注空气、氮气、二氧化碳、天然气、蒸汽等提采机理-
- 格式:docx
- 大小:152.50 KB
- 文档页数:16
气体混相驱提高采收率方法、注气驱帖子创建时间: 2014年11月19日10:36评论:0浏览:876投稿气体混相驱气体混相驱的目的是利用注入气怵能与原油达到混相的特性,使注入流体与原油之间的界面消失,即界面张力降低至零,从而驱替出油藏的残余油。
气体混相驱按混相机理可分为一次接触混相驱和多次接触混相驱。
按注入气体类型可分为烃类气体混相驱(如LPG 段塞驱、富气驱、贫气驱)和非烃类气体混相驱(如CO2驱和N2驱)。
(一)LPG 段塞混相驱液化石油气(简称LPG)段塞混相驱是指首先注入与地下原油能一次接触达到混相的溶剂段塞,如LPG、丙烷等,然后注入天然气、惰性气体或水。
LP G 段塞混相驱工艺中水段塞是用来控制流度、提高波及效率的)。
一般来说,L PG 段塞尺寸约为10%~15%孔隙体积,而后续的天然气或水的段塞尺寸就非常大。
LPG 段塞混相驱非常有效。
注入的LPG 段塞与原油达到混相后,残余的油滴及可动油都可能被采出,因此这种方法的采收率较高。
此外,混相压力低、适应性强等都是LPG 段塞混相驱的优点。
但是,LPG 段塞混相驱的成本高以及波及效率低等因素限制了该方法的应用。
(二)富气混相驱富气是富含丙烷、丁烷和戊烷的烃类气体。
富气混相驱是指往油层中注入富含C2—C6中间组分的烃类气体段塞,然后再注入干气段塞,通过富气与原油多次接触达到混相来提高采收率的方法。
注入富气与原油接触时,注入气中的C2—C6组分凝析而进入油相,形成一个由C2—C6富气和原油的混相带,如果注入的富气能保证足够的量时,混相带就会向前不断地把油推向生产井。
由于富气成本要比干气高,因此通常是富气段塞后紧接的是干气。
尽管富气驱的成本低于LPG 段塞驱,但是要求的混相压力相对较高。
富气驱的优点是基本上能完全驱替油层内所接触的残余油,而且一旦混相带被破坏能后自身修复,重新获得混相。
但是,富气驱仍然成本较高,而且重力超覆、粘性指进现象严重,波及效率较低。
油田注气提高采收率开发应用技术研究随着石油资源的逐渐枯竭,采收率的提升成为油田开发的重要目标。
油田注气是提高采收率的一种有效手段,对于开发油田具有重要的经济价值。
本文将介绍油田注气的原理、技术现状和未来发展前景。
一、油田注气原理油田注气是通过在油田地层中注入气体,使原油层中压力增加,原油与岩石孔隙中支持相互作用力减小,从而降低油泥的黏滞性、升高润滑性,使原油在孔隙内能够流动更容易,提高采油效率,增加采收率。
注入的气体有天然气、氮气、二氧化碳等,不同的气体具有不同的物理化学性质,对于不同类型的油藏选取合适的注入气体可以提高采收率。
二、油田注气技术现状油田注气技术是石油工业中比较成熟和广泛应用的一种技术,随着技术的不断发展,注气技术的效率和适用性逐步提高。
(一)注气方式目前油田注气技术主要分为直接注气和间接注气两种方式。
直接注气是将气体注入到油井中,通过压缩空气等设备将气体直接压入油井管道,沿着井眼垂直注入地下油藏。
直接注气的优点是注入速度快,注气效果显著。
间接注气是在地层内建立气体区域,然后用压力差将气体推入油层中。
常用的方法是在油藏水深处设立气幕,使气体充满整个油藏水深,经过几次推压和加气,形成均匀的气带,压力梯度增强,从而使注入的气更加均匀,采收率提高。
间接注气的优点是可控性强,注入节奏可控,可以减少因直接注气引起的泥层破坏。
(二)注气气体注气气体的选择是影响油田注气效果的关键因素。
