含参数导数问题的求解策略
- 格式:doc
- 大小:9.50 KB
- 文档页数:1
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数在数学含参问题中的应用新课程利用导数解决含参问题或恒成立问题,导数是分析和解决问题的有效工具。
但学生在运用导数解决含参的问题时,往往会束手无措,特别是对其中的分离参数无法纯粹的分离出来感到苦恼。
其实这一部分主要就是根据函数的单调性求出函数在一定条件下的最值,进而解决恒成立问题,含参数问题既是高中教学的重点和难点,又是历年高考的热点。
本文从常见题型对含参函数问题进行了分析与研究,着重介绍常见题型利用导数解决这些问题的基本策略。
标签:导数函数的单调性参数的取值范围恒成立导数的思想最初是由法国的数学家费马(Fermat)为研究极值问题而引入的,但随着人们对导数概念和性质的进一步认识和研究便发现它的引出和定义始终贯穿着函数思想。
新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强它在解决函数的含参问题上带来了很大的便利。
以函数为载体,以导数为工具,运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。
解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
解决的主要途径是将含参数不等式的存在性或恒成立问题根据其不等式的结构特征,恰当地构造函数,等价转化为含参函数的最值讨论。
这也是最近几年高考在命题是在函数与导数交汇试题的显著特点和命题趋向。
由于这类题目涉及的知识面广,综合性强,不少考生在处理这类问题时,不知道确定参数范围的函数关系或不等关系从何而来,以至于处于无从下手的盲区,希望下面一些拙见能对一些考生的备考有所作用。
一、含参函数的单调性的问题导数的运算,导数与函数单调性的关系,利用导数的性质对参数进行分类讨论综合运用化归与转化的思想。
【例1】已知函数f(x)=lnx-a2x2+ax(a∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.解析:(1)当a=1时,f(x)=lnx-x2+x,其定义域是(0,+∞),f′(x)= -2x+1=令f′(x)=0,即- =0,解得x=- 或x=1∵x>0,∴x=1.当00;当x>1时,f′(x)0,∴f(x)在区间(1,+∞)上为增函数,不合题意.②当a>0时,f′(x)≤0(x>0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥,此时f(x)的单调递减区间为.③当a0)等价于(2ax+1)(ax-1)≥0(x>0),即x≥- ,此时f(x)的单调递减区间为得a≤- .综上,实数a的取值范围是∪[1,+∞).【例2】已知函数f(x)= -2x2+lnx,其中a为常数.(1)若a=1,求函数f(x)的单调区间;(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.解析:(1)若a=1,则f(x)=3x-2x2+lnx的定义域为(0,+∞),f′(x)= -4x+3= = (x>0).当x∈(0,1),f′(x)>0时,函数f(x)=3x-2x2+lnx单调递增.当x∈(1,+∞),f′(x)<0时,函数f(x)=3x-2x2+lnx单调递减.故函数f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)f′(x)= -4x+ ,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,f′(x)= -4x+ ≥0或f′(x)= -4x+ ≤0,即-4x+ ≥0或-4x+ ≤0在[1,2]上恒成立.即≥4x- 或≤4x- .令h(x)=4x- ,因为函数h(x)在[1,2]上单调递增,所以≥h(2)或≤h(1),即≥ 或≤3,解得a<0或0<a≤ 或a≥1.二、含参函数中的恒成立问题可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离或半分离(无法纯粹的分离),得到函数关系,从而使这种具有函数背景的范围问题迎刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。
