七年级上学期第四章基本平面图形同步练习题
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
初一数学(上册)《第四章基本平面图形》单元测试题(十二)一、选择题1.如果点A 在点B 北偏东400的方向上,那么点B 在点A 的( )A.北偏东500B.南偏西500C.南偏西400D.南偏东4002.图是一块手表早上8时的时针、分针的位置,那么分针与时针所成的角的度数是( )A.600B.800C.1200D.15003.如图所示,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是( )A.CD=AC-DBB.CD=AD-BCC.CD=21AB-BD D.CD=31ABA C DB 第3题图第2题图4.在∠AOB 内部任取一点C ,作射线OC ,则一定存在( )A.∠AOB ﹥∠AOCB.∠AOC ﹥∠BOCC.∠BOC ﹥∠AOCD.∠AOC=∠BOC 5.下列计算错误的是( ) 0=900//B.1.50=90/C.1000//=(185)0 0=125.45/6.直线l 外一点P 与直线l 上三点的连线长分别是4厘米、5厘米、6厘米,则点P 到直线l 的最短的线段长度是( ) A.4厘米 B.5厘米 C.不超过4厘米 D.大于6厘米7.下列说法正确的是( )A 、直线是平角 B.线段AB 的长度就是A ,B 两点间的距离C 、若∠AOB=2∠BOC ,则射线OC 是∠AOB 的平分线 D.若点P 使PA=PB ,则P 是AB 的中点 8.如果由多边形的一个顶点可以作6条对角线,那么这个多边形边数是( )A. 7B.9C.5D.49.下列各直线的表示法中,正确的是( )A .直线A B.直线ABC .直线ab D.直线Ab 10.下列说法正确的是( )A 、过一点P 只能作一条直线。
B 、射线AB 和射线BA 表示同一条射线C 、直线AB 和直线BA 表示同一条直线D 、射线a 比直线b 短 11.下列说法中,正确的有( )个。
A 、0 B 、1 C 、2 D 、3 A 过两点有且只有一条直线 B.连结两点的线段叫做两点的距离 C.两点之间,线段最短 D.AB =BC ,则点B 是线段AC 的中点 12.下面表示ABC 的图是 ( )AA B C D13.平面上有不同的三点,经过其中任意两点画直线,共可以画( )。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题第四章 基本平面图形2 比较线段的长短1.关于两点之间的距离,下列说法中不正确的是( A )A .连接两点的线段就是两点之间的距离B .如果线段AB =AC ,那么点A 与点B 的距离等于点A 与点C 的距离C .连接两点的线段的长度,是两点间的距离D .两点之间的距离是连接两点的所有线的长度中,长度最短的2.点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( B )A .AB =2ACB .AC +BC =ABC .BC =12AB D .AC =BC3.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 中点,那么线段MN 的长为( C )A .5 cmB .4 cmC .3 cmD .2 cm4.A ,B ,C 三点在同一直线上,线段AB =5 cm ,BC =4 cm ,那么A ,C 两点的距离是( C )A .1 cmB .9 cmC .1 cm 或9 cmD .以上答案都不对5.如图,C 是线段AB 的中点,D 是线段CB 的中点,下列说法错误的是( D )A .CD =AC -BDB .CD =12AB -BD C .AC +BD =BC +CDD .CD =13AB 6.如图,从甲地到乙地有四条道路,其中__③__最近,理由是__两点之间的连线中,线段最短__.,第6题图) ,第7题图)7.如图所示,直线MN 表示一条铁路,铁路两旁各有一工厂,分别用点A ,点B 来表示,要在铁路旁建一货站,使它到两厂距离之和最短.问:这个货站应建在何处?解:连接AB ,交MN 于P 点,则这个货站应建在P 点旁.如答图所示.答图8.如图所示,已知线段a ,b (a >b ),作一条线段等于2(a -b ).解:画法:(1)画射线AM ;(2)在射线AM 上截取AB =a ;(3)在线段AB 上截取BC =b ,则AC =a -b ;(4)在线段AC 的延长线上截取CD =A C .如答图所示,则线段AD 即为所求.,答图)9.如图,点B 是线段AC 延长线上一点,已知AC =8,OC =3.(1)求线段AO 的长;(2)如果点O 是线段AB 的中点,求线段AB 的长.解:(1)AO =AC -OC =8-3=5.(2)∵点O 是线段AB 的中点,∴AB =2AO =2×5=10.10.如图,B ,C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD =8,求MC 的长.解:设AB =2x ,BC =3x ,CD =4x ,∴AD =9x ,MD =92x ,则CD =4x =8,x =2,MC =MD -CD =92x -4x =12x =1.11.在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值.若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO =28,求p .解:(1)若B 为原点,由图可知,点A ,点C 分别表示-2,1,则p =-2+0+1=1. 若C 为原点,由图可知,点A ,点B 分别表示-3,-1,则p =-3+(-1)+0=-4.(2)因为点O 在点C 右边,所以BO =BC +CO =1+28=29,AO =AB +BO =2+29=31, 所以点A 表示-31,点B 表示-29,点C 表示-28,则p =(-31)+(-29)+(-28)=-88.。
第四章基本平面图形单元测试一、单选题(共10题;共30分)1、钟表在5点半时,它的时针和分针所成的锐角是()A、15°你B、70°C、75°D、90°2、下列说法正确的是()A、线段AB和线段BA表示的不是同一条线段B、射线AB和射线BA表示的是同一条射线C、若点P是线段AB的中点,则PA=ABD、线段AB叫做A、B两点间的距离3、如图,C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD为()A、1B、5C、2D、2.54、下列命题中的真命题是()A、在所有连接两点的线中,直线最短B、经过两点有一条直线,并且只有一条直线C、内错角互补,两直线平行D、如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直5、在海上有两艘军舰A和B,测得A在B的北偏西60°方向上,则由A测得B的方向是()A、南偏东30°B、南偏东60°C、北偏西30°D、北偏西60°6、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A、南偏西40度方向B、南偏西50度方向C、北偏东50度方向D、北偏东40度方向7、(2015秋•武安市期末)下面等式成立的是()A、83.5°=83°50′B、37°12′36″=37.48°C、24°24′24″=24.44°D、41.25°=41°15′8、七年级一班同学小明在用一副三角板画角时(即30°,60°,90°的一个,45°,45°,90°的一个)画出了许多不同度数的角,但下列哪个度数他画不出来()A、135°B、75°C、120°D、25°9、平面上有三点,经过每两点作一条直线,则能作出的直线的条数是()A、1条B、3条C、1条或3条D、以上都不对10、如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3,则∠AOA4的大小为()A、8°B、4°C、2°D、1°二、填空题(共8题;共24分)11、2700″=________ °.12、如图,公园里,美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是________ ;13、如图,∠AOC可表示成两个角的和,则∠AOC=∠BOC+∠________ .14、往返甲乙两地的火车,中途还需停靠2个站,则铁路部门对此运行区间应准备________ 种不同的火车票.15、开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________ .16、已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=________.17、下面四个等式表示几条线段之间的关系:①CE=DE;②DE= CD;③CD=2CE;④CE=DE= CD.