常见的气体有天然气、氮气、二氧化碳等。
其中,天然气是最常用的注入气体,其成分简单,渗透能力强,同时含有的天然气成分有助于原油的上升,增加了注气效果。
氮气常用于高渗透油田和中深层油层的注气,可以提高油层的压力和渗透性。
二氧化碳注气适用于高黏度油藏,有助于降低原油的黏度,提高采油效率。
三、油田注气未来发展前景油田注气技术是提高采收率的重要手段,具有广阔的应用前景。
未来在油田注气技术的发展中,需要注重以下几个方面:(一)优化注气方式:随着技术的不断发展,需要采用更为灵活多样的注气方式,对于不同类型的油藏选取合适的注入方式,提高注气效果。
空气成分的测定实验原理一、实验目的本实验旨在通过测定空气中氧气、氮气和二氧化碳的含量,了解空气成分的组成及其浓度变化规律。
二、实验原理1. 空气成分及其浓度空气是一种混合物,主要由氮气、氧气和少量的其他气体组成。
其中,氮气占78%,氧气占21%,其他包括二氧化碳、水蒸汽等占1%。
在大多数情况下,空气中二氧化碳含量较低,通常为0.03%-0.04%。
2. 测定方法(1)测定空气中的二氧化碳含量:利用饱和钙水吸收法。
将经过干燥剂干燥后的样品与饱和钙水反应,反应生成的CaCO3沉淀可以用称重法确定二氧化碳含量。
(2)测定空气中的总压力:利用压力计或差压计。
将压力计或差压计接入样品管道中,在相同条件下比较样品管道与参比管道之间的压力差,即可得到样品管道内的总压力。
(3)测定空气中的氧气含量:利用分光光度法或电化学法。
分光光度法是利用氧气与还原剂反应,生成吸收峰,通过测定吸收峰的强度来确定氧气含量。
电化学法是利用电极在不同氧气浓度下的电位变化来确定氧气含量。
(4)测定空气中的氮气含量:利用差压计或热导仪。
差压计是将样品与参比管道之间的压力差转换为流量信号,通过流量信号和总流量计算出样品管道内的氮气含量。
热导仪是利用热导率与成分相关联的原理进行测定。
三、实验步骤1. 测定空气中二氧化碳含量(1)取一只干燥管,加入适量干燥剂,并将其密封。
(2)将待测空气通入干燥管内,使其与干燥剂接触。
(3)取出干燥管,打开密封盖,加入饱和钙水至标志线处。
(4)摇晃干燥管,使饱和钙水均匀分布。
(5)密封干燥管,摇晃数分钟,使反应充分进行。
(6)取出干燥管,用天平称重,并记录质量。
(7)将干燥管加入适量去离子水中,振荡摇匀,使沉淀溶解。
(8)用滤纸过滤溶液,并将过滤液转移至锥形瓶内。
(9)加入几滴酚酞指示剂,并用0.1mol/L HCl滴定至酚酞变色为止。
(10)计算二氧化碳含量。
2. 测定空气中总压力(1)将压力计或差压计接入样品管道中,并调整好仪器参数和读数范围。
油田注气提高采收率开发应用技术研究随着全球能源需求的不断增长,油田注气提高采收率成为了石油行业的研究热点。
油田注气是指向油层中注入天然气或其他气体的一种采油方法,其目的是利用气体的溶解和膨胀性质来提高原油的采收率。
在中国,由于油田的老化和深度开采,注气开发技术已经成为了油田开发的重要手段。
本文将探讨油田注气提高采收率的开发应用技术研究及其意义。
一、油田注气提高采收率的原理油田注气提高采收率是指在油田开发中向油层中注入气体,通过气体的溶解和吸附作用来提高原油的采收率。
具体来说,注气开发可以通过以下几种方式来提高采收率:1.增加油层压力:注入气体可以增加油层的压力,从而驱动原油向采油井流动。
2.减小原油的粘度:气体的溶解可以减小原油的粘度,使得原油更容易被开采。
3.提高原油的置换率:气体的膨胀性质可以使原油与岩石孔隙中的水分离,从而提高原油的置换率。