关于含参函数单调性问题导数解法的研究陈小祥 (江苏省徐州市侯集高级中学 221121) 导数的引入极大地方便了对函数单调性的研究和相关问题的解决,然而源于高中阶段目前的知识体系下学生无法深入学习理解极限、导数等高等数学基础内容等原因,中学相关教材中(苏教版)对导数与函数单调性关系做了简化处理,教参中也提出了不必深究的建议.然而不论在教学中还是在高考中都出现了相关的问题,这些问题引起了师生教与学的困惑.本文主要对含参函数单调性问题的导数解法中出现的一些问题作一浅显的研究,并给出合适的解决策略,不当之处,敬请指正.苏教版必修1中对函数的单调性作了这样的定义:定义1 一般地,设函数狔=犳(狓)的定义域为犃,区间犐 犃,如果对于区间犐内的任意两个值狓1,狓2,当狓1<狓2(狓1<狓2)时,都有犳(狓1)<犳(狓2)(犳(狓1)>犳(狓2)),那么就说狔=犳(狓)在区间犐上是单调增(减)函数,如果函数狔=犳(狓)在区间犐上是单调增(减)函数,那么就说狔=犳(狓)在区间犐上有单调性.选修1 1中对函数单调性则这样描述:定义2 设函数狔=犳(狓)在某个区间内可导,如果犳′(狓)>0(犳′<0),则函数狔=犳(狓)为这个区间上的增(减)函数.利用定义1结合导数定义证明定义2并不难,这里略去,但是利用定义2解决以下教学中常见问题时会遇到不少困惑和争议:问题1 求函数狔=狓3的单调区间;问题2 函数狔=犪狓3-狓在(-∞,+∞)上是减函数,求实数犪的范围檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪;阳引力潮的合成用下面的函数表示:犳(狓)=sin(2π犜1狓)+2.17sin(2π犜2狓+φ),其中犜1=12,犜2=122560,φ=-2犽π15,犽∈犣,整理化简可得犳(狓)=sin(π6狓)+2.17sin(24π149狓-2犽π15),犽∈[0,30]∩犣,其中犽表示农历初一到三十中的某一天,狓表示第犽天中的某一时刻,犳(狓)表示该时刻海潮的相对高度.3 电脑演示,检验模型观察图象的变化,很容易看到初一、十五涨大潮(图1),初八、二十三涨小潮(图2).另外,当犽=0时,3:00时刻达到第一次大潮,16天后,即犽=16时,16:00时刻达到第一次大潮,所以平均每天第一次大潮后移时间为16-316=48.75min≈50min.图1图24 继续思考,寻找规律到此学生的两个问题都得到了比较好的回答,但继续思考我们会发现,上述潮汐模型其实就是两个相近频率的正弦波的叠加问题,那么两个相近频率的正弦函数之和在(-∞,+∞)上的图象是什么样子的呢?通过几何画板我们可以看到图3.图3此类问题在声学中被称为拍现象,在数学上我们姑且可以称为鱼形函数.它在测高速运动物体的速度上有很好的应用.·25· 中学数学月刊 2014年第4期 问题3 函数狔=犪狓-1狓+1在(-1,+∞)上单调递增,求实数犪的范围;问题4 (2013江苏高考第20题)设函数犳(狓)=ln狓-犪狓,若函数在(1,+∞)上是单调减函数,求实数犪的范围.1 教学中常见问题与争议概述对于问题1,易知其单调增区间是(-∞,+∞),然而若用定义2,即因为狔′=3狓2,令狔′>0得狓∈(-∞,0)∪(0,+∞),所以函数的单调增区间为(-∞,0),(0,+∞),为什么不是(-∞,+∞)?如果是,为什么可以将(-∞,0),(0,+∞)并起来成为(-∞,+∞)?于是教学中可能会结合函数狔=狓3函数图象得到:函数狔=犳(狓)在某个区间(犪,犫)内可导,若犳′(狓)>0,则狔=犳(狓)在某个区间(犪,犫)内递增,反之不成立.即在区间(犪,犫)内,犳′(狓)>0是犳(狓)在区间(犪,犫)内单调递增的充分不必要条件,进而直接引出所谓的充要条件:函数狔=犳(狓)在某个区间(犪,犫)内可导,则函数犳(狓)在这个区间内单调递增(减)的充要条件是犳′(狓)≥0(犳′(狓)≤0)在区间(犪,犫)内恒成立.