九年级数学二次函数的图象和性质同步练习
- 格式:doc
- 大小:1.24 MB
- 文档页数:10
22.1 二次函数的图象和性质1.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .2.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y = . 3.当m= 时,y=(m -1)xmm +2-3m 是关于x 的二次函数.4.当m= 时,抛物线y=(m +1)x mm +2+9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 5.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 28.抛物线,y=4 x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )错误!未找到引用源。
11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一 象限内的交点相同,则a 的值为( )A .4 B .2 C .21D .4112.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2); (2)y=ax 2与y=21x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=21x +3交于点(2,m ).13已知错误!未找到引用源。
是二次函数,且当错误!未找到引用源。
yxO1-1-112-2-223-3-334-4-44课题:§6.2二次函数的图象与性质(2)(初三数学030) 自助内容:1.在同一坐标系,分别作出y =x 2、y =x 2 +1、y =x 2 −2 这两个函数的图象,并说出它们有什么位置关系? 解:列表:x …y =x 2 [来源:学&科&…网]y=x2 +1…y=x2 −2练习:(1)函数y=x2-3是由y=x2向_____平移_____单位得到的.(2)函数y=x2+1是由y=x2-2向_____平移_____单位得到的.2. 用描点法画出y=-x2和y=-x2+3的图象并完成填空:y=-x2开口向,对称轴是,顶点坐标为,当时,y随x的增大而减小;当时,y随x的增大而增大,yx O1-1-112-2-223-3-334 -4-445 -5-55当时,y有最值,y=-x2+3 开口向,对称轴是,顶点坐标为,当时,y随x的增大而减小;当时,y随x的增大而增大,当时,y有最值.例题讲解:例1.说出抛物线y=2x2和y=2x2-2的对称轴,顶点坐标和开口方向并完成下表y=ax2+k a>0 a<0k>0k<0k>0k<0草图开口方向例2.(1)抛物线y =14x 2-9的开口 ,对称轴是 ,顶点坐标 ,它可以看作是由抛物线y =14x 2向平移 个单位得到的.(2)抛物线y =-4x 2-4的开口向 ,当x = 时,y 有最 值,最值为 .例3. 一条抛物线的形状和对称轴与y =12x 2相同,且抛物线经过点(1,1),求这条抛物线的函数关系式及其顶点坐标.例4.如图,直线l经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:(1)△AOC的面积;(2)二次函数图象顶点与点A、B组成的三角形的面积.当堂训练:1.抛物线y=-2x2-3的开口,对称轴是,顶点坐标是,当x 时,y随x的增大而增大,当x 时,y随x的增大而减小.2.将抛物线y=13x2向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、。
人教版九年级上册数学22.1.2 二次函数y=a x 2的图象和性质同步训练一、单选题1.在同一坐标系中,作y =2x 2,y =-2x 2,y =12x 2的图象,他们共同的特点是( )A .都关于y 轴对称,抛物线开口向上B .都关于y 轴对称,抛物线开口向下C .都关于原点对称,抛物线的顶点都是原点D .都关于y 轴对称,抛物线的顶点都是原点2.已知抛物线2y ax =与24y x =的形状相同,则a 的值是( ) A .4B .4-C .4±D .13.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A .25y x =B .212y x =-C .2y xD .213y x =4.若二次函数y =ax 2的图像过点P (﹣2,4),则该图象必经过点( ) A .(2,4)B .(﹣2,﹣4)C .(2,﹣4)D .(4,﹣2)5.下列抛物线中,开口向下的有( ) ①y2;①y =57x 2;①y =10x 2;①y =﹣211x 2. A .1个B .2个C .3个D .4个6.抛物线上y =(m -4)x 2有两点A (-3,y 1)、B (2,y 2),且y 1>y 2,则m 的取值范围是( ) A .m >4B .m <4C .m ≥4D .m ≠47.已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a >B .1a >C .1a ≠D .1a <8.若二次函数()20y ax a =≠的图象过点()2,3--,则必在该图象上的点还有( )A .()3,2--B .()2,3C .()2,3-D .()2,3-二、填空题9.已知函数213y x =-,不画图象,回答下列各题: (1)其图象的开口方向:________ (2)其图象的对称轴:________ (3)其图象的顶点坐标:________(4)当x >0时,y 随x 的增大而__________________________; (5)当x __时,函数y 的最_____值是________10.已知()11,A y -,()22,B y -,31,3C y ⎛⎫ ⎪⎝⎭三点都在二次函数213y x =-的图象上,比较1y 、2y 、3y 的大小:______.(用“>”连接)11.二次函数22y x =的图象经过点()11,A y -、()22,B y ,则1y ______2y .(填“>”“<”或“=”)12.若二次函数y =(m +1)x |m |的图象的开口向下,则m 的值为_____.13.若点(2,y 1)和点(4,y 2)在函数y =x 2的图象上,则y 1__y 2(填“>”、“<”或“=”).14.函数22y x =的图象的开口_______,对称轴是_______,顶点是________ . 15.在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).16.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的横坐标与纵坐标之和等于6,则对角线AC 的长为______.三、解答题17.说出下列抛物线的开口方向、对称轴和顶点:(1)23y x =; (2)23y x =-; (3)213y x =; (4)213y x =-.18.已知,如图:直线AB 过x 轴上的点(2,0)A ,且与抛物线2y ax =相交于B ,C 两点,点B 的坐标为(1,1).(1)求直线AB 和抛物线的函数解析式; (2)如果抛物线上有一点D ,使得AODBCOS S=,求点D 的坐标.19.已知函数()2323m m y m x +-=+是关于x 的二次函数.(1)求m 的值.(2)当m 为何值时,该函数图像的开口向下? (3)当m 为何值时,该函数有最小值,最小值是多少?参考答案:1.D 2.C 3.B 4.A 5.B 6.A 7.B 8.C9. 向下 y 轴 (0,0) 减小 =0 大 0 10.312y y y >> 11.< 12.-2 13.<14. 向上 y 轴 (0,0) 15.321a a a >>. 16.17.(1)(3)抛物线的开口向上,对称轴是y 轴,顶点坐标为(0,0);(2)(4)抛物线的开口向下,对称轴是y 轴,顶点坐标为(0,0) 18.(1)2y x =-+,2yx ;(2)D19.(1)m 1=−4,m 2=1;(2)当m =−4时,该函数图象的开口向下;(3)当m =1时,函数为24y x =,该函数有最小值,最小值为0.。