二、油田注气提高采收率的应用技术研究1.气体选择和优化注气方案:不同的气体在油田注气中的作用机理不同,因此在选择注气气体时需要考虑气体的溶解性、膨胀性以及相对常压条件下的粘度等因素。
需要通过模拟和优化注气方案来确定合适的注气量和注气周期,以达到最佳的采收率提高效果。
2.注气井的选址和井筒设计:注气井的选址和井筒设计对注气开发的效果至关重要。
合理的选址可以最大限度地提高注气气体的利用率,而合理的井筒设计可以保证气体顺利注入到目标层位中。
3.表征和评价注气效果:通过地质勘探、物性实验和地震监测等手段,可以对油层中的气体分布和运移进行表征和评价,从而指导注气开发的实施和调整。
4.注气技术的改进和创新:研究新型气体的注气作用机理,改革传统注气方法,探索新的注气技术是提高油田注气采收率的重要途径。
通过超临界流体技术可以改善气体的溶解性和膨胀性质,从而提高采收率。
三、油田注气提高采收率的意义油田注气提高采收率的研究和应用对于提高油田开采效率、节约能源资源具有重要意义:1.提高采收率:通过注气开发可以提高原油的采收率,延长油田的生产周期,延缓油田的老化。
关于注气提高采收率技术的调研1 前言随着油气田开发进入中后期,油井综合含水率上升,油田开发难度加大,注气采油逐渐成为提高原油采收率的重要方法之一。
本文对注气提高采收率技术的机理进行了分析,并进行了驱替实验调研。
调研结果表明:注气可明显改善驱油效果,提高原油采收率。
2 国内外现状近年来,国内外注气技术发展很快,注气类型、注气方式、注气时机、适宜注气的油藏类型不断发展,已成为除热采之外发展较快的提高采收率方法。
目前,注气作为一种有效的提高采收率方法,在世界范围内得到广泛应用。
在美国和加拿大注气技术极为成熟。
在美国,注气项目中以二氧化碳混相驱为主,而加拿大以注入烃类溶剂混相驱为主导。
2006年,美国、加拿大等石油生产大国仍把蒸汽驱作为EOR(或IOR)主导技术,加拿大掀起了以蒸汽重力驱(SAGD)技术为主的开采油砂热,化学驱的应用仍很少。
注气驱仍以逐年增长的态势和显著的成效而成为当今世界石油开采中具有很大潜力和前景的技术。
在我国东部主要产油区,天然气气源紧张,供不应求,CO2气源目前还比较少。
尽管如此,注非烃气体混相和非混相驱的研究和现场先导试验一直没有停止过。
1963年首先在大庆油田作为主要提高采收率方法进行研究,1966、1969、1985、1991、1994年先后开展了注CO2先导试验,很受重视。
华北油田在雁翎油田开展注N2非混相驱矿场试验。
吉林油田利用万金塔CO2气田的液态CO2,在吉林油田开展CO2吞吐和CO2泡沫压裂已在100井次以上。
1996年江苏油田富民油田48井开展了CO2吞吐试验,并已开展了驱替试验。
吐哈葡北油田已开始实施注气混相驱。
大港大张坨凝析气田和塔西南柯克亚凝析气田注气成功。
西南石油学院以气为特色,长期开展了油气体系的相态研究,早在1984年,为大庆、中原开展了混相驱实验,引进了当时全国第1台混相驱细管实验装置。
随后与华北油田合作,配合雁翎油田注N2试验,模拟裂缝性碳酸盐岩储层,在全国比较系统地开展了系列注N2实验。
注CO2提高致密气藏采收率机理及其影响因素研究在地层中注入CO2能够有效恢复地层压力,尽量避免因为地层压力损失而导致下沉或者水浸的现象。
在油田生产开采过程中通过实施CO2驱气,能够得到较好的流动比,而且还能够充分保证驱替前缘的稳定性,与此同时,在重力分异作用的影响下,能够有效提升高致密气层的开采效率。
CO2具有较高的注入性以及溶解性,而且整体回收效率也相對较高,因此可以极大的提升EDR的有效性。
