北京市东城区2015-2016学年高一数学下学期期末考试试题
- 格式:doc
- 大小:601.50 KB
- 文档页数:7
2015-2016学年某某省某某市高一(下)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4=.3.函数f(x)=(sinx﹣cosx)2的最小正周期为.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为.6.根据如图所示的伪代码,可知输出的结果S为.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于.9.已知变量x,y满足,则目标函数z=2x+y的最大值是.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是.11.在△ABC中,若acosB=bcosA,则△ABC的形状为.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是.13.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是.14.已知正实数x,y满足,则xy的取值X围为.二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.2015-2016学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为\frac{1}{2} .【考点】直线的斜率.【分析】直接利用直线的斜率公式可得.【解答】解:∵过M(﹣1,2),N(3,4)两点,∴直线的斜率为: =,故答案为:.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4= 16 .【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式即可得出.【解答】解:由已知可得:S4===16.故答案为:16.3.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n= 60 .【考点】分层抽样方法.【分析】根据分层抽样原理,利用样本容量与频率、频数的关系,即可求出样本容量n.【解答】解:根据分层抽样原理,得;样本中A种型号产品有12件,对应的频率为:=,所以样本容量为:n==60.故答案为:60.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为\frac{1}{12} .【考点】列举法计算基本事件数及事件发生的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为: =.故答案为:.6.根据如图所示的伪代码,可知输出的结果S为56 .【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用,一直求出不满足循环条件时S的值.【解答】解:模拟执行程序,可得S=0,I=0,满足条件I<6,执行循环,I=2,S=4满足条件I<6,执行循环,I=4,S=20满足条件I<6,执行循环,I=6,S=56不满足条件I<6,退出循环,输出S的值为56.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是\frac{8}{5} .【考点】茎叶图.【分析】由已知中的茎叶图,我们可以得到七位评委为某班的小品打出的分数,及去掉一个最高分和一个最低分后的数据,代入平均数公式及方差公式,即可得到所剩数据的平均数和方差.【解答】解:由已知的茎叶图七位评委为某班的小品打出的分数为:79,84,84,84,86,87,93去掉一个最高分93和一个最低分79后,所剩数据的平均数==85方差S2= [(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=,故选:.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于126 .【考点】等比数列的前n项和.【分析】由题意可知,数列{a n}是以2为首项,以2为公比的等比数列,然后直接利用等比数列的前n项和公式得答案.【解答】解:由a n+1﹣2a n=0(n∈N*),得,又a1=2,∴数列{a n}是以2为首项,以2为公比的等比数列,则.9.已知变量x,y满足,则目标函数z=2x+y的最大值是13 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(5,3),代入目标函数z=2x+y得z=2×5+3=13.即目标函数z=2x+y的最大值为13.故答案为:13.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是\frac{4}{9π}.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.【解答】解:如图所示:∵S正=1,S圆=π()2=,∴P==.则油(油滴的大小忽略不计)正好落人孔中的概率是故答案为:.11.在△ABC中,若acosB=bcosA,则△ABC的形状为等腰三角形.【考点】三角形的形状判断.【分析】利用正弦定理,将等式两端的“边”转化为“边所对角的正弦”,再利用两角和与差的正弦即可.【解答】解:在△ABC中,∵acosB=bcosA,∴由正弦定理得:sinAcosB=sinBcosA,∴sin(A﹣B)=0,∴A﹣B=0,∴A=B.∴△ABC的形状为等腰三角形.故答案为:等腰三角形.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1 .【考点】直线的一般式方程与直线的平行关系.【分析】两直线的斜率都存在,由平行条件列出方程,求出a即可.【解答】解:由题意知,两直线的斜率都存在,由l1与l2平行得﹣=∴a=﹣1 a=2,当a=2时,两直线重合.∴a=﹣1故答案为:﹣113.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是(﹣∞,﹣\sqrt{3}]∪[\sqrt{3},+∞).【考点】等差数列的通项公式.【分析】由已知条件利用等差数列前n项和公式得+10a1d+15=0,从而d=﹣﹣a1,由此利用均值定理能求出实数d的取值X围.【解答】解:∵等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,∴+15=0,∴+10a1d+15=0,∴d=﹣﹣a1,当a1>0时,d=﹣﹣a1≤﹣2=﹣,当a1<0时,d=﹣﹣a1≥2=,∴实数d的取值X围是(﹣∞,﹣]∪[,+∞).故答案为:(﹣∞,﹣]∪[,+∞).14.已知正实数x,y满足,则xy的取值X围为[1,\frac{8}{3}].【考点】基本不等式在最值问题中的应用.【分析】设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.【解答】解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值X围是[1,]故答案为:[1,]二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.【考点】直线的倾斜角;两角和与差的余弦函数.【分析】(1)求出tanA,根据二倍角公式,求出tan2A的值即可;(2)根据同角的三角函数的关系分别求出sinA和cosA,代入两角差的余弦公式计算即可.【解答】解:(1)由4x﹣3y+12=0,得:k=,则tanA=,∴tan2A==﹣;(2)由,以及0<A<π,得:sinA=,cosA=,cos(﹣A)=cos cosA+sin sinA=×+×=.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{a n}的公差为d,由a2=4,S5=30,可得,联立解出即可得出.(2)==,利用“裂项求和”方法、数列的单调性即可得出.【解答】(1)解:设等差数列{a n}的公差为d,∵a2=4,S5=30,∴,解得a1=d=2.∴a n=2+2(n﹣1)=2n.