22.1.2 二次函数y=ax2的图象和性质1.在同一直角坐标系中作出函数y=x2,y=2x2和y=3x2的图象,然后根据图象填空:抛物线y=x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=2x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=3x2的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=x2,y=2x2,y=3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________.2.在同一直角坐标系中作出函数y=-x2,y=-2x2和y=-3x2的图象,然后根据图象填空:抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-2x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-3x2的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=-x2,y=-2x2,y=-3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________.3.(1)抛物线y=ax2的开口方向和开口大小由________决定,当a________0时,抛物线的开口向上;当a________0时,抛物线的开口向下;(2)抛物线y=ax2的顶点坐标是( ),当a________0时,它是抛物线的最低点,即当x=________时,函数取得最小值为________;当a________0时,它是抛物线的最高点,即当x=________时,函数取得最大值为________;(3)抛物线y=ax2的对称轴是________.4.在同一直角坐标系中作出函数y=-x2,y=-x2+2,y=-x2-3的图象,然后根据图象填空:抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-x2+2的顶点坐标是( ),对称轴是________,开口向________;抛物线y=-x2-3的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=-x2+2,y=-x2-3与抛物线y=-x2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线y=-x2沿y轴向________平移________个单位即可得到抛物线y=-x2+2;把抛物线y=-x2沿y轴向________平移________个单位即可得到抛物线y=-x2-3.5.填空(如果需要可作草图):(1)抛物线y=x2的顶点坐标是( ),对称轴是________,开口向________;(2)抛物线y=x2+2的顶点坐标是( ),对称轴是________,开口向________;(3)抛物线y=x2-3的顶点坐标是( ),对称轴是________,开口向________.可以发现,抛物线y=x2+2,y=x2-3与抛物线y=x2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线y=x2沿y轴向________平移________个单位即可得到抛物线y=x2+2;把抛物线y=x2沿y轴向________平移________个单位即可得到抛物线y=x2-3.答案:1. (0,0) ,y轴,上;(0,0) ,y轴,上;(0,0) ,y轴,上;小.2. (0,0) ,y轴,下;(0,0) ,y轴,下;(0,0) ,y轴,下;小.3. (1) a,>,<;(2) (0,0) ,>,0,0;<,0,0;(3) y轴.4. (0,0) ,y轴,下;(0,2) ,y轴,下;(0,-3),y轴,下;上,2;下,3.5. (1) (0,0) ,y轴,上;(2) (0,2) ,y轴,上;(3) (0,-3) ,y轴,上;上,2;下,3.思考·探索·交流1.把抛物线y=x2沿y轴向上平移3个单位能得到抛物线y=3x2吗?把抛物线y=-x2沿y轴向下平移3个单位能得到抛物线y=-3x2吗?答案:1.不能,不能.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。
人教版九年级数学上册22.1.3二次函数y=a(x-h)² +k 的图象和性质基础闯关全练1.(2019安徽合肥包河月考)在同一坐标系中,作y= 3x ²+2,y= -3x ²-1,y=的图象,则它们( )A .都是关于y 轴对称B .顶点都在原点C .都是开口向上D .以上都不对2.(2018河南许昌长葛月考)抛物线y=-2x ²-5的开口方向_______.对称轴是______,顶点坐标是_______.3.二次函数y= -2(x-1)²的图象大致是( )A.B.C.D.4.(2018广东汕尾陆丰期中)将抛物线y=-x ²向右平移一个单位,所得抛物线相应的函数解析式为_____.5.(2018江苏盐城阜宁期中)对于二次函数y=(x-1)²+2的图象,下列说法正确的是( )A .开口向下2x31B.对称轴是x= -1C.顶点坐标是(-1,2)D.与x轴没有交点6.(2018贵州毕节中考)将抛物线y=x²向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A.y=(x+2)²-5B.y=(x+2)²+5C.y=(x-2)²-5D.y=(x-2)²+57.设二次函数y=(x-3)²-4图象的对称轴为直线I,若点M在直线l上,则点M的坐标可能是( )A.(1,0)B.(3,0)C.(-3,0)D.(0,-4)8.(2019湖北黄石期中)函数y=2(x+1)²+1,当x_________时,y随x的增大而减小.能力提升全练1.若抛物线y=(x-m)²+(m+1)的顶点在第一象限,则m的取值范围为( )A.m>1B.m>0C.m>-1D.-1<m<02.如图22 -1-3 -1,点A是抛物线y=a(x-3)²+k与y轴的交点,AB∥x轴交抛物线于另一点B,点C为该抛物线的顶点,若△ABC为等边三角形,则a值为( )图22 -1-3 -1A .B .C .D .13.(2018贵州贵阳模拟)如图22-1-3-2,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,表达式中的h ,k ,m ,n 都是常数,则下列关系不正确的是( )图22-1-3-2A. h<0,k>0B .m<0,n>0B. h =mD .k=n4.二次函数y=m (x-2m )²+m ²,当x>m+1时,y 随x 的增大而增大,则m 的取值范围是_________.三年模拟全练212333一、选择题1.(2019湖北武汉江汉期中,3.★☆☆)关于函数y=-(x+2)²-1的图象叙述正确的是( ) A.开口向上B.顶点坐标为(2,-1)C.