标签:采收率;注二氧化碳;致密气藏;影响因素引言目前在国际上并没有针对致密气实施统一的标准,各个国家在实际生产开采过程中,根据不同生产开采时期以及致密气资源的实际状况、经济技术条件等各种情况来制定出本国的标准,随着目前对致密气认识的不断加深,相关的概念也在不断的改进过程中。
在我国,通常情况下都是按照储层的物性来对气藏进行明确分类,通常情况下,都会将渗透率小于0.1×10-3μm2的气藏定义为致密气藏。
与常规气藏相比较,致密气藏同时具备了达西流以及非达西流的渗流特征,而且其还具有一定的启动压力梯度,非均质性也相对较强,在实际开采过程中产能的差异性也比较大;整个地层中的弹性能量相对较小,压力下降非常明显,由此就导致在开采过程中会出现明显的产量递减。
1 注二氧化碳提高致密气藏采收率机理针对一些废弃的气体向其中注入二氧化碳能够有效提升气田的扫气效率,也能有效促进油气从地层压力恢复,在此基础上,就能充分调动油气从未开采储量。
在实际针对甲烷进行驱替的过程中,二氧化碳在气态、液态或者超临界状态下都能够充分发挥出其作用。
即使在二氧化碳突破的状态下仍然能够获得很好的甲烷采收率。
1.1筛滤置换作用二氧化碳分子的分子分布形式呈现出直线型状态,其分子直径要远远小于甲烷,因此其完全能够进入非常小的微孔隙中,但是甲烷却不能进入,二氧化碳的这种现象就被称为是筛滤置换作用[1]。
1.2竞争吸附置换作用在向储层中注入二氧化碳后,可以有效的提升甲烷的解析以及扩散速率,再注入二氧化碳后,会导致其渗流速度不断增加,从而导致甲烷的分压出现非常明显的下降,这样就能够有效促进甲烷实现解析和扩散;当气体进入岩层中后,两者之间产生的相互作用力主要是由伦敦色散力以及德邦主导力来共同构成,因此就会形成吸附势。
油田注气提高采收率开发应用技术研究油田注气是一种注入气体到油层中的增产技术,以提高采收率。
该技术的原理是通过注入气体来改变油层的物理性质,从而改善原油的流动性和驱替效果,提高采收率。
油田注气技术的应用主要有两种方式:一种是地层气驱,即利用地层自然存在的气体进行驱油;另一种是人工注入气体,包括天然气、氮气、二氧化碳等。
研究表明,油田注气技术可以有效地提高采收率,尤其对于高含硫、高粘度油井的开发具有重要意义。
注气可以通过增加油层内部的压力,降低油相相对渗透率,提高油相的流动性,使原本无法开采的油藏变得可开发。
注气还可以改变油层中的相态,如使原本以液态存在的油变为气相,从而提高采收率。
油田注气技术的开发应用主要有以下几个方面:1. 注气方式的选择:根据不同油田的地质特征和开发条件,选择合适的注气方式。
地层气驱适用于地层气资源丰富的区域,人工注入气体适用于气田或有可供注入的天然气资源的区域。
2. 注气剂的选择:根据油田的特点和开发目标,选择合适的注气剂。
对于高含硫油田,可以选择氮气注气,通过减少油中硫的溶解度提高采收率;对于气田,可以选择天然气注入,以增加气相驱替效果。
3. 注气过程参数的优化:包括注气速度、注气压力、注气周期等。
通过调整这些参数,可以达到最佳注气效果。
4. 油田注气的物理模拟和数值模拟:通过物理模拟和数值模拟的方法,研究油田注气过程中的物理机制和流动规律,为注气技术的应用提供理论基础。
油田注气技术是一种重要的增产技术,通过合理选择注气方式、注气剂和优化注气过程参数,可以提高采收率,延长油田的生产周期,实现经济效益最大化。
在未来的研究中,需要进一步深入探索注气的机理和流动规律,提高注气技术的应用效果。
CO2气提塔的气提过程\原理\结构和作用气提塔中气提过程:气提塔实际上是一个多管降膜式湿壁塔。