(2)证明: ==,∴数列{}的前n项和为T n=+…+=,∴T1≤T n,∴≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.【考点】二次函数的性质;函数零点的判定定理.【分析】(1)由k的值,得到f(x)解析式,由此得到大于0的解集.(2)由f(x)>0恒成立,得到判别式小于0恒成立.(3)由两个不同的零点,得到判别式△>0,由两点均大于,得到对称轴大于,和f()>0.【解答】解:(1)若k=时,f(x)=x2﹣x.由f(x)>0,得x2﹣x>0,即x(x﹣)>0∴不等式f(x)>0的解集为{x|x<0或x>}(2)∵f(x)>0对任意x∈R恒成立,则△=(﹣k)2﹣4(2k﹣3)<0,即k2﹣8k+12<0,解得k的取值X围是2<k<6.(3)若函数f(x)两个不同的零点均大于,则有,解得,∴实数k的取值X围是(6,).19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【分析】(1)求出AN,AM,即可建立函数关系;(i)设AN=x米,先求出AM的长,即可表示出矩形AMPN的面积;(ii)由∠BMC=θ(rad),可以依次表示出AM与AN的长度,即可表示出S关于θ的函数表达式;(2)选择(ii)中的函数关系式,化简,由基本不等式即可求出最值.【解答】解:(1)(i)∵Rt△CDN~Rt△MBC,∴=,∴,∴BM=,由于,则AM=∴S=AN•AM=,(x>2)(ii)在Rt△MBC中,tanθ=,∴MB=,∴AM=3+,在Rt△CDN中,tanθ=,∴DN=3tanθ,∴AN=2+3tanθ,∴S=AM•AN=(3+)•(2+3tanθ),其中0<θ<;(2)选择(ii)中关系式∵S=AM•AN=(3+)•(2+3tanθ),(0<θ<);∴S=12+9tanθ+≥12+2=24,当且仅当9tanθ=,即tanθ=时,取等号,此时AN=4答:当AN的长度为4米时,矩形AMPN的面积最小,最小值为24m2.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.【考点】数列的求和;等差关系的确定.【分析】(1)由a n+1+a n=4n﹣3,n∈N*,可得a2+a1=1,a3+a2=5,相减可得a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,可得2d=4,解得d.(2)由a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,可得a n+2﹣a n=4,a2=4.可得数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.对n分类讨论利用等差数列的求和公式即可得出.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10,求出其最大值即可得出.当n为偶数时,同理可得.【解答】解:(1)∵a n+1+a n=4n﹣3,n∈N*,∴a2+a1=1,a3+a2=5,∴a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,则2d=4,解得d=2.∴2a1+2=1,解得a1=﹣.(2)∵a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,∴a n+2﹣a n=4,a2=4.∴数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.∴a2k﹣1=﹣3+4(k﹣1)=4k﹣7;a2k=4+4(k﹣1)=4k.∴a n=,∴当n为偶数时,S n=(a1+a2)+…+(a n﹣1+a n)=﹣3+9+…+(4n﹣3)==.当n为奇数时,S n=S n+1﹣a n+1=﹣2(n+1)=.∴S n=.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6,当n=1或3时,[f(n)]max=2,∴﹣a1≥2,解得a1≥2或a1≤﹣1.当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1,由≥5成立,a n+1+a n=4n﹣3,可得: +3a1≥﹣4n2+16n﹣12,令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4,当n=2时,[f(n)]max=4,∴+3a1≥4,解得a1≥1或a1≤﹣4.综上所述可得:a1的取值X围是(﹣∞,﹣4]∪[2,+∞).。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
北京市东城区2021-2022高二数学下学期期末考试试题(含解析)重点中学试卷可修改,欢迎下载2021-2022学年东城区高二数学期末考试本试卷共4页,共100分,考试时间120分钟。
请考生将答案填写在答题卡上,试卷上的答案无效。
考试结束后,请将试卷和答题卡一并交回。
第一部分选择题(共32分)一、选择题:本大题共8小题,每小题4分,共32分。
在每个小题给出的四个备选答案中,只有一个是符合题目要求的。
1.已知集合 $M=\{0.1.2\}$,$N=\{x|0\leq x<2\}$,则$M\cap N$ 等于A。
$\{0\}$。
B。
$\{0.1\}$。
C。
$\{1.2\}$。
D。
$\emptyset$解析】直接进行交集的运算即可得到$M\cap N=\{0.1\}$,故选 B。
2.已知曲线 $y=\dfrac{1}{x}$,$x\neq 0$,那么集合$\{x|y=f(x)\}$ 在点 $(5.0.2)$ 处的切线方程是A。
$y=5x-24$。
B。
$y=5x-25$。
C。
$y=4x-19$。
D。
$y=4x-21$解析】求出切线的斜率即可。
由导数的几何意义,切线的斜率等于函数在该点的导数值,即 $f'(5)=-\dfrac{1}{25}$,带入点斜式即可得到切线方程 $y=5x-25$,故选 B。
3.已知 $x>0$,$y>0$,那么“$x\cdot y>0$”是“$x>0$且$y>0$”的A。
充分而不必要条件。
B。
充要条件。
C。
必要而不充分条件。
D。
既不充分也不必要条件解析】先利用取特殊值法判断 $x\cdot y>0$ 时,$x>0$ 且$y>0$ 不成立,再说明 $x>0$ 且 $y>0$ 时,$x\cdot y>0$ 一定成立,即可得到结论。
故“$x\cdot y>0$”是“$x>0$且$y>0$”的必要不充分条件,故选 C。
人教版高一下册期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.设,m n 为两条不同的直线,,,αβγ为三个不重合平面,则下列结论正确的是( ) A .若m αP ,n αP ,则m n P B .若m α⊥,m n P ,则n α⊥ C .若αγ⊥,βγ⊥,则αβ∥D .若m α⊥,αβ⊥,则m βP【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B2.在四棱锥P ABCD -中,PA ⊥平面ABC ,ABC ∆中,32BA BC AC ===,2PA =,则三棱锥P ABC -的外接球的表面积为( )A .B .22πC .12πD .20π【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B3.直线10x -+=的倾斜角为( ) A .3π B .6π C .23π D .56π 【来源】山西省康杰中学2017-2018学年高二上学期期中考试数学(文)试题 【答案】B4.鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名.九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一根正四棱柱状的木条挖一些凹槽而成.若九根正四棱柱底面边长均为1,其中六根最短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个球形容器内,使鲁班锁最高的三个正四棱柱形木榫的上、下底面顶点分别在球面上,则该球形容器的表面积(容器壁的厚度忽略不计)的最小值为( )A .24πB .25πC .26πD .27π【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】D 5.