与y轴交点为(0,-1)D.图象都在x轴下方2.(2018甘肃平凉庄浪期中,3,★☆☆)将抛物线y=x²平移得到抛物线y=x²+5,下列叙述正确的是( )A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位3.若二次函数y=a(x+h)²+惫的图象的对称轴是x= -2,那么h=____;若顶点坐标是(-2,-4),则k=____.五年中考全练一、选择题1.(2018四川广安中考,7,★☆☆)抛物线y=(x-2)²-1可以由抛物线y=x²平移而得到,下列平移正确的是( )A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度2.对于二次函数y=-(x-1) ²+2的图象与性质,下列说法正确的是( )A.对称轴是直线x=1.最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x= -1.最小值是2D.对称轴是直线x=-1,最大值是2二、填空题3.(2018黑龙江哈尔滨中考.16.★女女)抛物线y=2(x+2)²+4的顶点坐标为_______.4.已知函数y=-(x-1)²图象上两点A(2.y₁),B(a,y₂),其中a>2,则y₁与y₂的大小关系是y₁____y₂(填“<”“>”或“=”).核心素养全练1.两条抛物线与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的部分的面积为8,则b等于( )A.1B.-3C.4D.-1或32.如图22-1-3 -3,在平面直角坐标系中,点A在抛物线y=(x-1)²+2上运动,过点A作AB⊥x轴于点B.以AB为斜边作Rt△ABC,则AB边上的中线CD的最小值为_________.图22-1-3-3答案基础闯关全练1.A解析:观察三个二次函数解析式可知,对称轴都是y轴,故A正确:三个函数图象的顶点坐标分别为(0,2),(0,-1),(0,0),它们开口方向分别为向上,向下,向上,故B,C,D都错误.故选A.2.答案向下;y轴;(0,-5)解析∵y= -2x²-5,∴a=-2<0,∴抛物线开口向下,对称轴为y轴,顶点坐标为(0,-5).3.B解析:二次函数y= -2(x-1)²的图象开口向下,对称轴是x=1,顶点坐标为(1,0),故选B.4.答案y=-(x-1)²解析抛物线y=-x²的顶点坐标为(0,0),把点(0,0)向右平移一个单位得到对应点的坐标为(1,0),所以平移后,所得抛物线相应的函数解析式为y=-(x-1)².5. D解析:∵y=(x-1)²+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确.∵抛物线开口向上,顶点(1,2)在第一象限,∴抛物线与x轴没有交点,故D 正确.6. A解析:抛物线y=x²的顶点坐标为(0,0),先向左平移2个单位,再向下平移5个单位后的抛物线的顶点坐标为(-2,-5),所以平移后的抛物线的解析式为y=(x+2)²-5.故选A.7. B解析:因为二次函数y=(x-3)²-4图象的对称轴是直线x=3,所以点M的横坐标是3.故选B.8.答案≤-1解析∵函数图象的对称轴为x=-1,且开口向上.∴在对称轴的左侧,y随x的增大而减小,即x≤-1时.y随x的增大而减小.能力推升全练1. B解析:由题意,得顶点坐标为(m,m+1),由顶点在第一象限得解得m>0,故选B.2. C解析:过C作CD⊥AB于D,∵抛物线y=a(x-3)²+k的对称轴为x=3,△ABC为等边三角形,A 为抛物线与y 轴的交点,且AB ∥x 轴,∴AD =3,CD=,C(3,k),∵当x=0时,y=9a+k ,∴A(0,9a+k),∴9a+k-k=,∴.故选C .3. D解析:根据二次函数解析式确定两抛物线的顶点坐标分别为(h ,k),(m ,n),对称轴都是直线x=m 或x=h ,即m=h ,由题图知h<0.k>0,m<0,n>0,因为点(h ,k)在点(m ,n)的下方,所以k=n 不正确,故选D .4.答案0<m ≤1解析抛物线的对称轴为直线x=2m ,①m>0时,∵当x>m+1时,y 随x 的增大而增大,∴2m ≤m+1,解得m ≤1,即0<m ≤1;②m<0时,不合题意,故填0<m ≤1.三年模拟全练一、选择题1.D解析:由二次函数y=-(x+2)²-1可知a=-1<0,所以其图象开口向下,顶点坐标为(-2,-1),所以二次函数图象都在x 轴下方,令x=0,则y= -5,所以函数图象与y 轴的交点为(0,-5). 故选D .2.A解析:将抛物线y=x ²向上平移5个单位得到抛物线y=x ²+5,故选A .二、填空题3.答案2:-4解析 ∵二次函数y=a(x+h)²+k 的图象的对称轴是x= -2,∴h=2.∵顶点坐标是(-2,-4),∴k= -4.五年中考全练333333a一、选择题1.D解析:抛物线y=x ²的顶点坐标为(0,0),抛物线y=(x-2)²-1的顶点坐标为(2,-1),则抛物线y =x ²向右平移2个单位长度,向下平移1个单位长度即可得到抛物线y=(x-2)² -1.故选D .2. B解析:抛物线y=-(x-1)²+2的开口向下,顶点坐标为(1,2),对称轴为直线x=1.∴当x=1时,y 有最大值2,故选B .二、填空题3.答案(-2,4)解析 ∵y=2(x+2)²+4,∴该抛物线的顶点坐标是(-2,4).4.答案>解析 因为二次项系数为-1,小于0.所以在对称轴x=1的左侧,y 随x 的增大而增大;在对称轴x=1的右侧,y 随x 的增大而减小,因为a>2>1,所以y ₁>y ₂.故填“>”.核心素养全练1. A解析: ∵两解析式的二次项系数相同,∴两抛物线的形状完全相同.∴∴2bxl2-(-2)l=86=8.∴b=1.故选A .2.答案 1解析 ∵CD 为Rt △ABC 的斜边AB 上的中线,∴CD= AB .∵y=(x-1)²+2的顶点坐标为(1,2),∴点A 到x 轴的最小距离为2,即垂线段AB 的最小值为2,∴中线CD 的最小值为1. 21。
22.1.4二次函数y=ax2+bx+c 的图象与性质一、单选题1.已知P =715m −1,Q =m 2−815m (m 为任意实数),则P 、Q 的大小关系为( ) A .P >QB .P =QC .P <QD .不能确定2.二次函数2y ax bx c =++的图象如图所示,则点,c b a ⎛⎫⎪⎝⎭在( )A .第一象限B .第二象限C .第三象限D .第四象限3.抛物线()20y ax bx c a =++≠的图象与x 轴一个交点()20-,,顶点()13,.则下列说法不正确的是:()A .对称轴为1x =B .开口向下C .抛物线与x 轴另一交点()20,D .1x =时,y 最大值为34.已知方程x 2+px+q =0的两个根分别是2和﹣3,则x 2﹣px+q 可分解为( ) A .(x+2)(x+3) B .(x ﹣2)(x ﹣3) C .(x ﹣2)(x+3)D .(x+2)(x ﹣3)5.已知二次函数y =ax 2+2ax+a 2+3(其中x 是自变量),当x ≤﹣2时,y 随x 的增大而增大,且﹣2≤x ≤1时,y 的最大值为5,则a 的值为( ) A .﹣1B .2C .﹣1或2D .2或﹣26.在平面直角坐标系中,二次函数2y x bx c =++的图象经过点()2,A m n -和点()6,B m n +,其顶点在x 轴上,则n 的值为( ) A .4B .8C .12D .167抛物线y =﹣(x ﹣1)2向右平移2个单位,平移后的抛物线的表达式为( ) A .y =﹣(x +1)2 B .y =﹣(x ﹣3)2 C .y =﹣(x ﹣1)2+2D .y =﹣(x ﹣1)2﹣28.