合成塔来的反应液,其中含氨:30.14%、二氧化碳:17.49%、尿素:34.49%。
通过合成塔出料调节阀HV201利用液位差进入气提塔上花板,每根气提管上部有一液体分布器,当液体流过分布器小孔后呈膜状向下沿管内壁流动。
随着阀开度的改变,分布器上液层高度也改变。
负荷高,液层高,流过小孔流量大,反之即小。
当液体下流后与下部来的二氧化碳气体相遇,首先是游离氨被逐出,再向下是甲铵分解即以两个氨分子一个二氧化碳分子这样的比例分解出来。
由于管外有压力为2.0MPa左右,温度为230℃的中压饱和蒸气供给热量,使分解反应能够不断进行。
气提过程之所以能实现是由于与反应液呈平衡的溶液表面上氨蒸汽压力始终大于气相中氨分压。
这样氨一直可以被分解出来,而二氧化碳则是由于化学平衡关系,当减低气相氨的浓度后,反应向左进行。
在加热和汽提的联合作用下,使尿素、氨基甲酸铵分解成氨和二氧化碳,并随气体介质一起从液体分布器上部的升气管出去进入高压甲铵冷凝器。
底部出来的尿素溶液送入后系统进一步减压分解其中的氨基甲酸铵。
气提塔中气提原理汽提是以一种气体通过反应混合物,从而降低另一种或几种气体的分压,使离解压力降低的过程。
所谓二氧化碳气提就是一种气体通过反应物,从而降低气相中氨和(或)二氧化碳的分压,使甲铵分解。
甲铵分解的反应方程式:NH2COONH4 (液) = 2NH3 (气) + CO2 (气) -Q这是一个可逆吸热体积增大的反应,只要能提供热量、降低压力或降低气相中NH3和CO2某一组分的分压,都可以使反应向着甲铵分解的方向进行,以达到分解甲铵的目的。
采用液态甲铵的生成或分解来说明:2NH3(液)+CO2(液) = NH2COONH4(液)溶液中氨和二氧化碳与气相中的氨和二氧化碳处于平衡,假设它们分别符合拉乌尔与亨利定律,则有:PNH3 = P0NH3?〔NH3〕(液) PCO2=HCO2?〔CO2〕(液) PNH3 --- 溶液中氨的平衡分压PCO2 --- 溶液中二氧化碳的平衡分压P0NH3 ---- 纯氨的饱和蒸汽压HCO2 ---- 二氧化碳的亨利系数〔NH3〕(液) -- 液相中氨分子分率〔CO2〕(液) -- 液相中二氧化碳分子分率由上述各式可知:当用二氧化碳为气提剂时,气相中的氨分压趋近于零,则液相中氨的平衡分压大于实际气流中的氨分压,故液相中的氨不断汽化逸出,液相中〔NH3〕(液)降低,反应向着甲铵分解成氨和二氧化碳的方向进行。
天然气井采气原理
天然气井采气原理主要涉及天然气的产生、运移和储存等方面。
天然气是一种由生物、地质等多种因素形成的烃类气体,其主要成分为甲烷(Methane)。
在地壳深部,天然气作为一种可渗透的流体,可以在岩石孔隙中或裂缝中储存。
天然气的采集主要依靠天然气井,采气原理是通过开采井筒和井底的有效气层,将天然气从地下储存库中采集出来。
天然气井采气主要有两种方式,一种是自然气压力驱动采气,另一种是人工压裂采气。
自然气压力驱动采气是指在天然气储层中,天然气由于地下压力自然流出到地面的现象。
这种采气方式适用于气井处于高压气藏中,气藏与地面相连的通道畅通无阻的情况。
但是该方式采出的天然气产量较小,不能满足大规模的天然气开采需求。
人工压裂采气是指在气井中注入压力液体,将压力液体压入地下储层中,使储层中的裂缝扩张,从而增加天然气流动通道和采气效果。
这种采气方式在天然气开采中应用广泛,可以有效提高天然气产量。
总之,天然气井采气原理是在天然气储层中采集天然气。
采气方式不同,采气效果也会有所差异。