对于问题2,利用上面得到的结论,因为狔′=3犪狓2-1,由题意狔′=3犪狓2-1≤0恒成立,利用分离参变量或者二次函数根的分布理论(需讨论参数)易得犪≤0,看似无懈可击;对于问题3,因为狔′=犪+1(狓+1)2≥0在(-1,+∞)上恒成立,则犪≥-1.问题是当犪=-1时,原函数狔=-1,按照高中函数单调性定义1,此时函数没有单调性,即犪不能等于1.为什么会出现这样的问题?如何解决?于是教学中可能会总结出这样的解决办法———验证端点取值.以本题为例,当犪=-1时,原函数无单调性,故舍去,从而实数犪的范围是(-1,+∞).但为什么要验证呢?对于问题4,江苏高考题的标准解法不同于以上思路,大体是这样给出的:令犳′(狓)=1-犪狓狓<0,因为定义域为(0,+∞),所以解得狓∈1犪,+∞().由题意,函数在(1,+∞)上单调减,所以(1,+∞)1犪,+∞(),所以1≥1犪,故犪≥1.若用上述问题2~3的解法,犳′(狓)=1-犪狓狓≤0在(1,+∞)上恒成立,易得犪≥1狓恒成立,因此犪≥1.问题是,若将原题改为“设函数犳(狓)=ln狓-犪狓,若函数在[1,+∞)上是单调减函数,求实数犪的范围”呢,用此种解法得到的结果就是错解犪>1了,为什么呢?2 导数与函数单调性关系深层次探究我们知道,定义2给复杂函数单调性的判断带来了极大的便利,但使用其解决关于单调性的逆向问题时,则有点力不从心.因为逆向问题的解决至少应考虑单调性的必要条件,当然充要条件更好.华东师大《数学分析》教材(高等教育出版社,1991年版)对于这个问题给出的答案是:定理 若函数犳(狓)在区间(犪,犫)内可导,则犳(狓)在区间(犪,犫)内严格递增(递减)的充要条件是:(1)对一切的狓∈(犪,犫),有犳′(狓)≥0(犳′(狓)≤0);(2)在(犪,犫)的任何子区间上犳′(狓)不恒为0.需说明的是:(1)这里的严格递增指高中教材中所说的递增,即对应定义1;(2)此定理的证明需涉及超出高中知识范畴的新知识,所以教参中的不必深究应是指此原因,但实际教学中完全可以由具体实例引导学生直观得到并理解这一定理,如可由狔=狓3,狔=狓,狔=1狓以及常数函数等图象去直观阐述;(3)定理中(2)事实上是指犳′(狓)=0在区间(犪,犫)上至多只有孤立解(离散解).综上,若已知含参函数在某开区间上的单调性求参数范围问题,完全可以等价地转化为求同时满足下列两个条件的新问题:犳′(狓)=0在此区间上至多有孤立解和犳′(狓)≥0(犳′(狓)≤0)在此区间上恒成立.具体讨论如下:2.1 导数解决含参函数单调性问题的策略一对于问题2,令狔′=3犪狓2-1=0,若犪≤0,此方程无解,故此时狔′=3犪狓2-1<0在(-∞,+∞)上都成立,显然符合;若犪>0,方程根为狓=±13槡犪,是两个孤立解,此时只需狔′=3犪狓2-1≤0在(-∞,+∞)上都成立即可,易得犪≤0,与犪>0矛盾,故舍去.综上犪≤0.对于问题3,令狔′=犪+1(狓+1)2=0,得犪=-1.当犪=-1时,方程解集为区间(-1,+∞),由定理知函数在(-1,+∞)上不单调递增,舍去;当犪≠-1时,狔′≠0,所以只需狔′=犪+1(狓+1)2>0在(-1,+∞)上恒成立即可,易得犪>-1.·35·2014年第4期 中学数学月刊 对于问题4,令犳′(狓)=1-犪狓狓=0,由于狓∈(0,+∞),所以1-犪狓=0.若犪=0,则此方程无解,此时只需1-犪狓<0在(1,+∞)恒成立即可.易得犪>1,与犪=0矛盾(或者若犪=0,则1-犪狓=1>0),舍去;若犪≠0,方程根为狓=1犪,为一孤立解,所以此时只需1-犪狓≤0在(1,+∞)上恒成立即可,易得犪≥1.综上犪≥1.对于问题1,因为狔′=3狓2=0时,狓=0为一孤立解,所以令狔′=3狓2≥0,解得狓∈犚.利用此种策略解题时往往需要根据参数范围分类讨论解狔′=0方程,若有解:①在某一子区间上都有解,因不符合定理中条件,直接舍去;②若有孤立解,则可等价地转化为犳′(狓)≥0(犳′(狓)≤0)在区间上恒成立问题,结合初始范围求解;若无解,直接转化为犳′(狓)>0(犳′(狓)<0)在区间上恒成立问题,结合初始范围求解.