如图,平面直角坐标系中有两条抛物线,它们的顶点 P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若10AB =,5BC =,6CD =,则PQ 的长度为( )A .7B .8C .9D .10二、填空题1.二次函数y =x 2−x +a +1的图象经过原点,则a 的值为 .2.向 (h >0)或向 (h <0)平移|h |个单位长度,再向 (h >0)或向 (h<0)平移|k |个单位长度,得到3.已知二次函数()(21)y x a x a =-+-的对称轴是直线2x =-,则a 的值为 .4.平面直角坐标系中,抛物线y =ax 2+bx +c(a >0)的对称轴为直线x =1.若点P(4,y 1)、Q(m ,y 2)是抛物线上的两点,且y 1>y 2,则m 的取值范围是 . 5.如图,抛物线与x 轴交于点A ,B ,与y 轴交于点C ,点在抛物线上,点E 在直线上,若,则点E 的坐标是____________.三、解答题1.求抛物线y =12x 2﹣x +1在﹣2≤x ≤2的最大值与最小值.2.如图,的顶点A 、B 分别在x 轴,y 轴上,,且的面积为8.直接写出A 、B 两点的坐标;过点A 、B 的抛物线G 与x 轴的另一个交点为点C .若是以BC 为腰的等腰三角形,求此时抛物线的解析式;2y ax =2()y a x h k =-+AOB BAO 45∠=︒AOB ()1()2①ABC将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.3.在平面直角坐标系xOy中,设二次函数()2210y ax ax a=-+≠的图象为抛物线G.(1)求抛物线G的对称轴及其图象与y轴的交点坐标;(2)如果抛物线G'与抛物线G关于x轴对称,直接写出抛物线G'的表达式;(3)横、纵坐标都是整数的点叫做整点.记抛物线G与抛物线G'围成的封闭区域(不包括边界)为W.①当3a=时,直接写出区域W内的整点个数;②如果区域W内恰有5个整点,结合函数图象,求a的取值范围.②4.如图,抛物线22:223L y x px p p =-++-为导电的线缆,第一象限内有一矩形ABCD 区域,边AD DC ,分别在y 轴,x 轴上,点B 的坐标为()8,6,其中矩形的顶点A ,B ,C ,D 处有四个通电开关.(1)点A 的坐标________;(2)当4p =-时,求抛物线L 的对称轴和y 的最小值; (3)设抛物线L 的顶点为点E .①求点E 的坐标(用含p 的式子表示);②当点E 在矩形ABCD 的边上时,求点E 的坐标;(4)当导电线缆(即抛物线L )接触开关时,即可通电,直接写出通电时整数p 的值.。
《二次函数的图象和性质》同步练习题一、选择题(共10小题)1.下列函数中是二次函数的为 ()A .B .C .D .31y x =-231y x =-22(1)y x x =+-323y x x =+-2.二次函数与一次函数,它们在同一直角坐标系中的图象大致是2y ax bx c =++y ax c =+ ()A .B .C .D .3.已知一次函数的图象经过一、二、四象限,则二次函数的顶点y kx b =+2y kx bx k =+-在第 象限.()A .一B .二C .三D .四4.抛物线的顶点坐标是 22(3)2y x =-+()A .B .C .D .(3,2)-(3,2)(3,2)--(3,2)-5.已知,二次函数满足以下三个条件:①,②,③2y ax bx c =++24b c a >0a b c -+<,则它的图象可能是 b c <()A .B .C .D .6.把抛物线向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是2(2)y x =+ ()A .B .C .D .2(2)2y x =++2(1)2y x =+-22y x =+22y x =-7.将抛物线平移得到抛物线,则这个平移过程正确的是 2y x =2(3)y x =+()A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.二次函数的图象可能是 22y x x =-+()A .B .C .D .9.若点,,都在抛物线上,则下1(1,)M y -2(1,)N y 37(,)2P y 2241(0)y mx mx m m =-+++>列结论正确的是 ()A .B .C .D .123y y y <<132y y y <<312y y y <<213y y y <<10.二次函数与轴交点坐标为 23(2)5y x =--y ()A .B .C .D .(0,2)(0,5)-(0,7)(0,3)二、填空题(共4小题)11.请写出一个开口向上且与轴交点坐标为的抛物线的表达式: .y (0,1)12.若二次函数,当时,随的增大而减小,则的取值范围是 22()1y x k =-++2x - y x k .13.抛物线的对称轴是 .22247y x x =+-14.已知抛物线经过,,对于任意,点均不在抛2y ax bx c =++(0,2)A (4,2)B 0a >(,)P m n 物线上.若,则的取值范围是 .2n >m 三、解答题(共6小题)15.已知抛物线.2246y x x =--(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿轴向左平移个单位后经过原点,求的值.x (0)m m >m 16.如图,在中,,,,动点从点开始沿边ABC ∆90B ∠=︒12AB mm =24BC mm =P A向以的速度移动(不与点重合),动点从点开始沿边向以AB B 2/mm s B Q B BC C 的速度移动(不与点重合).如果、分别从、同时出发,那么经过多少4/mm s C P Q A B 秒,四边形的面积最小.APQC17.已知二次函数.243(0)y ax ax b a =-++≠(1)求出二次函数图象的对称轴;(2)若该二次函数的图象经过点,且整数,满足,求二次函数的表(1,3)a b 4||9a b <+<达式;(3)对于该二次函数图象上的两点,,,,设,当时,1(A x 1)y 2(B x 2)y 11t x t + 25x 均有,请结合图象,直接写出的取值范围.12y y t 18.在平面直角坐标系中,抛物线经过点和.xOy 2(0)y ax bx c a =++>(0,3)A -(3,0)B (1)求的值及、满足的关系式;c a b(2)若抛物线在、两点间从左到右上升,求的取值范围;A B a (3)结合函数图象判断,抛物线能否同时经过点、?若能,写出(1,)M m n -+(4,)N m n -一个符合要求的抛物线的表达式和的值,若不能,请说明理由.n 19.小明利用函数与不等式的关系,对形如12()()()0n x x x x x x --⋯->为正整数)的不等式的解法进行了探究.(n (1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:30x ->3y x =-的范围x 3x >3x <的符号y +-由表格可知不等式的解集为.30x ->3x >②对于不等式,观察函数的图象可以得到如表表格:(3)(1)0x x -->(3)(1)y x x =--的范围x 3x >13x <<1x <的符号y +-+由表格可知不等式的解集为 .(3)(1)0x x -->③对于不等式,请根据已描出的点画出函数的(3)(1)(1)0x x x --+>(3)(1)(1)y x x x =--+图象;观察函数的图象补全下面的表格:(3)(1)(1)y x x x =--+的范围x 3x >13x <<11x -<<1x <-的符号y +- 由表格可知不等式的解集为 .