其中能表示点E时显得CD的中点的有________.(只填序号)18、如图,C在直线BE上,∠A=m°,∠ABC与∠ACE的角平分线交于点A1,若再作∠A1BE、∠A1CE 的平分线,交于点A2;再作∠A2BE、∠A2CE的平分线,交于点A3;依此类推,∠A2016为________.三、解答题(共6题;共46分)19、一个角是钝角,它的一半是什么角?20、如图,在直线a上求一点O,使它到点M、N的距离最小.21、如图,已知线段AB,①尺规作图:反向延长AB到点C,使AC=AB;②若点M是AC中点,点N是BM中点,MN=3cm,求AB的长.22、如图,OC是∠AOD的平分线,OE是∠DOB的平分线,∠AOB=130°,∠COD=20°,求∠AOE的度数.23、如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.24、怎样知道两名同学谁的铅球掷得远?体育课请进行实地操作.答案解析一、单选题1、【答案】 A【考点】钟面角、方位角【解析】【分析】先确定钟表在5点半时,它的时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,再计算求解.【解答】根据分析可知:时针和分针所成的锐角为×30°=15°.故选A.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,要知道钟表12个数字,每相邻两个数字之间的夹角为30度.2、【答案】C【考点】直线、射线、线段【解析】【解答】解:A、线段AB和线段BA表示的是同一条线段,故A错误;B、射线AB和射线BA表示的不是同一条射线,故错误;C、由线段中点的定义可知C正确.D、线段AB的长度叫做A、B两点间的距离,故D错误.故选:C.【分析】根据线段、射线的特点以及线段的中点和两点间的距离的定义回答即可.3、【答案】A【考点】两点间的距离【解析】【解答】解:∵线段DA=6,线段DB=4,∴AB=10,∵C为线段AB的中点,∴AC=BC=5,∴CD=AD﹣AC=1.故选A.【分析】由已知条件知AB=DA+DB,AC=BC=AB,故CD=AD﹣AC可求.4、【答案】B【考点】线段的性质:两点之间线段最短【解析】【解答】解:A、在所有连接两点的线中,线段最短,故A错误,B、经过两点有一条直线,并且只有一条直线,故B正确,C、内错角相等,两直线平行,故C错误,D、如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条垂直,故D错误.故选B.【分析】答题时首先理解直线、线段的定义,直线平行的定理,然后对各个选项进行判断.5、【答案】B【考点】钟面角、方位角【解析】【解答】解:如图:∵N1A∥N2B,∠2=60°,∴∠1=∠2=60°,由方向角的概念可知由A测得B的方向是南偏东60°.故选B.【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义,正确画出图形,利用平行线的性质就可以解决.6、【答案】A【考点】钟面角、方位角【解析】【解答】解:灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的南偏西40度的方向.故选A.【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.7、【答案】 D【考点】度分秒的换算【解析】【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.8、【答案】 D【考点】角的计算【解析】【解答】解:135°、75°、120°都是15°角的倍数.故选D.【分析】根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来.9、【答案】 C【考点】直线、射线、线段【解析】【解答】解:①当三点在同一直线上时,只能作出一条直线;②三点不在同一直线上时,每两点可作一条,共3条;故选:C.【分析】分两种情况:①三点在同一直线上时,只能作出一条直线;②三点不在同一直线上时,每两点可作一条,共3条.10、【答案】B【考点】角平分线的定义【解析】【解答】解:∵∠AOB=64°,OA1平分∠AOB,∴∠AOA1= ∠AOB=32°,∵OA2平分∠AOA1,∴∠AOA2= ∠AOA1=16°,同理∠AOA3=8°,∠AOA4=4°,故选B.【分析】根据角平分线定义求出∠AOA1= ∠AOB=32°,同理即可求出答案.二、填空题11、【答案】 0.75【考点】度分秒的换算【解析】【解答】2700″=2700÷60=45′÷60=0.75°,【分析】根据小的单位化大的单位除以进率,可得答案.12、【答案】两点之间,线段最短.【考点】线段的性质:两点之间线段最短【解析】【解答】连接两点之间的所有线中,线段最短.【分析】线段的基本事实,就是公理.13、【答案】AOB【考点】角的计算【解析】【解答】解:由图形可知,∠AOC=∠BOC+∠AOB.故答案为AOB【分析】根据图象OB把∠AOC分成两个角.14、【答案】 12【考点】直线、射线、线段【解析】【解答】解:由图知:甲乙两地的火车,中途还需停靠2个站,共有6条线段,∵往返是两种不同的车票,∴铁路部门对此运行区间应准备12种不同的火车票.故答案为:12.【分析】根据题意画出示意图,数出线段的条数,再根据往返是两种不同的车票,可得答案.15、【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线【解析】【解答】解:根据两点确定一条直线.故答案为:两点确定一条直线.【分析】根据直线的确定方法,易得答案.16、【答案】 3a﹣b【考点】两点间的距离【解析】【解答】解:如图所示:DF=AD﹣AF=AB+CB+CD﹣AF=3a﹣b.故答案为:3a﹣b.【分析】先根据题意画出图形,然后根据线段间的和差关系进行计算即可.17、【答案】④【考点】两点间的距离【解析】【解答】解:①CE=DE并不能说明C、D、E在同一直线上,故①错;②DE= CD并不能说明C、D、E在同一直线上,故②错误;③CD=2CE并不能说明C、D、E在同一直线上,故③错误;故答案为:④【分析】根据中点的定义即可求出答案.18、【答案】【考点】角平分线的定义【解析】【解答】解:∵∠A1=∠A1CE﹣∠A1BC = ∠ACE﹣∠ABC= (∠ACE﹣∠ABC)= ∠A.依此类推∠A2= m,∠A3= m,∠A2016= .故答案为:【分析】根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.三、解答题19、【答案】锐角【考点】角的概念【解析】【解答】∵大于90°而小于180°的角叫钝角,∴它的一半是锐角.【分析】根据钝角的概念进行解答即可.20、【答案】解:∵两点之间线段最短,∴所求的点与M、N两点同线时,它到点M、N的距离最小,∴连接MN.MN与a的交点O即为所求.