人工压裂采气是目前应用最广泛的天然气采集方式。
- 1 -。
1.二氧化碳驱油机理1.1二氧化碳驱油机理二氧化碳驱的作用机理可分为CO2混相驱和CO2非混相驱(表1-1),当最小混相压力小于原始地层压力时,能够达到混相驱油,高于原始地层压力时为非混相驱。
非混相驱主要通过溶解、膨胀、降粘,降低界面张力等作用来驱油;而混相驱除了溶解、膨胀、降粘等,就是CO2与原油能够达到混相,也就是一种相态,没有界面张力,理论上驱油效率能够达到100%。
一般稀油油藏主要采用CO2混相驱,而稠油油藏主要采用CO2非混相驱。
表1-1 混相驱油与非混相驱油对比表在稀油油藏条件下CO2易与原油发生混相,在混相压力下,处于超临界状态下的CO2可以降低所波及的油水界面张力。
CO2注入浓度越大,油水相界面张力越小,原油越容易被驱替。
通过调整注入气体的段塞使CO2形成混相,可以提高原油采收率增加幅度。
非混相CO2驱开采稠油的机理主要是:降低原油粘度,改善油水流度比,使原油膨胀,乳化作用及降压开采。
CO2在油中的溶解度随压力增加而增加。
当压力降低时,CO2从饱和CO2原油中溢出并驱动原油,形成溶解气驱。
气态CO2渗入地层与地层水反应产生的碳酸,能有效改善井筒周围地层的渗透率。
提高驱油机理。
与CO2驱相关的另一个开采机理是由CO2形成的自由气可以部分代替油藏中的残余油。
CO2驱油机理主要有以下方面:(1)降低原油粘度溶于原油后,降低了原油粘度,原油粘度越高,粘度降低程度越大(表CO21-2)。
原油粘度降低时,原油流动能力增加,从而提高了原油产量。
并且原油初始粘度越高,CO降粘效果越明显,如下表所示。
江苏油田富48井注入37.161%2后,原油粘度降低了60.173%;Maini和Sayegh研究发现,在(摩尔分率)CO261.55MPa下,稠油饱和CO之后,其粘度从6822MPa·s降低到了226MPa·s。
2表1-2 CO2完全饱和时原油粘度变化对比表温度较高(大于120℃)时,因CO溶解度降低,降粘作用反而变差(图1-1)。
2溶解度升高,降粘作用随之提高,但当压在同一温度条件下,压力升高时,CO2力超过饱和压力时,粘度反而上升(图1-2)。
原油粘度降低时,原油流动能力增加,从而提高了原油产量。
图1-1 CO2溶解量随温度的变化曲线图1-2 CO2溶解量随压力的变化曲线(2)改善原油与水的流度比溶于原油和水,将使原油和水碳酸化。
原油碳酸化后,其粘度随大量的CO2之降低,大庆勘探开发研究院在45℃和12.7MPa的条件下进行了有关试验,试在油田注入水中的溶解度为5%(质量),而在原油中的溶解度为15%验表明,CO2溶于原油中,使原油粘度由9.8mPa.s降到2.9mPa.s,使(质量);由于大量CO2原油体积增加了17.2%,同时也增加了原油的流度。
水碳酸化后,水的粘度将提高20%以上(图1-3),同时也降低了水的流度。
因为碳酸化后,油和水的流度趋向靠近,所以改善了油与水流度比,扩大了波及体积。
图1-3 地层水的粘度与CO2溶解浓度的关系(3)使原油体积膨胀CO2大量溶于原油中,可使原油体积膨胀,原油体积膨胀的大小,不但取决于原油分子量的大小,而且也取决于CO2的溶解量。
CO2溶于原油,使原油体积膨胀,也增加了液体内的动能,从而提高了驱油效率。
通常情况下,CO2在原油中溶解可使其体积增加10%~40%。