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .【来源】湖南省邵阳市邵东县创新实验学校2019-2020学年高一上学期期中数学试题 【答案】C6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【来源】北京市西城区2018年1月高三期末考试文科数学试题 【答案】B7.已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( )A .B .2C .D 【来源】西藏自治区拉萨中学2018届高三第七次月考数学(文)试题 【答案】D8.如果直线l 上的一点A 沿x 轴在正方向平移1个单位,再沿y 轴负方向平移3个单位后,又回到直线l 上,则l 的斜率是( ) A .3 B .13C .-3D .−13【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】C9.一个平面四边形的斜二测画法的直观图是一个边长为1的正方形,则原平面四边形的面积等于( ) A .√2 B .2√2 C .8√23D .8√2【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B10.直线y =kx +3与圆(x −2)2+(y −3)2=4相交于M,N 两点,若|MN|≥2,则k 的取值范围是( )A .[−√3,√3]B .(−∞,−√3]∪[√3,+∞)C .[−√33,√33] D .[−23,0]【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】A11.已知点P(2,1)在圆C:x 2+y 2+ax −2y +b =0上,点P 关于直线x +y −1=0的对称点也在圆C 上,则实数a,b 的值为( )A .a =−3,b =3B .a =0,b =−3C .a =−1,b =−1D .a =−2,b =1 【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B12.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A .27πB .36πC .54πD .81π【来源】山西省2019-2020学年高二上学期10月联合考试数学(理)试题 【答案】B13.在三棱锥A BCD -中,AD CD ⊥,2AB BC ==,AD =CD =,则该三棱锥的外接球的表面积为( ) A .8πB .9πC .10πD .12π【来源】辽宁省辽阳市2019-2020学年高三上学期期末考试数学(文)试题 【答案】A14.直线()2140x m y +++=与直线 320mx y +-=平行,则m =( ) A .2B .2或3-C .3-D .2-或3-【来源】江苏省南京市六校联合体2018-2019学年高一下学期期末数学试题 【答案】B15.如图,在正方体1111ABCD A B C D -中,M ,N 分别是为1BC ,1CD 的中点,则下列判断错误的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行【来源】2015届福建省三明市一中高三上学期半期考试理科数学试卷(带解析) 【答案】D16. (2017·黄冈质检)如图,在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且BE 到平面PADB .BE ∥平面PAD ,且BE 到平面PAD 的距离为3C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30° D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°【来源】2014-2015学年湖北省安陆市一中高一下学期期末复习数学试卷(带解析)【答案】D17.如图,在直角梯形ABCD 中,0190,//,12A AD BC AD AB BC ∠====,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD .在四面体A BCD -中,下列说法正确的是( )A .平面ABD ⊥平面ABCB .平面ACD ⊥平面ABC C .平面ABC ⊥平面BCDD .平面ACD ⊥平面BCD【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题 【答案】B18.已知直线l :()y t k x t -=-()2t >与圆O :224x y +=有交点,若k 的最大值和最小值分别是,M m ,则log log t t M m +的值为( ) A .1B .0C .1-D .222log 4t t t ⎛⎫⎪-⎝⎭【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】B19.若x 2+y 2–x +y –m =0表示一个圆的方程,则m 的取值范围是 A .m >−12 B .m ≥−12 C .m <−12D .m >–2【来源】2018年12月9日——《每日一题》高一 人教必修2-每周一测 【答案】A20.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③【来源】二轮复习 专题12 空间的平行与垂直 押题专练 【答案】B二、多选题21.如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为()4,5,3B .点1C 关于点B 对称的点为()5,8,3- C .点A 关于直线1BD 对称的点为()0,5,3 D .点C 关于平面11ABB A 对称的点为()8,5,0【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】ACD三、填空题22.若直线:l y x m =+上存在满足以下条件的点P :过点P 作圆22:1O x y +=的两条切线(切点分别为,A B ),四边形PAOB 的面积等于3,则实数m 的取值范围是_______ 【来源】福建省厦门市2018-2019学年度第二学期高一年级期末数学试题【答案】-⎡⎣23.点E 、F 、G 分别是正方体1111ABCD A B C D -的棱AB ,BC ,11B C 的中点,则下列命题中的真命题是__________(写出所有真命题的序号).①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形; ②点P 在直线FG 上运动时,总有AP DE ⊥;③点Q 在直线11B C 上运动时,三棱锥1A D QC -的体积是定值;④若M 是正方体的面1111D C B A ,(含边界)内一动点,且点M 到点D 和1C 的距离相等,则点M 的轨迹是一条线段.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题 【答案】①②④24.如图,M 、N 分别是边长为1的正方形ABCD 的边BC 、CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,有以下结论:①异面直线AC 与BD 所成的角为定值. ②存在某个位置,使得直线AD 与直线BC 垂直.③存在某个位置,使得直线MN 与平面ABC 所成的角为45°.④三棱锥M -ACN 体积的最大值为48. 以上所有正确结论的序号是__________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】①③④25.已知两点(2,0)M -,(2,0)N ,若以线段MN 为直径的圆与直线430x y a -+=有公共点,则实数a 的取值范围是___________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】[]10,10-26.已知正方体1111ABCD A B C D -的棱长为点M 是棱BC 的中点,点P在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____.【来源】北京市海淀区2018届高三第一学期期末理科数学试题27.