【考点】线段的性质:两点之间线段最短【解析】【分析】要使OM+ON的值最小,只需M、N、O三点共线即可.21、【答案】解:①如图,②如图1 ,由点M是AC中点,点N是BM中点,得MN= BM,MC= AC= AB.BC=2AB.MN= (BC﹣CM)= (2AB﹣ AB)= AB.∵MN=3,∴ AB=3,∴AB=4cm【考点】两点间的距离【解析】【分析】①根据尺规作图,可得C点;②根据线段中点的性质,可得MN、MC,根据线段的和差,可得关于AB的方程,根据解方程,可得答案.22、【答案】解:∵OC是∠AOD的平分线,OE是∠DOB的平分线,∠AOB=130°,∠COD=20°,∴∠AOD=40°,∴∠BOD=130°﹣40°=90°,∴∠DOE=45°,∴∠AOE=40°+45°=85°【考点】角平分线的定义【解析】【分析】根据角平分线的定义得出∠AOD的度数,进而得出∠BOD的度数,再根据角平分线的定义得出∠DOE的度数解答即可.23、【答案】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm【考点】比较线段的长短【解析】【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+(AB+CD)可求.24、【答案】解:量出铅球投掷点与落地点之间的线段的长度,比较其长短,便可知这两名同学谁的铅球掷得远【考点】比较线段的长短【解析】【分析】根据实际生活中的操作即可得出答案.。
第四章基本平面图形一、比较线段的长短1.(2023·汕头金平区期末)如图,A,B是河l两侧的两个村庄,现要在河l上修建一个抽水站,使它到A,B两村庄的距离之和最小.数学老师说:连接AB,则线段AB与l的交点C即为抽水站的位置.其理由是:两点之间线段最短.2.如图,点B,C都在线段AD上,若AD=2BC,则()A.AB=CD B.AC-CD=BCC.AB+CD=BC D.AD+BC=2AC3.如图,A,B,C,D是一直线上的四点,则BC+CD=AD-AB,AB+CD=AD-BC.4.如图,已知线段a,b.求作:线段AB,使AB=2a+b.5.(2023·东莞期末)已知线段AB=10 cm,直线AB上有一点C,且BC=6 cm,AC的长为 4 cm或16 cm.6.已知线段AB=6 cm,点P到A,B两点的距离相等,则PA+PB的长()A.等于6 cm B.小于6 cmC.不小于6 cm D.大于6 cm7.(1)如图①,在四边形ABCD内找一点O,使它到四边形四个顶点的距离和OA+OB+OC+OD最小,并说出你的理由.由本题你得到什么数学结论?举例说明它在实际中的应用.(2)如图②,公路上有A1,A2,A3,A4,A5,A6,A7七个村庄,现要在这段公路上设一个车站,使这七个村庄到车站的路程总和最小,车站应建在何处?图②二、角的概念及表示方法1.(2023·湛江经开区期末)如图,下列说法:①∠1就是∠A;②∠2就是∠B;③∠3就是∠C;④∠4就是∠D.其中正确的是()A.①B.①②C.①②③D.①②③④2.下列图中的∠1也可以用∠O表示的是()3.如图,下列说法错误的是()A.∠AOB也可用∠O来表示B.∠β与∠BOC是同一个角C.图中共有三个角:∠AOB,∠AOC,∠BOC D.∠1与∠AOB是同一个角4.如图,将图中的角用不同方法表示出来,并对应填写在下表中:∠α∠β∠C∠θ∠ABC∠BAD5.如图,图中小于平角的角有()A.4个B.5个C.6个D.7个6.如图,请回答以下问题:(1)试用三个大写字母表示下列各角:∠2就是∠DBC,∠3就是∠BAD,∠4就是∠BDC;(2)图中共有9个角(除去平角),其中可以用一个大写字母表示的角有1个.7.如图,图中一共有几个角?它们应如何表示?8.(2023·河源紫金县期末)如图,在已知角的内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;……若在角的内部画2 023条射线,图中共有 2 049 300个角.三、角的比较与运算1.如图,用“>”或“<”填空:(1)在图①中,∠AOB<∠AOC;(2)在图②中,∠POQ<∠ROQ.2.如图,OC平分∠AOB.(1)若∠1=22.5°,则∠2=22.5°,∠AOB=45°;(2)若∠AOB=60°,则∠1=30°.第2题图3.如图,点O是直线CD上的一点,以点O为端点在直线CD上方作射线OA和射线OB,若射线OA平分∠COB,∠DOB=110°,则∠AOB的度数是()第3题图A.32°B.35°C.40°D.42°4.(2024·揭阳惠来县期末)如图,用直尺和圆规作∠PCD=∠AOB,作图痕迹中,弧MN是()A.以点C为圆心,OE为半径的弧B.以点C为圆心,EF为半径的弧C.以点G为圆心,OE为半径的弧D.以点G为圆心,EF为半径的弧5.如图,∠AOC和∠BOD都是直角,且∠DOC=25°.则∠AOD=65°,∠AOB=155°.6.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为() A.28°B.112°C.28°或112°D.68°7.把一副三角尺按如图所示的方法拼在一起,其中B,C,D三点在同一直线上,CM平分∠ACB,CN平分∠DCE,则∠MCN=127.5°.8.如图,∠AOB是直角,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线,求∠MON的度数.四、第四章复习1.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③有公共端点的两条射线组成的图形叫作角;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个2.如图,已知∠AOB,以点O为圆心,以任意长为半径画弧MN,分别交OA,OB于点M,N,再以点N为圆心,以MN长为半径画弧PQ,交弧MN于点C,画射线OC.若∠AOB=31°,则∠AOC的度数为62°.第2题图3.一个圆被分为1∶5两部分,则较大的弧所对的圆心角是300°.4.如图,点C在线段AB上,点D是AC的中点.如果CD=3 cm,AB=10 cm,那么BC的长为()A.3 cm B.3.5 cmC.4 cm D.4.5 cm5.34.37°=34°22'12″.∠BOC,则∠BOD=54°.6.(2023·梅州期末)如图,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=23第6题图7.(2023·佛山南海区期末)下列时刻,钟表的时针与分针所成的夹角是锐角的是()A.11:15 B.9:00C.6:00 D.3:30AC,D,E分别为AC,AB的中点,则DE的长为4.5 cm.8.如图,已知点C为线段AB上的一点,AC=15 cm,CB=359.如图,O为直线AB上的一点,∠BOE=80°,直线CD经过点O.(1)如图①,若OC平分∠AOE,求∠AOD的度数;(2)如图②,若∠BOC=2∠AOC,OE平分∠COF,求∠COF的度数.。