(3)(1)(1)0x x x --+>⋯⋯小明将上述探究过程总结如下:对于解形如为正整数)的12()()()0(n x x x x x x n --⋯⋯->不等式,先将,,按从大到小的顺序排列,再划分的范围,然后通过列表格的1x 2x ⋯n x x 办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解y 集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为 .(6)(4)(2)(2)0x x x x ---+>②不等式的解集为 .2(9)(8)(7)0x x x --->20.函数是二次函数.223y mx mx m =--(1)如果该二次函数的图象与轴的交点为,那么 ;y(0,3)m(2)在给定的坐标系中画出(1)中二次函数的图象.答案一、选择题(共10小题)1.解:、是一次函数,故错误;A 31y x =-A 、是二次函数,故正确;B 231y x =-B 、不含二次项,故错误;C 22(1)y x x =+-C 、是三次函数,故错误;D 323y x x =+-D 故选:.B 2.解:一次函数和二次函数都经过轴上的,y (0,)c 两个函数图象交于轴上的同一点,排除、;∴y B C 当时,二次函数开口向上,一次函数经过一、三象限,排除;0a >D 当时,二次函数开口向下,一次函数经过二、四象限,正确;0a <A 故选:.A 3.解:一次函数的图象经过一、二、四象限,y kx b =+,,0k ∴<0b >△,2224()40b k k b k =--=+>抛物线与轴有两个交点,∴x、异号,k b 抛物线的对称轴在轴右侧,∴y 二次函数的顶点在第一象限.∴2y kx bx k =+-故选:.A 4.解:抛物线的顶点坐标是,22(3)2y x =-+(3,2)故选:.B 5.解:二次函数满足以下三个条件:①,②,③, 2y ax bx c =++24b c a >0a b c -+<b c <由①可知当时,则抛物线与轴有两个交点,当时,∴0a >240b ac ->x 0a <240b ac -<则抛物线与轴无交点;x 由②可知:当时,,1x =-0y <由③可知:,0b c -+>,必须,0a b c -+< ∴0a <符合条件的有、,∴C D 由的图象可知,对称轴直线,,,抛物线交的负半轴,C 02b x a=->0a <0b ∴>y ,则,0c <b c >由的图象可知,对称轴直线,,,抛物线交的负半轴,D 02b x a=-<0a <0b ∴<y ,则有可能,0c <b c <故满足条件的图象可能是,D 故选:.D 6.解:抛物线的顶点坐标是,向下平移2个单位长度,再向右平移1个单2(2)y x =+(2,0)-位长度后抛物线的顶点坐标是,(1,2)--所以平移后抛物线的解析式为:2(1)2y x =+-故选:.B 7.解:抛物线的顶点坐标为,抛物线的顶点坐标为,2y x =(0,0)2(3)y x =+(3,0)-点向左平移3个单位可得到,(0,0)(3,0)-将抛物线向左平移3个单位得到抛物线.∴2y x =2(3)y x =+故选:.A 8.解:,,22y x x =-+ 0a <抛物线开口向下,、不正确,∴A C 又对称轴,而的对称轴是直线, 212x =-=-D 0x =只有符合要求.∴B 故选:.B 9.解:观察二次函数的图象可知:.132y y y <<故选:.B 10.解:23(2)5y x =-- 当时,,∴0x =7y =即二次函数与轴交点坐标为,23(2)5y x =--y (0,7)故选:.C 二、填空题(共4小题)11.解:抛物线开口方向向上,且与轴的交点坐标为,y (0,1)抛物线的解析式为.∴21y x =+故答案为.21y x =+12.解:,22()1y x k =-++对称轴为,∴x k =-,20a =-< 抛物线开口向下,∴在对称轴右侧随的增大而减小,∴y x 当时,随的增大而减小,2x - y x ,解得,2k ∴-- 2k 故.2k 13.解:抛物线的对称轴是:,22247y x x =+-24622x =-=-⨯故.6x =-14.解:依照题意,画出图形,如图所示.当时,或,2n >0m <4m >当时,若点均不在抛物线上,则.∴2n >(,)P m n 04m 故.04m三、解答题(共6小题)15.解:(1)2246y x x =--22(2)6x x =--,22(1)8x =--故该函数的顶点坐标为:;(1,8)-(2)当时,,0y =202(1)8x =--解得:,,11x =-23x =即图象与轴的交点坐标为:,,x (1,0)-(3,0)故该抛物线沿轴向左平移3个单位后经过原点,x 即.3m =16.解:设经过秒,四边形的面积最小x APQC 由题意得,,,2AP x =4BQ x =则,122PB x =-的面积PBQ ∆12BQ PB =⨯⨯1(122)42x x =⨯-⨯,24(3)36x =--+当时,的面积的最大值是,3x s =PBQ ∆236mm此时四边形的面积最小.APQC 17.解:(1)二次函数图象的对称轴是;422a x a-=-=(2)该二次函数的图象经过点,(1,3),433a a b ∴-++=,3b a ∴=把代入,3b a =4||9a b <+<得.43||9a a <+<当时,,则.0a >449a <<914a <<而为整数,a ,则,2a ∴=6b =二次函数的表达式为;∴2289y x x =-+当时,,则.0a <429a <-<922a -<<-而为整数,a 或,3a ∴=-4-则对应的或,9b =-12-二次函数的表达式为或;∴23126y x x =-+-24169y x x =-+-(3)当时,均有,25x 12y y 二次函数的对称轴是直线,243(0)y ax ax b a =-++≠2x =,12y y ①当时,有,即∴0a >12|2||2|x x -- 12|2|2x x -- ,212222x x x ∴--- ,2124x x x ∴- ,25x ,241x ∴-- 该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y ∴115t t -⎧⎨+⎩ .14t ∴- ②当时,,即0a <12|2||2|x x -- 12|2|2x x -- ,或,1222x x ∴-- 1222x x -- ,或12x x ∴ 124x x - ,25x ,241x ∴--该二次函数图象上的两点,,,,1(A x 1)y 2(B x 2)y 设,当时,均有,11t x t + 25x 12y y 比的最大值还大,或比的最小值还小,这是不存在的,t ∴2x 1t + 24x -故时,的值不存在,0a <t 综上,当时,.0a >14t - 18.解:(1)抛物线经过点和. 2(0)y ax bx c a =++>(0,3)A -(3,0)B ,∴3093c a b c-=⎧⎨=++⎩,.3c ∴=-310a b +-=(2)由1可得:,2(13)3y ax a x =+--对称轴为直线,132a x a -=-抛物线在、两点间从左到右上升,当时,对称轴在点左侧,如图: A B 0a >A即:,解得:,1302a a -- 13a.、两点间从左到右上升,103a ∴< A B 当时,抛物线在、两点间从左到右上升,∴103a < A B (3)抛物线不能同时经过点、.(1,)M m n -+(4,)N m n -理由如下:若抛物线同时经过点、.