此策略的优点是逻辑顺序合理清晰,但因需先分类求解含参方程,再转化为恒成立问题,运算量较大,如问题5:若函数犳(狓)=13狓3-12犪狓2+(犪-1)狓+1在区间(1,4)内为减函数,求实数犪的范围.为此可以优化为策略二.2.2 导数解决含参函数单调性问题的策略二由定理可知,已知含参函数在某开区间上的单调性求参数范围问题,可以等价地转化为定理中两个条件同时成立时求参数范围的问题.条件(1)即为恒成立问题;事实上,在条件(1)成立的前提下,也暗含了犳′(狓)=0这一方程的可能的解.因为根据不等式与方程的关系,不等式解集中的非“±∞”的端点可能是相应方程的根;反之,方程若有解,其解也一定在相应不等式的解集的端点中.鉴于此,可将策略一的逻辑顺序颠倒,如针对问题5:由题意令狔′=狓2-犪狓+犪-1=(狓-1)[狓-(犪-1)]≤0在(1,4)内恒成立,易得只需犪-1≥4,即犪≥5.又犪=5时,狔′=(狓-1)(狓-4)=0,其两根均不在(1,4)内,故符合题意.事实上,当犪-1>1时,不等式狔′≤0解集为[1,犪-1],易得犪-1≥4即可,所以犪≥5.而当犪-1≤1时不符合题意,故犪≥5.而当犪≥5时,方程狔′=0的另外一解是犪-1,亦即另外一解事实上为犪∈[4,+∞)内的任一元素.之所以只验证犪-1=4,因为这是狔′=0除1外的最小的可能解了,若它不在(1,4)内,则都不在其内,从而狔′≤0恒成立就够了.策略二的优点是简化了运算求解过程,不足的是逻辑顺序不如策略一清晰自然.纵观近几年高考题中所涉及的部分函数类型,由狔=犪狓+犫,狔=犪狓2+犫狓+犮,狔=ln狓,狔=e狓等基本初等函数组成的复合函数类型:狔=犪1狓狀+犪2狓狀-1+…+犪1狓+犪0(其中犪1,犪2,…,犪0不全为零),狔=犪sin狓+犫cos狓,狔=犪ln狓+犫,狔=犪ln狓+犫狓+犮,狔=犪狓ln狓+犫狓+犮,狔=犪ln狓狓2,狔=犪e狓+犫狓+犮等,其导数只要不为常数,结合方程理论,应该可以发现,即使在某开区间上有根,也只可能是孤立解,亦即事实上利用定理的条件(1)将问题转化为犳′(狓)≥0(犳′(狓)≤0)在区间上恒成立的问题就可以求解.当然这里需要进一步严格的证明,感兴趣的读者可继续研究.2.3 导数解决含参函数单调性问题的策略三利用定义2,亦即函数在狔′>0(狔′<0)的(每个)解集(区间)上单调增(减),所以若含参函数在某个给定的区间上单调增(减),则这个区间应该是狔′>0(狔′<0)的(某个)解集(区间)的子集,如问题4的“标准解法”,优点是避开了争议,逻辑清楚自然,也易于高中学生接受,缺点是往往运算量较大,对含参不等式求解较繁的问题解决效率较低,同时在解决正余弦类的含参复合函数问题上无能为力,如:若狔=sin狓-犪狓2在π,3π()2上单调减,求实数犪的范围问题.3 关于此类问题求解策略的教学建议就我省教参和高考阅卷导向来看,建议首先教授策略三,原因是此法立足于定义2本身,逻辑清晰简单,涉及方法知识本身不超纲.尽管有时运算较繁,但不失为一定范围内的通性通法,而且和高一的含参不等式联系紧密,属于知识交汇处的一般解法;对于程度较好的班级和学生,策略一和二是绝佳的探究材料,不仅因为其解决问题的范围和效率较策略三广和高,而且解法本身联系了高一的恒成立这类典型热点问题,还链接了高等数学初步的一些基础内容,可谓承上启下的典型载体,所以不应错过.教学上可以通过一些具体的初等函数图象引导学生发现并解决为什么仅仅转化为犳′(狓)≥0(犳′(狓)≤0)在区间上恒成立是不够的?为什么还需要另一个条件?如何准确规范求解?等问题,再结合一些具体实例习题来进一步巩固强化学生的理解,最好是采取开放的探究式教学形式,即在教师设计的问题引导下采取学生小组合作、讨论探究、展示解法、探讨错因等方式教学效果可能较好.·45· 中学数学月刊 2014年第4期。
高考数学导数试题解题研究以新课标全国卷为例一、本文概述本文旨在深入研究高考数学导数试题的解题策略,以新课标全国卷为例进行详细分析。
我们将首先概述导数的基本概念及其在高考中的重要性,然后深入探讨导数试题的常见题型和解题技巧。
通过对新课标全国卷历年导数试题的系统梳理,我们将揭示导数试题的命题规律和趋势,为考生提供有针对性的备考建议。