北师大版七年级数学上册第四章基本平面图形专题练习题专题(一) 线段的计算1、如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=9 cm,CB=6 cm,则MN=_____cm;(2)若AC=a cm,CB=b cm,则MN=_____cm;(3)若AB=m cm,求线段MN的长;(4)若C为线段AB上任意一点,且AB=n cm,其他条件不变,你能猜想MN的长吗?并用一句简洁的话描述你发现的结论.2、若MN=k cm,求线段AB的长.3、若C在线段AB的延长线上,且满足AB=p cm,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.4、如图,已知点C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.(1)若AB=24,CD=10,求MN的长;(2)若AB=a,CD=b,请用含有a,b的式子表示出MN的长.5、如图,N 为线段AC 中点,点M ,B 分别为线段AN ,NC 上的点,且满足AM ∶MB ∶BC =1∶4∶3.(1)若AN =6,求AM 的长; (2)若NB =2,求AC 的长.6、如图,点B ,D 在线段AC 上,BD =13AB ,AB =34CD ,线段AB ,CD 的中点E ,F 之间的距离是20,求线段AC 的长.7、已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长.8、如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =____,AQ =____; (2)当t =2时,求PQ 的值; (3)当PQ =12AB 时,求t 的值.专题(二) 角度的计算1、如图,已知∠AOB 内部有三条射线OE ,OC ,OF ,且OE 平分∠BOC ,OF 平分∠AOC. (1)若∠AOC =30°,∠BOC =60°,则∠EOF =____; (2)若∠AOC =α,∠BOC =β,则∠EOF =____;(3)若∠AOB =θ,你能猜想出∠EOF 与∠AOB 之间的数量关系吗?请说明理由.2、若∠EOF =γ,求∠AOB.3、如图,若射线OC 在∠AOB 的外部,且∠AOB =θ,OE 平分∠BOC ,OF 平分∠AOC ,则上述(3)中的结论还成立吗?请说明理由.4、如图,已知∠AOB内部有顺次的四条射线:OE,OC,OD,OF,且OE平分∠AOC,OF平分∠BOD.(1)若∠AOB=160°,∠COD=40°,则∠EOF的度数为____;(2)若∠AOB=α,∠COD=β,求∠EOF的度数;(3)从(1)(2)的结果中,你能看出什么规律吗?5、如图,OC平分∠AOB,∠AOD∶∠BOD=3∶5,已知∠COD=15°,求∠AOB的度数.6、如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α,∠EOC=90°时,直接写出∠AOE的度数.(用含α的式子表示)7、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =60°,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OB 上,另一边OM 在直线AB 的上方.(1)在图1中,∠COM =30度;(2)将图1中的三角板绕点O 按逆时针方向旋转,使得ON 在∠BOC 的内部,如图2,若∠NOC =16∠MOA ,求∠BON 的度数; (3)将图1中的三角板绕点O 以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON 恰好平分锐角∠BOC 时,旋转的时间是____秒;(直接写出结果) (4)在旋转过程中,∠MOC 与∠NOB 始终保持的数量关系是____,并请说明理由. 参考答案专题(一) 线段的计算1、如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则MN =7.5cm ; (2)若AC =a cm ,CB =b cm ,则MN =12(a +b)cm ;(3)若AB =m cm ,求线段MN 的长;(4)若C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM +CN =12AC +12BC =12AB =12m cm.(4)猜想:MN =12AB =12n cm.结论:当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则MN =12AB 一定成立.2、若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM +CN =12AC +12BC =12AB.所以AB =2MN =2k cm.3、若C 在线段AB 的延长线上,且满足AB =p cm ,M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由.解:猜想:MN =12AB =12p cm.理由如下:当点C 在线段AB 的延长线上时,如图.因为点M 是AC 的中点,所以CM =12AC.因为点N 是BC 的中点,所以CN =12BC.所以MN =CM -CN =12(AC -BC)=12AB =12p cm.4、如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点. (1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含有a ,b 的式子表示出MN 的长.解:(1)因为AB =24,CD =10, 所以AC +DB =AB -CD =14. 因为M ,N 分别是AC ,BD 的中点, 所以MC +DN =12(AC +DB)=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =AB -CD =a -b. 因为M ,N 分别是AC ,BD 的中点, 所以MC +DN =12(AC +DB)=12(a -b).所以MN =MC +DN +CD =12(a -b)+b =12(a +b).5、如图,N 为线段AC 中点,点M ,B 分别为线段AN ,NC 上的点,且满足AM ∶MB ∶BC =1∶4∶3.(1)若AN =6,求AM 的长; (2)若NB =2,求AC 的长.解:设AM =x ,则MB =4x ,BC =3x , 所以AC =AM +MB +BC =8x. 因为N 为线段AC 中点, 所以AN =NC =12AC =4x.(1)因为AN =6, 所以4x =6.解得x =32.所以AM =32.(2)NB =NC -BC =4x -3x =2,解得x =2. 所以AC =8x =16.6、如图,点B ,D 在线段AC 上,BD =13AB ,AB =34CD ,线段AB ,CD 的中点E ,F 之间的距离是20,求线段AC 的长.解:设BD =x ,则AB =3x ,CD =4x , 因为线段AB ,CD 的中点分别是E ,F , 所以BE =12AB =1.5x ,DF =12CD =2x.因为EF =BE +DF -BD =20, 所以1.5x +2x -x =20.解得x =8.所以AC =AE +EF +CF =1.5x +20+2x =12+20+16=48.7、已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长.解:当点C 在线段AB 上时,如图1.图1CD =12AC =12(AB -BC)=12×(60-20)=12×40=20(cm).当点C 在线段AB 的延长线上时,如图2.图2CD =12AC =12(AB +BC)=12×(60+20)=12×80=40(cm).所以CD 的长为20 cm 或40 cm.8、如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空: BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值; (3)当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上,OQ <10,点Q 在线段OA 上,如图1.图1此时PQ =OP -OQ =(OA +AP)-OQ =(10+t)-2t =10-t =8. (3)①当点P 在点Q 右边时,如图2.图2此时,AP =t ,OQ =2t ,OA =10,AB =5. 所以PQ =OA +AP -OQ =10+t -2t =10-t. 当PQ =12AB 时,即10-t =2.5,解得t =7.5.②当点P 在点Q 左边时,如图3.图3此时,OQ =2t ,AP =t ,OA =10,AB =5. 