则对称轴为:,(1,)M m n -+(4,)N m n -(1)(4)322m m x -++-==由抛物线经过点可知抛物线经过,与抛物线经过相矛盾,A (3,3)-(3,0)B 故:抛物线不能同时经过点、(1,)M m n -+(4,)N m n -19.解:(1)②由表格可知不等式的解集为或,(3)(1)0x x -->3x >1x <故或;3x >1x <③图象如右图所示,当时,,当时,,11x -<<(3)(1)(1)0x x x --+>1x <-(3)(1)(1)0x x x --+<由表格可知不等式的解集为或,(3)(1)(1)0x x x --+>3x >11x -<<故,,或;+-3x >11x -<<(2)①不等式的解集为或或,(6)(4)(2)(2)0x x x x ---+>6x >24x <<2x <-故或或;6x >24x <<2x <-②不等式的解集为或且,2(9)(8)(7)0x x x --->9x >8x <7x ≠故或且9x >8x <7x ≠20.解:(1)该函数的图象与轴交于点, y (0,3)把,代入解析式得:,∴0x =3y =33m -=解得,1m =-故答案为;1-(2)由(1)可知函数的解析式为,223y x x =-++,2223(1)4y x x x =-++=--+ 顶点坐标为;∴(1,4)列表如下:x 2-1-01234y5-034305-描点;画图如下:。
22.1.2二次函数()2h x a y -=的图象和性质同步练习 一、选择题1.抛物线12-=x y 的顶点坐标为( )A .(1,0)B .(−1,0)C .(0,−1)D .(2,3)2.抛物线()4232+--=x y 的开口方向、对称轴、顶点坐标分别为( ) A .开口向下,对称轴2-=x ,顶点坐标(−2,4) B .开口向上,对称轴2=x ,顶点坐标(2,4)C .开口向上,对称轴2=x ,顶点坐标(2,−4)D .开口向下,对称轴2=x ,顶点坐标(2,4)3.抛物线()52342-+=--m x y m m 的顶点在x 轴下方,则( )A .5=mB .1-=mC .15-==m m 或D .15=-=m m 或4.把抛物线221x y =向左平移1个单位长度,再向下平移1个单位,得抛物线为( ) A .()22212++=x x y B .()12212-+=x x y C .()12212--=x x y D .()12212+-=x x y 5.二次函数()2122+-=x y 的图象可由22x y =的图象( )得到. A .向左平移1个单位长度,再向下平移2个单位长度B .向左平移1个单位长度,再向上平移2个单位长度C .向右平移1个单位长度,再向下平移2个单位长度D .向右平移1个单位长度,再向上平移2个单位长度6.将抛物线12--=x y 向上平移2个单位得到抛物线的表达式( )A .2x y -=B .22--=x yC .12+-=x yD .12+=x y 7.抛物线b x y +=2与抛物线22-=ax y 的形状相同,只是位置不同,则b a 、值分别是( ) A .2,1-≠=b a B .2,1≠=b a C .2,1-≠±=b a D .2,1≠±=b a 8. 二次函数2ax y =与一次函数a ax y +=在同一坐标系中的图象大致是( ) A.B. C. D. 9. 函数b ax y +=2与b ax y +=在同一坐标系里的图象大致是( )A .B .C .D . 10. 已知二次函数()k x y +-=213的图象上有三点A(2,y 1),B(2,y 2),C(−5,y 3),则321y y y 、、的大小关系为( )A .321y y y >>B .312y y y >>C .213y y y >>D .123y y y >>二、填空题1、抛物线()232+=x y 的开口 ;顶点坐标为 ;对称轴是_________;当3->x 时,y 随x 的增大而 ;当3-=x 时,y 有最 值是_________.2、函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数取得最 值,最 值y = .3、若抛物线()21+=x m y 过点(1,-4),则m =__________.4、抛物线()224-=x y 与y 轴的交点坐标是 ,与x 轴的交点坐标为 . 5、把抛物线23x y =向右平移4个单位后,得到的抛物线的表达式为 ,再向上平移4个单位得到的抛物线的表达式为 .6、将抛物线()2131--=x y 向左平移2个单位后得到的抛物线解析式为 . 7、二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是 .8、抛物线()2n x m y +=向左平移2个单位后,得到的函数关系式是()244--=x y ,则m = ,n = .9、二次函数2)2(31+=x y ,若y 恒大于0,则自变量x 的取值范围是 . 10、把抛物线22y x =向左平移使顶点坐标是(-1,0),则所得抛物线的表达式为 .11、写出一个顶点是(5,0),形状、开口方向与抛物线22x y -=都相同的二次函数解析式_________________.12、一条抛物线的对称轴是1x =,且与x 轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式是 .(任写一个)三、解答题1、已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式.2、二次函数()2h x a y -=的图象如图:已知21=a ,OA OC =,试求该抛物线的解析式.3、将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为2-,且新抛物线经过点()1,3,求a 的值.4、如图所示,抛物线2()y x m =--的顶点为A ,直线L :y x m =-与y 轴的交点为B ,其中0>m .(1)写出抛物线的对称轴和顶点坐标;(用含m 的式子表示);(2)若点A 在直线L 上,求∠ABO 的大小.5、如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m 时,水面宽AB 为6m ,当水位上升0.5m 时:(1)求抛物线的解析式。
新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。
2023-2024学年九年级数学上册《第二十二章二次函数的图像和性质》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中是二次函数的是()A.y=1x2B.y=2x+1C.y=12x2+2x3D.y=−4x2+52.二次函数y=x2−2x+3的一次项系数是()A.1 B.2 C.-2 D.33.在同一平面直角坐标系中作出y=2x2,y=−2x2,y=12x2的图象,它们的共同点是()A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.当x>0时,y随x的增大而减小4.抛物线y=-2x2+1的顶点坐标是()A.(-2,0)B.(0,1)C.(0,-1)D.(-2,0)5.已知A(0,y1),B(3,y2)为抛物线y=(x−2)2上的两点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定6.已知抛物线y=−(x−b)2+2b+c(b,c为常数)经过不同的两点(−2−b,m),(−1+c,m)那么该抛物线的顶点坐标不可能是下列中的()A.(−2,−7)B.(−1,−3)C.(1,8)D.(2,13)7.关于x的二次函数y=ax2+bx+c图象经过点(1,0)和(0,−2),且对称轴在y轴的左侧,若t= a−b,则t的取值范围是()A.