某几何体的三视图如下图所示,则这个几何体的体积为__________.【来源】黄金30题系列 高一年级数学(必修一 必修二) 小题好拿分 【答案】20328.设直线3450x y +-=与圆221:9C x y +=交于A , B 两点,若2C 的圆心在线段AB 上,且圆2C 与圆1C 相切,切点在圆1C 的劣弧AB 上,则圆2C 半径的最大值是__________.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】229.已知直线240x my ++=与圆22(1)(2)9x y ++-=的两个交点关于直线0nx y n +-=对称,则m n -=_______.【来源】辽宁省辽阳市2019-2020学年高二上学期期末数学试题 【答案】3- 30.给出下列命题: ①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行; ④一个平面中的两条直线与另一个平面都平行,则这两个平面平行; 其中说法正确的有_____(填序号).【来源】河南省三门峡市2019-2020学年高一上学期期末数学试题 【答案】②③31.设直线2y x a =+与圆22220x y ay +--=相交于A ,B 两点,若||AB =,则a =________【来源】吉林省吉林市吉化第一高级中学2019-2020学年高一上学期期末数学试题【答案】四、解答题32.已知圆C 的一般方程为22240x y x y m +--+=. (1)求m 的取值范围;(2)若圆C 与直线240x y +-=相交于,M N 两点,且OM ON ⊥(O 为坐标原点),求以MN 为直径的圆的方程.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)5m <;(2)224816555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 33.如图4,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.【来源】2010年普通高等学校招生全国统一考试(广东卷)文科数学全解全析 【答案】(1)证明见解析(2)d =34.已知圆的方程为228x y +=,圆内有一点0(1,2)P -,AB 为过点0P 且倾斜角为α的弦.(1)当135α=︒时,求AB 的长;(2)当弦AB 被点0P 平分时,写出直线AB 的方程. 【来源】2019年12月14日《每日一题》必修2-周末培优【答案】(1(2)250x y -+=.35.如图,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =,M 是AC 与BD 的交点.求证:(1)1//D M 平面11A C B (2)求1BC 与1D M 的所成角的正弦值.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)见解析;(2)1036.如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为10,若存在,求出线段BP 的长,若不存在,请说明理由.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题【答案】(1)见解析;(237.已知圆C 的圆心在直线390x y --=上,且圆C 与x 轴交于两点(50)A ,,0(1)B ,. (1)求圆C 的方程;(2)已知圆M :221(1)12x y ⎛⎫-++= ⎪⎝⎭,设(,)P m n 为坐标平面上一点,且满足:存在过点(,)P m n 且互相垂直的直线1l 和2l 有无数对,它们分别与圆C 和圆M 相交,且圆心C 到直线1l 的距离是圆心M 到直线2l 的距离的2倍,试求所有满足条件的点(,)P m n 的坐标【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)22(3)4x y -+=(2)79,55⎛⎫- ⎪⎝⎭或31,55⎛⎫ ⎪⎝⎭ 38.如图,四棱锥S -ABCD 的底面是边长为2的正方形,每条侧棱的长都是底面边长P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)30°39.如图,在正三棱柱111ABC A B C -中,2AB =,侧棱1AA =E ,F 分别是BC ,1CC 的中点.(1)求证:1//BC 平面AEF ;(2)求异面直线AE 与1A B 所成角的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)45°40.已知直线1:2l y x =-+,直线2l 经过点(40),,且12l l ⊥.(1)求直线2l 的方程;(2)记1l 与y 轴相交于点A ,2l 与y 轴相交于点B ,1l 与2l 相交于点C ,求ABC V 的面积.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)40x y --=(2)941.已知曲线x 2+y 2+2x −6y +1=0上有两点P(x 1,y 1),Q(x 2,y 2)关于直线x +my +4=0对称,且满足x 1x 2+y 1y 2=0.(1)求m 的值;(2)求直线PQ 的方程.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析)【答案】(1)m =−1;(2)y =−x +1.42.如图,边长为4的正方形ABCD 与矩形ABEF 所在平面互相垂直,,M N 分别为,AE BC 的中点,3AF =.(1)求证:DA ⊥平面ABEF ;(2)求证://MN 平面CDEF ;(3)在线段FE 上是否存在一点P ,使得AP MN ⊥?若存在,求出FP 的长;若不存在,请说明理由.【来源】2014届北京市东城区高三上学期期末统一检测文科数学试卷(带解析)【答案】(1)详见解析;(2)详见解析;(3)存在,94FP = 43.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,且60BAD ︒∠=,PD ⊥平面ABCD ,,E F 分别为棱,AB PD 的中点.(1)证明://EF 平面PBC .(2)若四棱锥P ABCD -的体积为A 到平面PBC 的距离.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)证明见详解;(2.44.已知圆22:6200C x y y +--+=.(1)过点的直线l 被圆C 截得的弦长为4,求直线l 的方程;(2)已知圆M 的圆心在直线y x =-上,且与圆C 外切于点,求圆M 的方程.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)x =0x +-=;(2)224x y +=.45.已知ABC V 的顶点坐标分别为()1,2A ,()2,1B --,()2,3C -.(1)求BC 边上的中线所在的直线的方程;(2)若直线l 过点B ,且与直线AC 平行,求直线l 的方程.【来源】四川省凉山彝族自治州西昌市2019-2020学年高二上学期期中数学(理)试题【答案】(1)420x y --=;(2)5110x y ++=46.如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,090BAP CDP ∠=∠=,E 为PC 中点,(1)求证://AP 平面EBD ;(2)若PAD ∆是正三角形,且PA AB =.(Ⅰ)当点M 在线段PA 上什么位置时,有DM ⊥平面PAB ?(Ⅱ)在(Ⅰ)的条件下,点N 在线段PB 上什么位置时,有平面DMN ⊥平面PBC ?【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)详见解析;(2)(Ⅰ) 点M 在线段PA 中点时;(Ⅱ) 当14PN PB =时. 47.已知点P 是圆22:(3)4C x y -+=上的动点,点(3,0)A - ,M 是线段AP 的中点(1)求点M 的轨迹方程;(2)若点M 的轨迹与直线:20l x y n -+=交于,E F 两点,且OE OF ⊥,求n 的值.