所以PQ =OQ -OA -AP =2t -10-t =t -10.当PQ =12AB 时,即t -10=2.5,解得t =12.5. 综上所述,当PQ =12AB 时,t =7.5或12.5.专题(二) 角度的计算1、如图,已知∠AOB 内部有三条射线OE ,OC ,OF ,且OE 平分∠BOC ,OF 平分∠AOC.(1)若∠AOC =30°,∠BOC =60°,则∠EOF =45°;(2)若∠AOC =α,∠BOC =β,则∠EOF =α+β2; (3)若∠AOB =θ,你能猜想出∠EOF 与∠AOB 之间的数量关系吗?请说明理由.解:∠EOF 与∠AOB 之间的数量关系是∠EOF =12∠AOB =12θ. 理由:因为OE 平分∠BOC ,OF 平分∠AOC ,所以∠EOC =12∠BOC ,∠COF =12∠AOC. 所以∠EOF =∠EOC +∠COF =12∠BOC +12∠AOC =12(∠BOC +∠AOC)=12∠AOB =12θ.2、若∠EOF =γ,求∠AOB.解:因为OE 平分∠BOC ,OF 平分∠AOC ,所以∠EOC =12∠BOC ,∠COF =12∠AOC. 所以∠EOF =∠EOC +∠COF =12∠BOC +12∠AOC =12(∠BOC +∠AOC)=12∠AOB. 因为∠EOF =γ,所以∠AOB =2γ.3、如图,若射线OC 在∠AOB 的外部,且∠AOB =θ,OE 平分∠BOC ,OF 平分∠AOC ,则上述(3)中的结论还成立吗?请说明理由.解:∠EOF =12θ成立, 理由:因为OE 平分∠BOC ,OF 平分∠AOC ,所以∠EOC =12∠BOC ,∠COF =12∠AOC. 所以∠EOF =∠COF -∠EOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12θ. 4、如图,已知∠AOB 内部有顺次的四条射线:OE ,OC ,OD ,OF ,且OE 平分∠AOC ,OF 平分∠BOD.(1)若∠AOB =160°,∠COD =40°,则∠EOF 的度数为100°;(2)若∠AOB =α,∠COD =β,求∠EOF 的度数;(3)从(1)(2)的结果中,你能看出什么规律吗?解:(2)因为∠EOF =∠COE +∠COD +∠FOD =12∠AOC +∠COD +12∠BOD =12(∠AOC +∠BOD)+∠COD =12(∠AOB -∠COD)+∠COD =12∠AOB +12∠COD ,∠AOB =α,∠COD =β, 所以∠EOF =12α+12β=12(α+β). (3)若∠AOB 内部有顺次的四条射线:OE ,OC ,OD ,OF ,且OE 平分∠AOC ,OF 平分∠BOD ,则∠EOF =12(∠AOB +∠COD). 5、如图,OC 平分∠AOB ,∠AOD ∶∠BOD =3∶5,已知∠COD =15°,求∠AOB 的度数.解:设∠AOD =3x ,则∠BOD =5x.所以∠AOB =∠AOD +∠BOD =3x +5x =8x.因为OC 平分∠AOB ,所以∠AOC =12∠AOB =12×8x =4x. 所以∠COD =∠AOC -∠AOD =4x -3x =x.因为∠COD =15°,所以x =15°.所以∠AOB =8x =8×15°=120°.6、如图,OC 是∠AOB 的平分线.(1)当∠AOB =60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB =α,∠EOC =90°时,直接写出∠AOE 的度数.(用含α的式子表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC =12∠AOB. 因为∠AOB =60°,所以∠AOC =30°.(2)如图1,∠AOE =∠EOC +∠AOC =90°+30°=120°.如图2,∠AOE =∠EOC -∠AOC =90°-30°=60°.所以∠AOE 的度数为120°或60°.(3)90°+α2或90°-α2. 7、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =60°,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OB 上,另一边OM 在直线AB 的上方.(1)在图1中,∠COM =30度;(2)将图1中的三角板绕点O 按逆时针方向旋转,使得ON 在∠BOC 的内部,如图2,若∠NOC =16∠MOA ,求∠BON 的度数; (3)将图1中的三角板绕点O 以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON 恰好平分锐角∠BOC 时,旋转的时间是3或21秒;(直接写出结果)(4)在旋转过程中,∠MOC与∠NOB始终保持的数量关系是∠MOC-∠NOB=30°,并请说明理由.解:(2)设∠NOC=x°,则∠MOA=6x°,∠BON=60°-x°.由题意,得6x°+90°+60°-x°=180°,解得x=6.所以∠BON=60°-x°=60°-6°=54°.图3(4)∠MOC-∠NOB=30°,①当ON在∠BOC的内部时,如图3,因为∠MOC+∠CON=∠NOM=90°,所以∠MOC+(∠BOC-∠NOB)=90°.所以∠MOC+60°-∠NOB=90°.所以∠MOC-∠NOB=30°.图4②当ON在∠BOC的外部时,如图4,因为∠MOC-∠CON=∠NOM=90°,所以∠MOC-(∠NOB-∠BOC)=90°.所以∠MOC-∠NOB+60°=90°.所以∠MOC-∠NOB=30°.综上所述,∠MOC-∠NOB=30°.。
新北师大版七年级数学上册第四章基本平面图形同步练习题一、选择题1、在四边形的内角中,直角最多可以有( )A .1个 B .2个 C .3个 D .4个2、如图,下列说法错误的是( )A .∠B 也可以表示为∠ABC B .∠BAC 也可以表示为∠A C.∠1也可以表示为∠C D .以C 为顶点且小于180°的角有3个3、下列说法正确的是( )A.延长直线AB 到C ,使AB BC 21= B .延长线段AB 到C ,使BC =AC C .延长线段AB 到C ,使AB BC 21= D .延长线段BA 到C ,使BC =AB4、两个锐角的和为( )A .锐角 B .直角 C .钝角 D .以上都有可能5、若一个多边形有14条对角线,则这个多边形的边数是( ) A .10 B .7 C .14 D .66、植树时,为了使同一行树坑在一条直线上,只需定出两个树坑的位置,其中的数学道理是( )A .两点之间线段最短 B .两点之间直线最短 C .两点确定一条射线 D .两点确定一条直线7、如图,能用∠1,∠ACB,∠C 三种方法表示同一个角的是( )A. B . C . D .8、如图,∠1+∠2=( )A .60° B.90° C.110° D .180° 9、一轮船行驶到小岛A 处,同时测得灯塔B 、C 分别在它的北偏西30°和东北方向,则∠BAC=( )A .105°B . 115° C. 75° D.95° 10、同一平面内有四点,过每两点画一条直线,则直线的条数是( )A .1 B .4条 C .6条 D .1条或4条或6条二、填空题11、在飞机飞行时,飞行方向是用飞行路线与实际南或北方向线之间的夹角大小来表示的.如图,用AN (南北线)与飞行线之间顺时针方向的夹角作为飞行方向角,从A 到B 的飞行方向角为35°,从A 到C 的飞行方向角为60°,从A 到D 的飞行方向角为145°,则AB 与AC 之间的夹角是 °,AD 与AC 之间的夹角是 °. 12、如图中射线OA 表示的方位角为_______. 13、三条直线两两相交,交点的个数是______.14、四边形的内角和等于________;四边形的外角和等于______. 15、在直线l 上顺次截取线段AB ,BC ,若AB =6 cm ,AB 的中点与AC 的中点相距2 cm ,则BC =_________.16、已知n(n≥2)个点P 1,P 2,P 3,…,P n 在同一平面内,且其中没有任何三点在同一直线上. 