本文还将分享一些成功的解题经验和策略,帮助考生更好地应对高考数学导数试题,提高解题效率和准确性。
通过本文的研究,我们期望能为广大考生和教师提供有益的参考,推动高考数学导数试题解题水平的提升。
二、导数基础知识回顾导数作为高中数学的核心知识点,其基础知识的掌握对于解答导数试题至关重要。
我们需要明确导数的定义。
导数描述了函数在某一点处切线的斜率,它表示函数在该点处的瞬时变化率。
在求解导数试题时,我们应熟练掌握导数的定义,能够根据给定的函数求出其在某一点的导数。
我们需要掌握导数的基本公式和运算法则。
例如,常见的导数公式包括常数函数的导数、幂函数的导数、指数函数的导数、对数函数的导数等。
同时,我们还需要熟悉导数的运算法则,如加法法则、减法法则、乘法法则、除法法则等。
这些公式和法则将为我们求解导数试题提供有力的工具。
导数的几何意义和应用也是我们需要关注的重点。
导数的几何意义体现在函数图像的切线斜率上,我们可以通过导数来判断函数的单调性、极值点等性质。
同时,导数在实际生活中的应用也十分广泛,如物理学中的速度、加速度等都与导数密切相关。
对于新课标全国卷中的导数试题,我们还需要关注其命题特点和趋势。
近年来,导数试题的命题逐渐趋于灵活和多样化,不仅涉及到导数的基础知识,还涉及到导数在实际问题中的应用。
因此,我们需要加强对导数综合应用能力的培养,提高解题的灵活性和创新性。
对于高考数学导数试题的解题研究,我们需要从导数的基础知识入手,熟练掌握导数的定义、公式、运算法则和几何意义等方面的知识。
我们还需要关注导数在实际问题中的应用和命题趋势的变化,加强综合应用能力的培养和实践经验的积累。
导数问题中虚设零点的三大策略导数在高中数学中可谓“神通广大”,是解决函数单调性、极值、最值、不等式证明等问题的“利器”。
因而近几年来与导数有关的数学问题往往成为高考函数压轴题.在面对这些压轴题时,我们经常会碰到导函数具有零点但求解相对比较繁杂甚至无法求解的问题。
此时,我们不必正面强求,可以采用将这个零点只设出来而不必求出来,然后谋求一种整体的转换和过渡,再结合其他条件,从而最终获得问题的解决。
我们称这种解题方法为“虚设零点”法.下面笔者就一些高考题,来说明导数问题中“虚设零点”法的具体解题方法和策略。
策略1整体代换将超越式化简为普通式如果f′(x)是超越形式(对字母进行了有限次初等超越运算包括无理数次乘方、指数、对数、三角、反三角等运算的解析式,称为初等超越式,简称超越式),并且f′(x)的零点是存在的,但我们无法求出其零点,这时采用虚设零点法,逐步分析出“零点”所在的范围和满足的关系式,然后分析出相应函数的单调性,最后通过恰当运用函数的极值与零点所满足的“关系”推演出所要求的结果。
通过这种形式化的合理代换或推理,谋求一种整体的转换和过渡,从而将超越式化简为普通式,有效破解求解或推理证明中的难点.例1(2015年全国高考新课标Ⅰ卷文21)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)的零点的个数;(2)证明:当a>0时,f(x)≥2a+aln2a。
解(1)f(x)的定义域为(0,+∞),f′(x)=2e2x—ax(x>0)。
由f′(x)=0,得2xe2x=a。
令g(x)=2xe2x,g′(x)=(4x+2)e2x〉0(x>0),从而g(x)在(0,+∞)单调递增,所以g (x)>g(0)=0.当a〉0时,方程g(x)=a有一个根,即f′(x)存在唯一零点;当a≤0时,方程g(x)=a没有根,即f′(x)没有零点。
(2)由(1),可设f′(x)在(0,+∞)的唯一零点为x0,当x∈(0,x0)时,f′(x)〈0;当x∈(x0,+∞)时,f′(x)>0。
含参数的方程、不等式的问题解题策略含参数的方程、不等式的问题是历年高考常考的题型,由于含有参数对很多同学来说感到困难重重,一重困难是选择什么样的解题方法(如2012年山东卷第12题),二重困难是含参数问题涉及到的分类讨论(如2017年全国卷1第21题),根据我多年的研究发现,(1)这类题目解题方法有规可循,基本方法有:分离参数构建函数,不分离参数构建函数,半分离参数构建函数,总之,如何构建函数是解题的关键。