【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)221x y +=;(2)n =. 48.已知四棱锥P ABCD -的底面ABCD 是等腰梯形,//AB CD ,AC BD O =I ,22AO OC ==,PA PB AB ===AC PB ⊥.(1)证明:平面PBD ⊥平面ABCD ;(2)求二面角A PD B --的余弦值.【来源】福建省三明市2019-2020学年高二上学期期末数学试题【答案】(1)证明见解析;49.若圆C 经过点3(2,)A -和(2,5)B --,且圆心C 在直线230x y --=上,求圆C 的方程.【来源】2010年南安一中高二下学期期末考试(理科)数学卷【答案】22(1)(2)10x y +++=50.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰在CD 上,即1A O ⊥平面DBC .(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ;(3)求点C 到平面1A BD 的距离.【来源】吉林省吉林市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析;(2)证明见解析;(3)245。
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。
E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
北京市东城区2016-2017学年下学期高一年级期末考试语文试卷本试卷共100分。
考试时长120分钟。
一、本大题共6小题,共14分。
阅读下面的材料,完成1—6题。
材料一2012年和2013年是中国人口老龄化发展中形成的第一个老年人口增长高峰。
2013年老年人口数量达到2.02亿,老龄化水平达到14.8%,是劳动年龄人口进入负增长的历史拐点,老年抚养比从2012的20.66%上升到2013年的21.58%。
截止2014年底,我国60岁以上老年人口已经达到2.12亿,占总人口的15.5%。
据预测,本世纪中叶老年人口数量将达到峰值,超过4亿,届时每3人中就会有一个老年人。
目前,我国空巢和独居老年人近1亿人,60岁以上失能、半失能老年人约3500万人,要把帮扶困难老年人作为发展老龄事业的重中之重。
根据联合国的规定,当一个国家或地区60岁及以上人口占总人口的比重超过10%,或65岁及以上人口占总人口的比重超过7%时,通常认为这个国家进入老龄化。
全世界老年人口超过2亿的国家只有中国。
预计2033年前后,中国老年人口数将增加到4亿,到2050年左右,老年人口将达到全国人口的三分之一,“银发潮”将对我国的经济、社会、政治、文化发展产生深远的影响。
根据中国社会科学院及社会科学文献出版社联合发布的《社会蓝皮书:2014年中国社会形势分析与预测》,未来几十年里,“银发潮”将席卷中国,60岁以上老年人口所占比例将会迅速提高。
2005年,相对每100名适龄工作的成年人,仅有16名中国老年人。
这一老年抚养比到2025年将会翻番到32%,到2050年会再翻一番,达到61%。
到2050年时,将会有4.38亿中国人年龄达到或超过60岁,其中1.08亿人超过80岁,2050年劳动者的负担将增长3倍。
由于人口老龄化超前于现代化,“未富先老”和“未备先老”的特征日益凸显。
老年人面临诸多问题和困难。
2012年全国约有2300万老年人属于贫困和低收入者。
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2015-2016学年某某省某某市桐乡高中高一(上)期中数学试卷(创新班)一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.3.设向量=(cosα,),若的模长为,则cos2α等于()A.﹣B.﹣C.D.4.平面向量与的夹角为,若,,则=()A.B.C.4 D.125.函数y=xcosx+sinx的图象大致为()A.B.C.D.6.为了得到g(x)=cos2x的图象,则需将函数的图象()A.向右平移单位B.向左平移单位C.向右平移单位D.向左平移单位7.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.28.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或二.填空题(本大题共7小题,第9-11小题每空3分,第12小题每空2分,第13-15小题每空4分,共36分).9.已知向量=(3,1),=(1,3),=(k,2),当∥时,k=;当(﹣)⊥,则k=.10.已知α为第二象限的角,sinα=,则=,tan2α=.11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=,cos∠BCF=.12.函数y=的图象如图,则k=,ω=,φ=.13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R 恒成立,则①;②;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是;⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是(写出所有正确结论的编号).14.已知,, =,则在上的投影的取值X围.15.已知,∠APB=60°,则的取值X围是.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.17.已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求的值.18.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.19.已知向量=(co sα,sinα),=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),其中0<α<x<π.(1)若,求函数f(x)=•的最小值及相应x的值;(2)若与的夹角为,且⊥,求tan2α的值.20.定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx 的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值X围.2015-2016学年某某省某某市桐乡高中高一(上)期中数学试卷(创新班)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.【考点】运用诱导公式化简求值;任意角的三角函数的定义.【专题】计算题.【分析】先利用诱导公式使tan600°=tan60°,进而根据求得答案.【解答】解:∵,∴.故选A【点评】本题主要考查了用诱导公式化简求值的问题.属基础题.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.【考点】平行向量与共线向量;单位向量.【专题】平面向量及应用.【分析】由条件求得=(3,﹣4),||=5,再根据与向量同方向的单位向量为求得结果.【解答】解:∵已知点A(1,3),B(4,﹣1),∴=(4,﹣1)﹣(1,3)=(3,﹣4),||==5,则与向量同方向的单位向量为=,故选A.【点评】本题主要考查单位向量的定义和求法,属于基础题.3.设向量=(cosα,),若的模长为,则cos2α等于()A.﹣B.﹣C.D.【考点】二倍角的余弦.【专题】三角函数的求值.【分析】由||==,求得cos2α=,再利用二倍角的余弦公式求得cos2α=2cos2α﹣1的值.【解答】解:由题意可得||==,∴cos2α=.∴cos2α=2cos2α﹣1=﹣,故选:A.【点评】本题主要考查求向量的模,二倍角的余弦公式的应用,属于基础题.4.平面向量与的夹角为,若,,则=()A.B.C.4 D.12【考点】向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】分析由向量,求出向量,要求,先求其平方,展开后代入数量积公式,最后开方即可.【解答】解:由=(2,0),所以=,所以====12.所以.故选B.【点评】点评本题考查了向量的模及向量的数量积运算,考查了数学转化思想,解答此题的关键是运用.5.