设S n 表示过这n 个点中的任意2个点所作的所有直线的条数,显然,S 2=1,S 3=3,S 4=6,S 5=10,…,由此推断,S n =______________. 三、解答题17. 如图所示,∠AOB︰∠BOC=3︰5.又OD、OE分别是∠AOB和∠BOC的平分线,若∠DOE=60°,求∠AOB和∠BOC的度数.18、如图:∠1=∠2,∠3=∠4.若∠AOE=128°,求∠BOD的度数.19、如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.20.已知两条线段的和是10cm,这两条线段的比是2∶3,求这两条线段的长.21、读出下列语句,并按照这些语句画出图形(1)两条直线a、b,相交于点P.(2)直线l经过A、B、C三点,点C在点A与点B之间.(3)直线a经过点A、B,点P不在直线a上.22.如图,∠1:∠2:∠3:∠4=1:2:3:4,求∠1:∠2:∠3:∠4的度数.23、如图所示,从一点O出发引射线OA、OB、OC、OD,请你数一数图中有多少个角,并把它们表示出来.24、小华从A点出发向北偏东50°方向走了80米到达B地,从B 地他又向西走了100米到达C地. (1)用1:2000的比例尺(即图上1cm等于实际距离20米)画出示意图;(2)用刻度尺和量角器量出AC的距离,以及C点的方向角;(3)回答C点距A点的实际距离是多少(精确到1米),C点的方向角为多少.(精确到1°).试卷答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 D C C D B D C B C D 二、填空题题号11 12 13 14 15 16 答案25,85 北偏西40°1或3个360°360°,4cm三、解答题17. 45°,75° 18. 64°19,解:在操场上用一根很长的绳子,固定一头,拉紧后另一头旋转一周即可得到一个很大的圆.阴影部分就是到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形20.,4cm和6cm21.略22,∠1是36°,∠2是72°,∠3是108°,∠4是144°23,解:共6个角,有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,共6个角.24,略。
第四章基本平面图形目录4.1线段、射线、直线 (2)4.2比较线段的长短 (6)4.3角 (10)4.4角的比较 (14)4.5多边形和圆的初步认识 (18)4.6角的有关计算 (21)期末复习基本平面图形 (24)4.1线段、射线、直线基础题知识点1线段、射线、直线的概念及表示方法1.手电筒发射出去的光可看作是一条( )A.线段 B.射线C.直线 D.折线2.下列表示线段的方法中,正确的是( )A.线段A B.线段ABC.线段ab D.线段Ab3.如图所示,A、B、C是同一直线上的三点,下面说法正确的是( )A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线4.如图,点A、B、C是直线l上的三个点,图中共有线段的条数是( )A.1 B.2C.3 D.45.延长线段AB到C,则下列说法正确的是( )A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在线段BA的延长线上6.如图,图中的直线可以表示为________或________.7.射线BC和射线_________是同一条射线.8.下图中有____条直线,____条射线,____条线段.知识点2线段、射线、直线的画法9.已知不在同一直线上的三点A、B、C,请按下面的要求画图.(1)作直线AB;(2)作射线AC;(3)作线段BC.知识点3 两点确定一条直线 10.下列说法正确的是( ) A .延长射线得到直线B .过三点一定能作三条直线C .经过两点有且只有一条直线D .以上均不正确11.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明________________________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________.12.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是________________.中档题13.下列说法中,正确的是( ) A .经过两点有且只有一条线段 B .经过两点有且只有一条直线 C .经过两点有且只有一条射线 D .经过两点有无数条直线14.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )15.如图,下列语句错误的是( )A .直线AC 和BD 是不同的直线B .AD =AB +BC +CDC .射线DC 和DB 是同一条射线D .射线BA 和BD 不是同一条射线16.下列关于作图的语句中,正确的是( ) A .画直线AB =10厘米B .延长线段AB 到C ,使AC =12ABC .画射线OB =10厘米D .过A 、B 两点画一条直线17.如图,已知平面上四点A 、B 、C 、D. (1)画直线AB ,射线CD ; (2)画射线AD ,连接BC ;(3)直线AB 与射线CD 相交于E ; (4)连接AC 、BD 相交于点F.18.李明乘车回奶奶家,发现这条汽车线路上共有6个站(包括始发站和终点站),学习本节知识后,善于思考的小明已猜到这条线路上有多少种不同的票价,还要准备多少种不同的车票,聪明的你想到了吗?综合题19.如图.(1)试验观察:如果每过两点可以画一条直线,那么:图①最多可以画________条直线;图②最多可以画________条直线;图③最多可以画________条直线.(2)探索归纳:如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画____________条直线.(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握________次手.参考答案基础题1.B 2.B 3.C 4.C 5.B 6.直线AB 直线l 7.BD 8.1 6 69.如图所示.10.C 11.经过一点可以画无数条直线 两点确定一条直线 12.两点确定一条直线 中档题13.B 14.B 15.A 16.D 17.如图所示.18.有15种不同票价,有30种不同车票. 综合题19.(1)3 6 10 (2)n (n -1)2(3)9904.2 比较线段的长短基础题知识点1 线段基本知识及两点间的距离 1.下列说法正确的是( ) A .两点之间直线最短B .画出A 、B 两点间的距离C .连接点A 与点B 的线段,叫做A 、B 两点间的距离D .两点之间的距离是一个数,不是指线段本身2.把弯曲的河道改直,能够缩短航程,这样做的道理是( ) A .两点之间,射线最短 B .两点确定一条直线 C .两点之间,线段最短 D .两点之间,直线最短3.已知线段AB =1 cm ,BC =3 cm ,则点A 到点C 的距离为( ) A .4 cm B .2 cm C .2 cm 或4 cm D .无法确定4.(德州中考)如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因:________________________.知识点2 比较两条线段的长短5.七年级(1)班的同学要举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )A .把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B .把两条绳子接在一起C .