−2<t<2B.−2<t<0C.−4<t<0D.−4<t<2 8.抛物线y=ax2+bx+c(a,b,c为常数,a>0)经过(0,0),(4,0)两点.则下列四个结论正确的有()①4a+b=0;②5a+3b+2c>0;③若该抛物线y=ax2+bx+c与直线y=−3有交点,则a的取值范围是a≥34;④对于a的每一个确定值,如果一元二次方程ax2+bx+c−t=0(t为常数,t≤0)的根为整数,则t的值只有3个.A.1个B.2个C.3个D.4个二、填空题9.当函数y=(a−1)x a2+1+2x+3是二次函数时,a的值为.10.抛物线y=−12x2+1在y轴的右侧呈趋势(填“上升”或者“下降”).11.将二次函数y=2x2−8x+13化成y=a(x+ℎ)2+k的形式为. 12.对于二次函数y=−2(x+3)2−1,当x的取值范围是时,y随x的增大而减小.13.点P(m,n)在抛物线y=x2+x+2上,且点P到y轴的距离小于1,则n的取值范围是.三、解答题14.已知抛物线的顶点是(−3,2),且经过点(1,−14),求该抛物线的函数表达式.15.指出函数y=−12(x+1)2−1的图象的开口方向、对称轴和顶点,怎样移动抛物线y=-12x2就可以得到抛物线y=−12(x+1)2−116.二次函数图象的对称轴是y轴,最大值为4,且过点A(1,2),与x轴交于B、C两点.求△ABC 的面积.17.如图,已知抛物线y=ax2+bx−3过点A(−1,0),B(3,0)点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F(1)求二次函数y=ax2+bx−3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;18.在直角坐标系中,设函数y=m(x+1)2+4n(m≠0,且m,n为实数)(1)求函数图象的对称轴.(2)若m,n异号,求证:函数y的图象与x轴有两个不同的交点.(3)已知当x=0,3,4时,对应的函数值分别为p,q,r,若2q<p+r,求证:m<0.参考答案1.D2.C3.C4.B5.A6.B7.A8.C9.-110.下降11.y=2(x−2)2+512.x>-313.74≤n<414.解:∵抛物线的顶点是(−3,2)∴可设抛物线的函数表达式为y=a(x+3)2+2∵抛物线经过点(1,−14)∴−14=a(1+3)2+2,解得a=−1∴抛物线的函数表达式为y=−(x+3)2+2.15.解:由y=−12(x+1)2−1得到该函数的图象的开口方向向下,对称轴是直线x=-1,顶点坐标是(-1,-1);∵抛物线y=−12x2的顶点坐标是(0,0)∴由顶点(0,0)向左平移1个单位,再向下平移1个单位得到顶点(-1,-1)∴抛物线y=−12x2向左平移1个单位,再向下平移1个单位就可以得到抛物线y=−12(x+1)2−1.16.解:设该二次函数的表达式为y=ax2+4把点A(1,2)代入y=ax2+4,得a+4=2 解得a=-2∴该二次函数的表达式为y=−2x2+4当y=0时解得x 1=−√2,x 2=√2∴BC =2√2∴S △ABC =12×2√2×2=2√2.17.(1)解:把A(−1,0),B(3,0)代入y =ax 2+bx −3得:{a −b −3=09a +3b −3=0解得{a =1b =2故该抛物线解析式为:y =x 2−2x −3(2)解:由(1)知,抛物线解析式为:y =x 2−2x −3=(x −1)2−4∴该抛物线的对称轴是x =1,顶点坐标为(1,−4).如图,设点M 坐标为(m ,m 2−2m −3)∴ME =|−m 2+2m +3|∵M 、N 关于x =1对称,且点M 在对称轴右侧∴点N 的横坐标为2−m∴MN =2m −2∵四边形MNFE 为正方形∴ME =MN∴|−m 2+2m +3|=2m −2分两种情况:①当−m 2+2m +3=2m −2时,解得:m 1=√5,m 2=−√5(不符合题意,舍去) 当m =√5时,正方形的面积为(2√5−2)2=24−8√5;②当−m2+2m+3=2−2m时,解得:m3=2+√5,m4=2−√5(不符合题意,舍去) 当m=2+√5时,正方形的面积为(2+2√5)2=24+8√5;综上所述,正方形的面积为24−8√5或24+8√5.18.(1)解:∵函数y=m(x+1)2+4n(m≠0,且m,n为实数)∴函数图象的对称轴为x=−1(2)证明:令y=0,则0=m(x+1)2+4n即(x+1)2=−4nm∵ m,n异号>0∴−4nm∴一元二次方程有两个不相等的实数根,即函数y的图象与x轴有两个不同的交点;(3)证明:由题可知p=m+4n,q=16m+4n,r=25m+4n,∵2q−(p+r)=2(16m+4n)−(m+4n+25m+4n)=6m<0∴m<0.。
6.2二次函数的图象和性质基础训练一12.写出下列函数图象的对称轴、开口方向、顶点坐标:(1)抛物线223y x =-的对称轴是 ;开口方向是 ;顶点坐标是 .(2)抛物线26y x =的对称轴是 ;开口方向是 ;顶点坐标是 ; 3.若抛物线2(1)mmy m x -=-开口向下,则______=m4.抛物线24x y =,当0x < 时,y 随x 的增大而 ;当0x >时,y 随x 的增大而 。
5. 关于23x y =和23x y -=的图象的说法:①它们都是抛物线;②它们都是轴对称图形;③它们的顶点相同,对称轴也相同;④两个函数的图象关于x 轴对称;这些说法中,正确的有( )A.4种 B.3种 C.2种 D.1种 6. (1)请将图中图象的编号填入对应的函数后的空格内,221x y =;2x y = ;22x y = ;221x y -= .(2)二次函数2ax y =的开口的大小与a 有怎样的关系?请写出你的结论.基础训练二2.完成下列填空:(1)抛物线532+-=x y 的对称轴是 ;开口方向是 ;顶点坐标是 .这条抛物线可以看作是由抛物线23x y -=向 平移 个单位长度得到的。
(2)抛物线42-=x y 的对称轴是 ;开口方向是 ;顶点坐标是 ;这条抛物线可以看作是由抛物线2x y =向 平移 个单位长度得到的。
3.对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 .4.若点A(2,m )在函数12-=x y 的图象上,则点A 关于x 轴的对称点的坐标是____ _.5.已知关于x 的二次函数y=(m-1)x2+7,当0x >时,y随x的增大而增大,则m的取值范围是6.二次函数y =x 2的图象向下平移2个单位,得到新的图象的二次函数表达式是( )A 、22-=x y B 、2)2(-=x y C 、22+=x y D 、2)2(+=x y 7.若二次函数212+=x y 与k x y +-=2的图像的顶点重合,则下列结论不正确的A .这两个函数图像有相同的对称轴B .这两个函数图像的开口方向相反C .方程02=+-k x 没有实数根式D .二次函数k x y +-=2的最大值为218.如图,在同一坐标系中,二次函数2y ax c =+与一次函数y ax c =+的图象大致是( )9.求分别符合下列条件的抛物线52+=ax y 的函数解析式.并画出图象。
(1)通过点(-2,1) (2)与232y x =的开口大小相同,方向相反. 10.如果把抛物线2y mx n =+向上平移2个单位后得到抛物线2112y x =+,试确定m 、n 的值。
实践与探索在目前国内最大跨径的钢管混凝土拱桥——永和大桥,是南宁市又一标志性建筑,其拱形图形为抛物线的一部分(如图1),在正常情况下。
位于水面上的桥拱跨度为350m ,拱高为85米。