函数y=xcosx+sinx的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.6.为了得到g(x)=cos2x的图象,则需将函数的图象()A.向右平移单位B.向左平移单位C.向右平移单位D.向左平移单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的求值;三角函数的图像与性质.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:∵y=sin(﹣2x+)=cos[﹣(﹣2x+)]=cos(2x+)=cos[2(x+)],∴将函数y=sin(﹣2x+)图象上所有的点向右平移个单位,即可得到g(x)=cos2x的图象.故选:A.【点评】本题主要考查诱导公式、函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.2【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意可得=0,根据=﹣(1﹣λ)﹣λ=(λ﹣1)4﹣λ×1=﹣2,求得λ的值.【解答】解:由题意可得=0,由于=()•()=[﹣]•[﹣]=0﹣(1﹣λ)﹣λ+0=(λ﹣1)4﹣λ×1=﹣2,解得λ=,故选B.【点评】本题主要考查两个向量垂直的性质,两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.8.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【专题】三角函数的求值.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos(β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣s in2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.【点评】本题考查同角三角函数间的关系式的应用,着重考查两角和的余弦与二倍角的正弦,考查转化思想与综合运算能力,属于难题.二.填空题(本大题共7小题,第9-11小题每空3分,第12小题每空2分,第13-15小题每空4分,共36分).9.已知向量=(3,1),=(1,3),=(k,2),当∥时,k=;当(﹣)⊥,则k= 0 .【考点】数量积判断两个平面向量的垂直关系;平行向量与共线向量.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】利用向量的坐标运算和向量平行、垂直的性质求解即可.【解答】解:∵向量=(3,1),=(1,3),=(k,2),∵∥,∴,解得k=.∵向量=(3,1),=(1,3),=(k,2),∴=(3﹣k,﹣1),∵(﹣)⊥,∴(3﹣k)•1+(﹣1)•3=0,解得k=0.故答案为:,0.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量平行和向量垂直的性质的合理运用.10.已知α为第二象限的角,sinα=,则= 3 ,tan2α=.【考点】二倍角的正切.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】先由已知求得的X围,求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:∵α为第二象限的角,∴可得:∈(kπ,k),k∈Z,∴tan>0,又∵sinα=,∴cosα=﹣,tanα==﹣,∴tanα=﹣=,整理可得:3tan2﹣8tan﹣3=0,解得:tan=3或﹣(舍去).tan2α==.故答案为:3,.【点评】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=,cos∠BCF=.【考点】三角形中的几何计算.【专题】计算题;转化思想;综合法;解三角形.【分析】取AB中点D,连接CD,设AB=6,则AC=BC=3,由余弦定理求出CE=CF=,再由余弦定理得cos∠ECF,由此能求出tan∠ECF.由半角公式求出c os∠DCF,sin∠DCF,再由cos∠BCF=cos(45°﹣∠DCF),能求出结果.【解答】解:取AB中点D,连接CD,设AB=6,则AC=BC=3,由余弦定理可知cos45°===,解得CE=CF=,再由余弦定理得cos∠ECF===,∴sin,∴tan∠ECF==.cos∠DCF=cos==,sin∠DCF=sin==,cos∠BCF=cos(45°﹣∠DCF)=cos45°cos∠DCF+sin45°sin∠DCF=()=.故答案为:,.【点评】本题考查角的正切值、余弦值的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理、半角公式的合理运用.12.函数y=的图象如图,则k=,ω=,φ=.【考点】函数的图象.【专题】计算题;数形结合;函数的性质及应用.【分析】由直线y=kx+1过点(﹣2,0)得k=;可确定=﹣=π,从而确定ω=,再代入点求φ即可.【解答】解:∵直线y=kx+1过点(﹣2,0),∴k=;∵=﹣=π,∴T=4π,∴ω==,(,﹣2)代入y=2sin(x+φ)得,sin(+φ)=﹣1,解得,φ=;故答案为:,,.【点评】本题考查了分段函数及数形结合的思想应用.13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R 恒成立,则①;②;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是;⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是①②③(写出所有正确结论的编号).【考点】两角和与差的正弦函数;正弦函数的单调性.【专题】计算题.【分析】先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到是三角函数的最大值,得到x=是三角函数的对称轴,将其代入整体角令整体角等于kπ+求出辅助角θ,再通过整体处理的思想研究函数的性质.【解答】解:∵f(x)=asin2x+bcos2x=sin(2x+θ)∵∴2×+θ=kπ+∴θ=kπ+∴f(x)═sin(2x+kπ+)=±sin(2x+)对于①=±sin(2×+)=0,故①对对于②,=sin(),|f()|=sin(),∴,故②正确.对于③,f(x)不是奇函数也不是偶函数对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|>,此时平方得b2>a2+b2这不可能,矛盾,∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错故答案为:①②③.【点评】本题考查三角函数的对称轴过三角函数的最值点、考查研究三角函数的性质常用整体处理的思想方法.14.已知,, =,则在上的投影的取值X围.【考点】平面向量数量积的运算.【专题】综合题;分类讨论;转化思想;向量法;平面向量及应用.【分析】由已知求出,再求出,代入投影公式,转化为关于t的函数,利用换元法结合配方法求得在上的投影的取值X围.【解答】解:∵=,且,,∴===.==4﹣2t+t2.∴在上的投影等于=.令4﹣t=m,则t=4﹣m,t2=16﹣8m+m2.∴上式=f(m)=.当m=0时,f(m)=0;当m>0时,f(m)==∈(0,1];当m<0时,f(m)=﹣=﹣∈(,0).综上,在上的投影的X围为(﹣,1].故答案为:(﹣,1].【点评】本题考查向量在几何中的应用,综合考查向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量在向量上的投影是解题的关键,是中档题.15.已知,∠APB=60°,则的取值X围是.【考点】平面向量数量积的运算.【专题】计算题;运动思想;数形结合法;平面向量及应用.【分析】由题意画出图形,取AB中点C,把问题转化为求的取值X围解决.【解答】解:如图,,∠APB=60°,取AB的中点C,连接PC,则===.由图可知,P为图中优弧上的点(不含A、B).∴(PC⊥AB时最大),∴的取值X围是(0,].故答案为:(0,].【点评】本题考查平面向量的数量积运算,由题意画出图形是解答该题的关键,是中档题.