(2)很多求参数取值范围的问题,其实有时可以避开分类讨论这个陷阱。
本文就结合实例谈谈这类问题的求解策略。
一、分离参数构建函数:若方程或不等式中的参数容易分离出来,即参数分离 在方程或不等式的一边,另一边是关于自变量的函数,分离后的函数不复杂,容易求出导函数,容易研究函数的性质,就选择分离参数法构建函数。
例1(2017年全国高考卷1第21题)已知函数2()(2)x x f x ae a e x =+-- 若()f x 有两个零点,求a 的取值范围.分析:2f(x)=ae (-2)e x x a x +-有两个零点,转化为方程2(2)0x x ae a e x +--=有两个根先分离参数22a x x x e x e e +=+,令222(1)(21)()g ()(1)x x x x x x x e x e x e g x x e e e e +-+-+'==++,设1x h x -+(x)=-e ,则()h x 递减,(0)0h =当(,0)x ∈-∞时()0h x > ()0g x '∴>()g x ∴递增,当(0,)x ∈+∞时,()0,()0,()h x g x g x '<∴<∴递减,所以当x →+∞时()0g x →,当x →-∞时,g(x)-→∞如图01a ∴<<评析:查阅高考评分标准,看出对参数a>0共分了三种情况讨论:(1)a=1(2)a>1(3)0<a<1,其中0<a<1时,要用函数零点的判定定理,找区间端点时非常困难,绝大多数同学完成不了。
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .专题6.2 导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
从新高考的考查情况来看,函数与导数一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点等问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查。
一般出现在选择题和填空题的后两题以及解答题中,难度较大,复习备考的过程中应引起重视。
通过导数研究函数的单调性、极值、最值问题,考查考生的分类讨论思想、等价转化思想以及数学运算、逻辑推理核心素养.1、研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论;②根的有无讨论;③根的大小讨论;④根在不在定义域内讨论. (2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.2、研究函数零点或方程根的方法(1)通过最值(极值)判断零点个数的方法:借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点:①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法. 3、求与函数零点有关的参数范围的方法: 方程有实根函数的图象与轴有交点函数有零点.(1)参数分离法,构造新的函数,将问题转化为利用导数求新函数单调性与最值.(2)分类讨论法. 4、不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点()0f x =()y f x =x ()y f x =重难点06 函数与导数和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.恒成立问题的重要思路:(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.存在性(有解)问题的重要思路:(1)存在m≥f(x) ⇒m≥f(x) min(2) 存在m≤f(x) ⇒m≤f(x) max.5、利用导数证明不等式f(x)>g(x)的基本方法:(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质,达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.6、函数性质综合问题函数性质综合应用问题的常见类型及解题策略:(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.(4)应用奇函数图象关于原点对称,偶函数图象关于y轴对称.利用单调性比较大小、解不等式、研究函数的最值、函数单调性的讨论(含参)、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的;同时也要注意极值点偏移、双变量等热点问题。