(1)在所给的直角坐标系中(图2),假设抛物线的表达式为b ax y +=2,请你根据上述数据求出a 、b 的值,并写出抛物线的表达式(不要求写自变量的取值范围,a 、b 的值保留两个有效数字)。
(2)七月份汛期将要来临,当邕江水位上涨后,位于水面上的桥拱跨度将会减小,当水位上涨4m 时,位于水面上的桥拱跨度有多大?(结果保留整数)基础1.在下表空格内填入相关的内容2.完成下列填空:(1)抛物线23(3)y x =-+的对称轴是 ;开口方向是 ;顶点坐标是 .这条抛物线可以看作是由抛物线23x y -=向 平移 个单位长度得到的。
(2)抛物线2)4(-=x y 的对称轴是 ;开口方向是 ;顶点坐标是 ;这条抛物线可以看作是由抛物线2x y =向 平移 个单位长度得到的。
3.若抛物线2)(a x a y +=经过点(0,-1),则a = ;这个抛物线的解析式为 .4. 将抛物线2)3(2+-=x y 向右平移5个单位长度后,所得抛物线的解析式是 .5.若点A (3,-4)在函数2)(m x y --=的图象上,则=m _ _.这个抛物线的对称轴是 ;点A关于抛物线对称轴的对称点是 .6.画出函数2)1(21+-=x y 与2)1(21--=x y 的图象。
基础训练四 1.完成下表:2.二次函数1)2(22+-=x y 图象的开口方向向 ;对称轴是 ;顶点坐标是 。
3.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.它的对称轴是 ;顶点坐标是 。
4.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .5.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。
6.抛物线3)1(212++-=x y 的顶点坐标( )(A )(1,3) (B )(1,-3) (C )(-1,-3) (D )(-1,3) 7.把抛物线23x y =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )(A )2)3(32-+=x y (B )2)3(32++=x y (C )2)3(32--=x y (D )2)3(32+-=x y(8.把二次函数122--=x x y 配方成顶点式为( ) A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y图 89.在同一直角坐标系中画出下列二次函数图象,并写出这些图象的对称轴和顶点坐标。
(1)2)1(21)2(,2)1(2122--=++-=x y x y10.请写出一个开口向上,对称轴为直线2=x ,且与y 轴的交点坐标为(0,3)的抛物线的解析式。
并画出图象。
基础训练五 1.完成下表:2.已知抛物线342++=x x y ,请回答以下问题:⑴ 它的开口向 ,对称轴是直线 ,顶点坐标为 ;⑵ 图象与x 轴的交点为 ,与y 为 。
(3)当x 时,y 随 x 的增大而增大。
3.如图是二次函数122-+-=a x ax y 的图象,则a 的值是____________. 4.二次函数52-+=x x y 有最小值是 ,此时自变量x 的值是 5.抛物线862++=x x y 与y 轴交点坐标是( )A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0)6.与抛物线53212-+-=x x y 的形状大小开口方向相同,只有位置不同的抛物线是( ) A .2523412-+-=x x yB .87212+--=x x y C .106212++=x x y D .532-+-=x x y7.用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长x 的变化而变化,若要场地面积S 取得最大值,则x 应取( ) A .10m B .15 m C .20m D .25m8.已知抛物线562+-=x x y 的部分图象如图,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y .9.求出下列二次函数的对称轴、顶点坐标,并求出最小(大)值。
(1)542+-=x x y (2)21352y x x =-++(3)21212y x x =-+ (4)224y x x =-+-10.已知二次函数图象的对称轴是x =-3,且函数有最大值为2,图象与x 轴的一个交点是(-1,0),求这个二次函数的解析式。
实践与探究2006年4月22日至10月22日世界休闲博览会在杭州举行. 某厂经有关部门批准,生产“休博会”吉祥物“晶晶”,每日最高产量为40只,且每日的产品全部售出,已知生产x 只吉祥物“晶晶”的成本为R (元),售价每只为P (元),R 、P 与x 的函数解析式分别是.2170,30500x P x R -=+=(1)这批玩具的毛利润(总售价-总成本) y (元)关于x 的函数关解析式;(2)当日产量为多少时,可获得最大利润?最大利润是多少?参考答案基础训练一 1.略 2.(1)y 轴 向下 原点 (2)y 轴 向上 原点 3.1m =- 4.减小,增大 5.A 6.(1)③ ② ① ④ (2)a 越大,开口越小,a 越小,开口越大。
拓广探索 (1)图略 (2)①均填200 ②21200y x =(基础训练二1.略 2.(1)y 轴 向下 (0,5) 上 5 (2)y 轴 向上 (0,-4) 下 4 3.236y x =-+ 4.(2,-3)5.1m > 6.A 7.C 8.D 9.(1)25y x =-+ (2)2352y x =-+ 10.1,12m n ==-实践与探究 (1)20.002885y x =-+(2)当水位上涨4米时,位于水面上的桥拱跨度为340米.基础训练三 1.略 2.(1)直线5x =- 向下 (-5,0) 左 5 (2)直线4x = 向上 (4,0) 右 4 3.1- 2(1)y x =-- 4.22(2)y x =-- 5.5或1 5x =或1x = (7,4)-或(-1,-4) 6.(1)略 (2)略 (3)抛物线2)1(21+-=x y 和2)1(21--=x y 都可以看作是由212y x =-平移得到的.即它们的开口方向相同、开口大小相同,但形状不同.它们是轴对称图形,它们的对称轴分别是直线1x =-、1x =,顶点坐标分别是(-1,0)、(1,0)(4)略 思维拓展7. 12a =,5b =基础训练四 1.略 2.上 直线1x = (1,-1) 3.左 1 直线1x =- (-1,-2) 4.249y x x =--- 5.2243y x x =-+- 6.D 7.D 8.B 9.图略 (1)对称轴:直线1x =-;顶点:(-1,2) (2)对称轴:直线1x =;顶点:(1,-2) 10.2(2)1y x =--(答案不唯一)基础训练五 1.略 2.(1)上 2x =- (-2,-1)(2)(-3,0),(-1,0),(0,3) (3)2x >- 2.1 3.211,42-- 4.A 5.B 6.B 7.B 8.3 15x <<,上,4 9.(1)对称轴:直线2x = 顶点坐标;(2,1) 当2x =时,1y 最小= (2)对称轴:3x = 顶点坐标:(3,132) 当3x =时,132y =最大(3)对称轴:直线2x = 顶点坐标;(2,-1) 当2x =时,1y 最小=- (4)对称轴:直线14x =顶点坐标;(14,-318) 当14x =时,318y 最大=-10.215322y x x =--- 实践与探究(1)22140500y x x =-+- (2)当日产量是35只时,可获得最大利润,最大利润为1950元.。