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.【考点】正弦函数的定义域和值域;三角函数的恒等变换及化简求值.【专题】计算题.【分析】(1)利用向量平行的坐标运算,同角三角函数间的关系,得到tanx的值,然后化简2cos2x﹣sin2x即可(2)先表示出在=(sin2x+),再根据x的X围求出函数f(x)的最大值及最小值.【解答】解:(1)∵∥,∴,∴,(3分)∴.(6分)(2)∵,∴,(8分)∵,∴,∴,(10分)∴,(12分)∴函数f(x)的值域为.(13分)【点评】本题主要考查平面向量的坐标运算.考查平面向量时经常和三角函数放到一起做小综合题.是高考的热点问题.17.已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】(Ⅰ)函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π,确定函数的周期,求出ω,确定ϕ的值,求出f(x)的解析式;(Ⅱ)若,求出,,利用诱导公式化简,然后再用二倍角公式求出它的值.【解答】解:(Ⅰ)∵图象上相邻的两个最高点之间的距离为2π,∴T=2π,则.∴f(x)=sin(x+ϕ).(2分)∵f(x)是偶函数,∴,又0≤ϕ≤π,∴.则 f(x)=cosx.(5分)(Ⅱ)由已知得,∴.则.(8分)∴.(12分)【点评】本题是中档题,考查函数解析式的求法,诱导公式和二倍角的应用,考查计算能力,根据角的X围求出三角函数值是本题的解题依据.18.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.【考点】二倍角的余弦;平面向量的综合题.【专题】解三角形.【分析】(1)根据二倍角的余弦公式变形、两角差的正弦公式化简解析式,由正弦函数的周期、最值求出结果;(2)根据向量垂直的条件列出方程,代入f(x)由诱导公式化简求出,由三角函数值的符号、角A的X围求出的X围,由平方关系求出的值,利用两角差的余弦函数、特殊角的三角函数值求出cos2A的值.【解答】解:(1)由题意得,f(x)=﹣﹣=cos2x﹣1=,∴函数f(x)最小值是﹣2,最小正周期T==π;(2)∵向量=(1,5)与向量=(1,f(﹣A))垂直,∴1+5f(﹣A)=0,则1+5[]=0,∴=>0,∵A为锐角,∴,则,∴==,则cos2A=cos[()﹣]=+=×+=.【点评】本题考查二倍角的余弦公式变形,两角差的正弦、余弦公式,向量垂直的条件,以及正弦函数的性质等,注意角的X围,属于中档题.19.已知向量=(cosα,sinα),=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),其中0<α<x<π.(1)若,求函数f(x)=•的最小值及相应x的值;(2)若与的夹角为,且⊥,求tan2α的值.【考点】平面向量的坐标运算.【分析】(1)根据向量点乘表示出函数f(x)的解析式后令t=sinx+cosx转化为二次函数解题.(2)根据向量a与b的夹角为确定,再由a⊥c可知向量a点乘向量c等于0整理可得sin(x+α)+2sin2α=0,再将代入即可得到答案.【解答】解:(1)∵=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),,∴f(x)=•=cosxsinx+2cosxsinα+sinxcosx+2sinxcosα=.令t=sinx+cosx(0<x<π),则t=,则2sinxcosx=t2﹣1,且﹣1<t<.则,﹣1<t<.∴时,,此时.由于<x<π,故.所以函数f(x)的最小值为,相应x的值为;(2)∵与的夹角为,∴.∵0<α<x<π,∴0<x﹣α<π,∴.∵⊥,∴cosα(sinx+2sinα)+sinα(cosx+2cosα)=0.∴sin(x+α)+2sin2α=0,.∴,∴.【点评】本题主要考查平面向量的坐标运算和数量积运算.向量一般和三角函数放在一起进行考查,这种题型是高考的热点,每年必考.20.定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx 的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值X围.【考点】两角和与差的正弦函数.【专题】计算题;压轴题;新定义;三角函数的求值;三角函数的图像与性质.【分析】(1)先利用诱导公式对其化简,再结合定义即可得到证明;(2)先根据定义求出其相伴向量,再代入模长计算公式即可;(3)先根据定义得到函数f(x)取得最大值时对应的自变量x0;再结合几何意义及基本不等式求出的X围,最后利用二倍角的正切公式及正切函数的单调性即可得到结论.【解答】(本题满分15分)解:(1)因为:,g(x)的相伴向量为(4,3),所以:g(x)∈S;(3分)(2)∵h(x)=cos(x+α)+2cosx=﹣sinαsinx+(cosα+2)cosx,∴h(x)的“相伴向量”为,.(7分)(3)的“相伴函数”,其中,当时,f(x)取得最大值,故,∴,∴,又M(a,b)是满足,所以,令,∴,m>2∵在(1,+∞)上单调递减,∴(15分)【点评】本体主要在新定义下考查平面向量的基本运算性质以及三角函数的有关知识.是对基础知识的综合考查,需要有比较扎实的基本功.。
北京市东城区2015-2016学年下学期高一期末考试数学试卷本试卷共100分,考试时长120分钟。
第一部分(选择题 共24分)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 不等式223x x +<的解集是 A. {}|13x x -<< B. {}|31x x -<< C. {}|31x x x <->或D. {}|13x x x <->或2. 为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为A.23 B. 12C.14D.163. 已知0a b <<,则A. 2a ab < B. 2ab b < C. 22a b <D. 22a b >4. 某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是 A. 10200y x ∧=-- B. 10200y x ∧=+ C. 10200y x ∧=-+D. 10200y x ∧=-5. 已知非零向量OA →, OB →不共线,且1=3BM BA →→,则向量=OM →A. 12+33OA OB →→B. 21+33OA OB →→C. 12-33OA OB →→D. 14-33OA OB →→6. 阅读下边的程序框图,运行相应的程序,那么输出的S 的值为A. -1B. 0C. 1D. 37. 已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则 A. 130,0a d dS << B. 130,0a d dS >> C. 130,0a d dS ><D. 130,0a d dS <>8.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A. 12尺B. 815尺 C.1629尺 D.1631尺第二部分 (非选择题 共76分)二、填空题(本大题共6小题,每小题4分,共24分)9. 某学院A ,B ,C 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟用分层抽样的方法抽取一个容量为120的样本。
已知该学院A 专业有380名学生,B 专业有420名学生,则该学院C 专业应抽取______名学生.10. 如图所示,在边长为1的正方形中,随机撒豆子,其中有1000粒豆子落在正方形中,180粒落到阴影部分,据此估计阴影部分的面积为_________.11. 若非零向量a ,b 满足,(2)0a b a b b =+∙=,则a 与b 的夹角为_________.12. 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则A ∠的度数为_______________. 13. 已知0,0x y >>,且满足134x y+=,则xy 的最大值为___________. 14. 已知平面向量a ,b 和c 在同一平面内且两两不共线,关于非零向量a 的分解有如下四个命题: ①给定向量b ,总存在向量c ,使a=b+c ;②给定向量b 和c ,总存在实数λ和μ,使a=λb+μc ;③给定单位向量b 和正数μ,总存在单位向量C 和实数λ,使a=λb+μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a=λb+μc. 则所有正确的命题序号是________.三、解答题:本大题共6小题,共52分。