用导数解参数问题已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。
本文将举例说明此类问题的求解策略。
结论一、 不等式()()f x g a ≥恒成立⇔[]min()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min()()f x g a ≤(即求解()f x 的最小值).一、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 二、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<<三、(2009浙江)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)略(Ⅱ))2()1(23)(2+--+='a a x a x x f函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a 四、(新课程卷 )若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.解:[])1()1()1()(2---=-+-='a x x a ax x x f令0)(='x f ,解得x=1或x=a-1,并且 a≠2,否则f (x)在整个定义域内单调。
考点聚焦高考数学导数试题分析与教学策略研究■宋洪巍摘要:函数是数学教学的主要内容之一,在处理函数问题时,导数发挥着重要作用,是函数问题在解决过程中运用的用具。
为了提高学生学以致用的能力,高中数学教师要有意识地培养学生借助导数方式解决问题的能力。
分类解题和数形结合是导数比较常用的解题方式,也是学生在高考过程中使用频率最高的解题思路。
因此,数学教师务必培养学生运用导数方式处理数学问题的意识。
本文主要分析学生在学习导数时存在哪些困难,然后结合高考试题如何有效运用数学导数分析题目,以便能够为提高学生数学知识运用能力以及思维逻辑能力贡献力量。
关键词:高中数学;导数;高考试题导数模块蕴含的知识非常抽象,而且十分枯燥,高中生很难进行深入的理解,无法有效借助导数思维解决数学问题。
此外,由于我国长期处于应试教育模式中,教师的教学手段比较单一,无法让学生在导数学习过程中有明显的收获,对学生的数学进程产生了阻碍。
因此,数学教师要不断改进和创新教学方案,以便能够更加有效地借助导数对高考试题进行分析,让学生能够接触到更加丰富的学习资源。
除此之外,高中生要对教师的教学进行配合,积极完成教师布置的学习任务,在处理高考试题过程中不断尝试运用导数思维,以便能够更好地将数学知识进行运用。
一、导数分析高考试题时所面对的困境1.高中生应用导数知识能力有限导数公式以及导数的基础知识比较抽象,学生难以在短时间内进行有效的理解,而且高中生的数学思维不够完善,缺乏严谨性,因此,学生在学习基础知识时,其理解过程非常困难。
因此,教师在引领学生共同分析高考例题时,学生表现出的学习能力非常薄弱,经常混淆导数公式和知识,解题准确率非常低。
2.学生的导数基础知识储备不高很多学生的导数知识非常贫瘠,缺乏足够的知识储备,所以学生在分析高考例题或者在具体解题时无法运用导数知识。
部分学生容易将导函数为零的数值错误地看作是极值点,完全没有考虑到函数的范围。
学生在解题过程中优先对函数的定义域进行确定,由于学生基础知识不够牢固,很难做到上述这一点,所以他们在解题过程中对函数的“过某点”和“在某点”的差别缺乏判断能力。