这种膨胀作用对驱油非常重要:①水驱后留在油层中的残余油与膨胀系数成反比,即膨胀越大,油层中残留的油量就越少;②溶解CO2的油滴将水挤出孔隙空间,使水湿系统形成一种排水而不是吸水过程,泄油的相对渗透率曲线高于它们的自动吸油相对渗透率曲线,形成一种在任何给定饱和度条件下都有利的油流动环境;③原油体积膨胀后一方面可显著增加弹性能量,另一方面膨胀后的剩余油脱离或部分脱离地层水的束缚,变成可动油。
(4)高溶混能力驱油尽管在地层条件下CO2与许多原油只是部分溶混,但是当CO2与原油接触时,一部分CO2溶解在原油中,同时,CO2也将一部分烃从原油中提取出来,这就使CO2被烃富化,最终导致CO2溶混能力大大提高。
这个过程随着驱替前缘不断前移而得到加强,驱替演变为混相驱,这也使CO2混相驱油所需要的压力要比任何一种气态烃所需要的混相压力都低得多。
用气态烃与轻质原油混相也要27~30MPa,而用CO2混相压力只要9~10MPa即能满足。
在高温高压下CO2与原油溶混机理主要体现在烃从原油中蒸发出来与CO2混相,即主要是蒸发作用;在低温条件下主要是CO2向原油的凝聚作用和吸附作用。
当压力低于混相压力时,CO2和原油混合物有三个相存在:气态CO2并含有原油的轻质组份、失去轻质组份而呈液态的原油、由原油中分离出来的以固体沉淀方式存在的沥青和蜡。
(5)分子扩散作用非混相CO2驱油机理主要建立在CO2溶于油引起油特性改变的基础上。
为了最大限度地降低油的粘度和增加油的体积,以便获得最佳驱油效率,必须在油藏温度和压力条件下,要有足够的时间使CO2饱和原油。
但是,地层基岩是复杂的,注入的CO2也很难与油藏中原油完全混合好。
而多数情况下,CO2是通过分子的缓慢扩散作用溶于原油的。
(6)降低界面张力残余油饱和度随着油水界面张力的减小而降低;多数油藏的油水界面张力为10~20mN/m,要想使残余油饱和度趋向于零,必须使油水界面张力降低到0.001mN/m或更低。
界面张力降到0.04mN/m以下,采收率便会明显地提高。
CO2驱油的主要作用是使原油中轻质烃萃取和汽化,大量的烃与CO2混合,大大降低了油水界面张力,也大大降低了残余油饱和度,从而提高了原油采收率。
随着CO2注入压力增加,CO2-油界面张力降低,压力越高,界面张力下降幅度越大。
最小混相压力时界面张力并不是0,细管实验所求得的最小混相压力小于多次接触求得的最小混相压力。
细管实验所确定的混相并未达到严格物理化学意义上的混相(界面张力为0),仅是一种工程意义上的“混相”。
(7)溶解气驱作用由于CO2在原油中的溶解度较大,大量的CO2溶于原油中,具有溶解气驱作用。
降压采油机理与溶解气驱相似,在注入过程中,一部分CO2溶于原油,随着注入压力上升,溶解的CO2量越来越多,当油藏停止注CO2时,随着生产的进行,油藏压力降低。
随着压力下降,油藏原油中的CO2就会从原油中分离出来,为溶解气驱提供能量,形成类似于天然类型的溶解气驱液体内产生气体驱动力,提高了驱油效果。
另外,一些CO2驱替原油后,占据了一定的孔隙空间,成为束缚气,也可使原油增产。
即使停注,油藏中的CO2气体仍然可以驱替油藏中的原油,而且,一部分CO2像残余气一样圈闭在油藏中,进一步增加采出油量,从而达到提高原油的采收率的目的。
因此CO2的溶解量与提高采收率为正相关(图1-4)。
图1-4 提高的采收率与总注入量的关系(8)提高渗透率和酸化解堵作用碳酸化的原油和水,不仅改善了原油和水的流度比,而且还有利于抑制粘土膨胀。
CO2溶于水后显弱酸性,CO2溶解于水时可形成碳酸,它可以溶解部分胶结物质和岩石,从而提高地层渗透率,注入CO2水溶液后砂岩地层渗透率可提高5~15%,百云岩地层可提高6~75%。
并且,CO2在地层中存在,可使泥岩膨胀减弱。