解答应写出文字说明,证明过程或演算步骤。
15. (本题满分8分)在平面直角坐标系xOy 中,点A (-1,-2),B (3,2),D (-3,-1),以线段AB ,AD 为邻边作平行四边形ABCD. 求(I )点C 的坐标;(II )平行四边形ABCD 的面积. 16. (本题满分9分)已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。
17.(本题满分9分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B =. (I )求角B 的大小;(II )若3,sin 2sin b C A ==,求a ,c 的长. 18. (本题满分9分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月投递的快递件数记录结果中分别随机抽取8天的数据如下:甲公司某员工A :32 33 33 35 36 39 33 41 乙公司某员工B :42 36 36 34 37 44 42 36(I )根据两组数据完成甲、乙两个快递公司某员工A 和某员工B 投递快递件数的茎叶图,并通过茎叶图,对员工A 和员工B 投递快递件数作比较,写出一个统计结论:统计结论:__________________________________________________________(II )请根据甲公司员工A 和乙公司员工B 分别随机抽取的8天投递快递件数,试估计甲公司员工比乙公司员工该月投递快递件数多的概率。
19.(本题满分9分)已知关于x 的不等式(1)(2)2ax x -->的解集为A ,且3A ∉. (I )求实数a 的取值范围; (II )求集合A. 20.(本体满分8分)对于项数为m 的有穷数列{}n a ,记{}12max ,,,(1,2,,)k k b a a a k m == ,即k b 为12,,,k a a a 中的最大值,并称数列{}k b 是{}n a 的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5. (I )若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有符合条件的数列{}n a ; (II )设m=100,若|24n a n =-,{}n b 是{}n a 的控制数列,求1122100100()()()b a b a b a -+-++- 的值;(III )设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,,k m = ). 求证:(1,2,,)k k b a k m == .参考答案一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,选出符合题目要求的一项.二、填空题:本大题共6小题,每小题4分,共24分.三、解答题:本大题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤. 15. (本题满分8分)解:(I )(4,4),(2,1)AB AD ==-, (2,5)AC AB AD =+=,点C 的坐标为(1,3).…………………………4分(II )AB AD == cos ,10AB AD AB AD AB AD∙<>==-∙ . sin ,AB AD <>= sin ,12ABCD S AB AD AB AD =∙∙>=.………………………………8分16. (本题满分9分)解:(I )设等比数列{}n a 的公比为q ,由题意得3412483a q a ===,解得2q =. 所以11132(1,2,)n n n a a q n --==⨯= .………………………………3分 设等差数列{}n n b a -的公差为d ,所以4411()3b a b a d -=-+.即2224(43)3d -=-+.解得1d =-.………………5分 所以11()(1)1(1)2n n b a b a n d n n -=-+-=--=-. 从而1232(1,2,).n n b n n -=-+⨯= ………………………………6分(II )由(I )知1232(1,2,)n n b n n -=-+⨯= .数列{}2n -的前n 项和为(3)2nn -,数列{}132n -⨯的前n 项和为1233(21)32312n n n -⨯=-=⨯--..……………………9分所以,数列{}n b 的前n 项和为(3)3232n nn -+⨯-. 17.(本题满分9分)解:(I )∵sin cos b A B =,由正弦定理可得sin sin cos B A A B =.………2分∵sin 0A ≠,∴tan B =…………………………3分 ∴3B π=.………………………………4分(II )∵sin 2sin C A =,由正弦定理得2c a =,……………………5分 由余弦定理2222cos b a c ac B =+-∙, 得229422cos3a a a a π=+-∙.…………………………7分解得a =………………………………8分∴2c a ==………………………………9分 18.(本题满分9分)解:(I )某员工A 和某员工B 投递快递件数的茎叶图如下:统计结论:通过茎叶图可以看出,乙公司某员工B 投递快递件数的平均值高于甲公司某员工A 投递快递件数的平均值.(其它正确的结论照样给分)……………………4分(II )设事件i A 为“甲公司某员工A 在抽取的8天中,第i 天投递的快递件数”, 事件i B 为“乙公司某员工B 在抽取的8天中,第i 天投递的快递件数”,i=1,2,…,8. 设事件C 为“甲公司某员工A 比乙公司某员工B 投递的快递件数多”.由题意知445462636465688283848588 C A B A B A B A B A B A B A B A B A B A B A B UA B =因此123()6416P C ==.………………………………8分 因此可以估计甲公司员工比乙公司员工该月投递快递件数多的概率为316.………………9分 19.(本题满分9分)解:(I )∵3A ∉,∴当3x =时,有(1)(2)2ax x --≤,即312a -≤.∴1a ≤,即a 的取值范围是{}|1a a ≤.…………………………3分 (II )2(1)(2)2(1)(2)20(21)0ax x ax x ax a x -->⇔--->⇔-+>………………4分当a=0时,集合{}|0A x x =<;………………………………5分 当12a <-时,集合1|02A x x a ⎧⎫=<<+⎨⎬⎩⎭;……………………6分 当12a =-时,原不等式解集A 为空集;……………………7分 当102a -<<时,集合1|20A x x a ⎧⎫=+<<⎨⎬⎩⎭;……………………8分 当01a <≤时,集合1|02A x x x a ⎧⎫=<>+⎨⎬⎩⎭或.……………………9分 20. (本题满分8分)解:(I )数列{}n a 为2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4;2,3,4,5,5.………………2分(II )∵|24|n a n =-,{}n b 是{}n a 的控制数列, ∴11222,0,2b a a b ====. 当n ≥3时,n n b a =,∴1122100100()()()2b a b a b a -+-++-= .…………………………5分 (III )因为{}{}121121max ,,,max ,,, k k k k k b a a a b a a a a ++==, 所以1k k b b +≥.……………………………………6分 因为11,k m k k m k a b C a b C -++-+=+=,所以110k k m k m k a a b b +-+--=-≥,即1k k a a +≥.…………………………7分 因此,k k b a =.………………………………8分。