体中,主视图、左视图、俯视图完全相同的是( )A .B .C .D .84.如图,是三个反比例函数11k y x =,22ky x =,33k y x=在x 轴上方的图象,由此观察k 1、k 2、k 3 的大小关系为( ) A .123k k k >>B .231k k k >>C .321k k k >>D .312k k k >>85.若等腰三角形的一个外角为110°,则它的底角为( ) A .55°B .70°C .55°或70°D .以上答案都不对86.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于( ) A .50°B .40°C .25°D .20°如图,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( ) A .4.5米 B .6米 C .7.2米 D .8米88.如图,把一个正方形三次对折后沿虚线剪下,则展开所得图形是( )89.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于()A B.2C D90.如图,三个半径相等的圆,两两外切,且与△ABC 的三边相切,设AB= a,那么圆的半径 r等于()A B C D.1 4 a91.等腰梯形ABCD中,AD∥BC,对角线AC=BC+AD,则∠DBC的度数是()A.30°B.45°C.60°D.90°。