二氧化碳~水的混合物略带酸性并与地层基质相应地发生反应,原理如下:CO2+H20→H2C03H 2CO3+CaC03→Ca(HC03)2H 2C03+MgC03→Mg(HC03)2生成的碳酸氢盐很容易溶于水,它可以导致碳酸盐的渗透率提高,尤其是井筒周围的大量水和二氧化碳通过碳酸岩时圈。
另外,二氧化碳~水混合物由于酸化作用可以在一定程度上解除储层无机垢堵塞,疏通油流通道,恢复单井产能。
(9)抽提作用轻质烃与CO2间具有很好的互溶性,当压力超过一定值(此值与原油性质及温度有关)时,CO2能使原油中的轻质烃抽提和汽化,当CO2突破后,主要沿大孔道流动,其流动速度加快,CO2驱替作用降低,主要是靠CO2抽提原油中的轻质组分,并携带出地层。
气体突破前产出油的颜色及化学组分变化不明显,气体突破后形成CO2萃取,随着CO2的流动,原油与高压CO2多次接触,逐渐按碳化学组分从轻到重萃取,萃取后重的碳组分留下来,因此采出的油颜色变浅,油气化学组分发生变化。
抽提的量与CO2压力或密度成正比,CO2首先萃取和汽化原油中的轻质烃,主要是C5~C20组分,随后较重质烃被汽化产出,最后达到稳定。
降低温度可提高抽提量,即CO2液态时抽提效果好,但这样会伤害地层。
(10)增加束缚水饱和度在CO2驱中,CO2溶于油中,同时大量的CO2溶于水中,减少了溶于油中的CO2。
由于水中溶解CO2,减小了与油作用的CO2量,同时溶解CO2的束缚水,体积膨胀,使部分束缚水变成流动水。
注气压力越高,水中溶解的CO2越多,束缚水体积膨胀越大,油层水量增多。
(11)混相效应混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。
CO2与原油混相后,不仅能萃取和汽化原油中轻质烃,而且还能形成CO2和轻质烃混合的油带。
CO2与原油的混相取决于原油的组成、油藏压力和温度。
在油藏压力中等以上和油藏温度较高的油藏,注入的CO2与原油通过多次接触,不断抽提原油中的中间组分C2~C6,加富注入气,从而达到动态混相,即蒸发气驱混相。
而在高压低温油藏,CO2冷凝为富含CO2的液相,与原油一次接触就能达到混相。
但是,在绝大多数油藏条件下,CO2与原油的混相过程为蒸发气驱混相。
在一定的油藏压力和温度条件下,注入CO2与原油的多次接触混相(蒸发气驱混相)在CO2/原油系统中,最重要的特性就是CO2能从原油中抽提(萃取、蒸发、汽化)轻烃组分。
CO2在低温和高温下都能抽提原油中的轻烃,CO2抽提原油的特性是发展CO2多级混相驱的基本条件。
CO2与原油接触时,萃取原油中的轻质组分而使CO2加富;加富的CO2再与原油接触进一步抽提原油,再接触,再抽提,不断的使CO2被加富,当CO2抽提到足够的烷烃时,含有富气的CO2相能与原油混溶。
(12)降低地层启动压力低渗透储层存在启动压力梯度,两相启动压力梯度要比单相渗流大很多,岩石的渗透率越小,平均孔隙半径也越小,喉道越细,启动压力梯度也就越大。
水驱启动压力梯度大于CO2驱启动压力梯度,CO2驱可明显降低地层的启动压力,提高注入能力。
(13)改变岩石孔隙结构经过CO2驱后,岩石渗透率、平均孔隙半径、最大孔隙半径增加,大孔隙的孔隙半径增加,小孔隙的孔隙半径降低。
岩石孔隙结构的变化主要与岩石的矿物组成有关。
(14)岩石润湿性变化在CO2作用下,岩石亲水性增强。
随着压力增加,亲水性增强,CO2驱有利于油进入孔道中间,减小油流动阻力。
1.2影响二氧化碳驱油的因素二氧化碳在混相和非混相条件下驱油提高原油采收率决定了其驱油机理,驱油过程同时存在有利因素和不利因素。