把两条绳子重合,观察另一端情况D .没有办法挑选6.如图,AB =CD ,则AC 与BD 的大小关系是( )A .AC >BDB .AC <BD C .AC =BD D .不能确定 7.用尺规比较下面四条线段,其中最长的是( )A .线段aB .线段bC .线段cD .线段d知识点3 线段的中点8.下列说法正确的是( ) A .若AC =12AB ,则C 是AB 的中点B .若AB =2CB ,则C 是AB 的中点 C .若AC =BC ,则C 是AB 的中点9.如图,C 是线段AB 上的一点,M 是线段AC 的中点,若AB =8 cm ,BC =2 cm ,则MC 的长是( )A .2 cmB .3 cmC .4 cmD .6 cm10.已知点O 为线段AB 的中点,点C 为OA 的中点,并且A B =40 cm ,求AC 的长.知识点4 尺规作一条线段等于已知线段11.如图,已知线段m 、n ,用尺规作一条线段AB ,使它等于m +n .中档题12.已知线段AB =2 cm ,延长AB 到C ,使BC =AB ,再延长BA 到D ,使BD =2AB ,则线段DC 的长为( ) A .4 cm B .5 cm C .6 cm D .2 cm13.如图,C 为AB 的中点,D 是BC 的中点,则下列说法错误的是( )A .CD =AC -BDB .CD =12AB -BDC .CD =23BC D .AD =BC +CD14.如图,小华的家在A 处,书店在B 处,星期日小华到书店去买书,他想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B15.(徐州中考)点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为-3、1,若BC =2,则AC 等于( ) A .3 B .2 C .3或5 D .2或616.若O 、P 、Q 是平面上的三点,PQ =20 cm ,OP +OQ =30 cm ,那么下列说法正确的是( ) A .O 点在直线PQ 外 B .O 点在直线PQ 上17.如图,已知线段a、b(a>b),用尺规作一条线段,使其等于2a-b(不写作法,保留作图痕迹).18.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到C,使BC=2AB,取AC的中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长.综合题19.如图所示,有一个正方体盒子,一只虫子在顶点A处,一只蜘蛛在顶点B处,蜘蛛沿着盒子准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?参考答案基础题1.D 2.C 3.D 4.两点之间,线段最短 5.A 6.C 7.D 8.D 9.B10.因为点O 为线段AB 的中点,AB =40 cm ,所以OA =12AB =20 cm.因为点C 为OA 的中点,所以AC =12OA =10 cm.11.画射线AM ,并在射线AM 上顺次截取AC =m ,CB =n.则线段AB 就是要画的线段.中档题12.C 13.C 14.B 15.D 16.D 17.如图所示,线段OC 即为所求.18.(1)如图所示.(2)因为BC =2AB ,且AB =4,所以BC =8.所以AC =AB +BC =8+4=12.因为D 为AC 中点,所以AD =12AC =6.所以BD =AD -AB =6-4=2. 综合题19.如图所示,根据两点之间,线段最短可知,蜘蛛沿正方体盒子侧面展开图中的线段BA 爬行能最快地捉住虫子.4.3角基础题知识点1角的概念及表示方法1.下列说法正确的是( )A.两条射线组成的图形叫做角B.在∠ADB一边的延长线上取一点DC.∠ADB的边是射线DA、DBD.直线是一个角2.下图中表示∠ABC的图是( )3.下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一角的图形是( )4.图中角的表示方法正确的个数有( )A.1个 B.2个C.3个 D.4个5.图中包含了______个小于平角的角( )A.5 B.6 C.7 D.8 6.如图,∠AOB的顶点是_______,两边分别是________.7.如图所示,把同一个角用不同的表示方法表示出来,并填入下表.∠1 ∠BAD ∠α∠β∠3知识点2角的度量及换算8.角度的进制是( )A.二 B.八C.十 D.六十9.把10.26°用度、分、秒表示为( )A.10°15′36″ B.10°20′6″C.10°14′6″ D.10°26″10.若∠1=25°12′,∠2=25.12°,∠3=25.2°,则下列结论正确的是( ) A.∠1=∠2 B.∠2=∠3C.∠1=∠3 D.∠1=∠2=∠311.用度表示20°18′54″,正确的是( )A.20.3° B.20.35°C .20.31° D.20.315°12.中央电视台晚间新闻联播19时,时针与分针的夹角是( )A.90° B.150°C.120° D.130°13.计算:(1)15°30′=________°;(2)25.35°=________°________′;(3)6.75°=________°________′;(4)36°48′36″=________°.知识点3方位角14.如图,军舰从港口沿OB方向航行,则它航行的方向是( )A.东偏南30°B.南偏东30°C.南偏西30°D.北偏东30°中档题15.如图,下列说法正确的是( )A.∠1与∠OAB表示同一个角B.∠AOC也可以用∠O表示C.图中共有三个角:∠AOB、∠AOC和∠BOCD.∠β表示的是∠COA16.如图所示,下列说法错误的是( )A.图1的方位角是南偏西20°B.图2的方位角是西偏北60°C.图3的方位角是北偏东45°D.图4的方位角是南偏西45°17.下列时刻中,时针与分针之间的夹角为30°的是( )A.早晨6点 B.下午1点C.中午12点 D.上午9点18.计算:(1)51°37′42″+29°58′53″;(2)85°33′-29°48′;(3)42°37′×2;(4)44°35′÷3.综合题19.在∠AOB的内部引一条射线,则图1中的角共有多少个?在∠AOB的内部引两条射线,则图2中的角共有多少个?在∠AOB的内部引三条射线.则图3中的角共有多少个?若在∠AOB的内部引n条射线,图4中的角共有多少个?参考答案基础题1.C 2.C 3.B 4.B 5.C 6.O OA 、OB 7.∠EAD ∠2 ∠C ∠D ∠B 8.D 9.A 10.C 11.D 12.B 13.(1)15.5 (2)25 21 (3)6 45 (4)36.81 14.D 中档题15.C 16.B 17.B18.(1)原式=81°36′35″. (2)原式=55°45′. (3)原式=85°14′. (4)原式=14°51′40″. 综合题19.图1共有1+2=3(个)角;图2共有1+2+3=6(个)角;图3共有1+2+3+4=10(个)角;图4中,不难发现,当∠AOB 内有n 条射线时,则可知共有1+2+3+4+…+(n +1)=12(n +2)(n +1)个角.4.4 角的比较基础题 知识点1 角的测量及大小比较1.在∠AOB 的内部任取一点C ,作射线OC ,则一定存在( ) A .∠AOB >∠AOC B .∠AOC=∠BOC C .∠BOC >∠AOC D .∠AOC >∠BOC2.用“<”“=”或“>”填空:(1)若∠α=∠β,∠β=∠γ,则∠α____∠γ;(2)若∠1+∠2=70°,∠3+∠2=100°,则∠1____∠3. 3.比较两个角的大小,有以下两种方法(规则):(1)用量角器度量两个角的大小,用度数表示,则角度大的角大; (2)构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC 与∠DEF,用以上两种方法分别比较它们的大小.知识点2 角的平分线及角的运算4.借助一副三角尺,你能画出下面哪个度数的角( )A .65°B .75°C .85°D .95° 5.如图,下列条件中不能确定OC 平分∠AOB 的是( )A .∠AOC =∠BOCB .∠AOC =12∠AOBC .∠AOB =2∠BOCD .∠AOC +∠BOC=∠AOB6.如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2的度数是( ) A .20° B .25° C .30° D .70°7.如图所示,已知∠AOC=∠COD=∠BOD,若∠COD=14°34′,则∠AOB 的度数是( ) A .28°68′ B .44°42′ C .43°2′ D .43°42′8.如图,OB 是∠AOC 的平分线,∠BOC =30°,∠COD =40°,求∠AOD 的度数.中档题9.(滨州中考)如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,如果∠AOB=40°,∠COE =60°,则∠BOD 的度数为( )A .50°B .60°C .65°D .70°10.如图,OC 是∠AOB 的平分线,∠BOD =14∠DOC,∠BOD =10°,则∠AOD 的度数为( )A .50°B .60°C .70°D .80°11.若∠AOB =40°,∠BOC =20°,则∠AOC 的度数为( ) A .60° B .20° C .20°或60° D .40°12.如图,∠AOB =∠COD=90°,∠AOD =140°,则∠BOC =________°.13.如图,∠AOD =120°,∠2=2∠1=60°,求: (1)∠DOC 的度数; (2)∠BOD 的度数.14.如图,点O是直线AB上的一点,∠AOC=130°,OB平分∠COD,OE平分∠AOD,求∠AOE的度数.综合题15.如图,∠AOB是直角,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小也会发生改变吗,为什么?参考答案基础题1.A 2.(1)= (2)<3.(1)略.(2)如图所示.故∠DEF 大.4.B5.D6.D7.D8.因为OB 是∠AOC 的平分线,所以∠AOC=2∠BOC. 因为∠BOC=30°,所以∠AOC=2×30°=60°.因为∠AOD=∠AOC+∠COD,∠COD =40°,所以∠AOD=60°+40°=100°. 中档题9.D 10.C 11.C 12.4013.(1)∠DO C =∠AOD-∠2=120°-60°=60°.(2)因为∠2=2∠1=60°,所以∠1=30°.所以∠BOD=∠AOD+∠1=120°+30°=150°. 14.因为点O 在直线AB 上,所以∠AOB=∠AOC+∠BOC=180°. 因为∠AOC=130°,所以∠BOC=50°.因为OB 平分∠COD,所以∠COD=2∠COB=100°.所以∠AOD=360°-∠AOC-∠COD=360°-130°-100°=130°. 因为OE 平分∠AOD,所以∠AOE=12∠AOD=65°.综合题15.(1)∠MON=∠MOC-∠CON=12(∠BOC-∠AOC)=12∠AOB=45°.(2)当∠AOC 的大小发生改变时,∠MON 的大小不会发生改变.理由同(1).4.5多边形和圆的初步认识基础题知识点1认识多边形1.下列图形中,不是多边形的是( )A B C D2.从一个顶点引出的对角线把十边形分成互不重叠的三角形的个数为( )A.7 B.8C.9 D.103.七边形的对角线总共有( )A.12条 B.13条C.14条 D.15条4.若某一个顶点与和它不相邻的其他各顶点连接,可将多边形分成7个三角形,则这个多边形是( )A.六边形 B.七边形C.八边形 D.九边形5.如图所示的多边形,它有________条边,有________个内角.6.n边形有________个顶点,________条边,________个内角,过n边形的每一个顶点有________条对角线.知识点2认识正多边形7.下列说法不正确的是( )A.各边都相等的多边形是正多边形B.正多边形的各边都相等C.各边相等,各角也相等的多边形叫做正多边形D.各内角都相等的多边形不一定是正多边形8.一个正六边形的周长是18 cm,则这个正六边形的边长是________cm.知识点3认识圆与扇形9.下面的平面图形中,为扇形的是( )A B C D10.如图所示的圆中,半径有______条,分别是____________,请写出任意三条弧:____________.11.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是________度.12.如果一个圆的面积是30 cm2,那么其中圆心角为60°的扇形面积是________cm2.13.如图,半径为3的圆中,扇形AOB的圆心角为150°,请在图中圆内画出这个扇形,并求出它的面积.(结果保留π)中档题14.从多边形一条边上的一点(不是顶点)出发,分别连接这个点和其余各个顶点得到8个三角形,则这个多边形的边数为( )A.7 B.8C.9 D.1015.一个正八边形的边长是2 cm,则这个正八边形的周长是________cm.16.从十边形的一个顶点出发,可以引m条对角线,这些对角线可以把这个十边形分成n个三角形,则m+n=________.17.将一个圆分割成五个小扇形,它们的圆心角的度数比为1∶2∶3∶4∶5,则这五个小扇形中圆心角最大的是________.18.请利用圆规,找出图中的扇形(不要添加其他线),看一看每个图中各有多少个扇形?19.如图,将圆分成A、B、C三个扇形,且半径为3 cm.(1)求扇形C的面积;(2)求扇形A和B圆心角的度数.综合题20.观察探究及应用.(1)观察图形并填空:一个四边形有________条对角线;一个五边形有________条对角线;一个六边形有________条对角线;一个七边形有________条对角线;(2)分析探究:由凸n边形的一个顶点出发,可做________条对角线,多边形有n个顶点,若允许重复计数,共可作________条对角线;(3)结论:一个凸n边形有____________条对角线;(4)应用:一个凸十二边形有多少条对角线?参考答案基础题1.D 2.B 3.C 4.D 5.4 4 6.n n n (n -3) 7.A 8.3 9.D 10.3 OA 、OB 、OC AC ︵、BC ︵、MB ︵11.90 12.5 13.如图.扇形AOB 的面积为150360×π×32=154π.中档题14.C 15.16 16.15 17.120°18.(1)在图中不是每一个弧都对应一个扇形,由此可得图形中有3个扇形. (2)根据扇形的定义可得图中有6个扇形.19.(1)C 所占的比例是1-15%-14=60%,扇形C 的面积为60%×3.14×32=16.956(cm 2).(2)扇形A 的圆心角是360°×15%=54°,扇形B 圆心角是360°×14=90°.综合题20.(1)2 5 9 14 (2)(n -3) n(n -3) (3)n (n -3)2(4)因为n 边形有n (n -3)2条对角线,当n =12时,12×(12-3)2=54.所以一个凸十二边形有54条对角线.4.6角的有关计算类型1直接计算角的度数1.如图,已知∠1=65°15′,∠2=78°30′,求∠3的度数.2.如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.3.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.类型2运用方程思想求角的度数4.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠B OC的度数.5.如图,已知∠1=12∠BOC,∠2=∠AOD=3∠1,求∠1和∠2的度数.类型3 运用分类讨论思想求角的度数6.下面是小明做的一道题目以及他的解题过程: 题目:在同一平面上,若∠BOA=75°,∠BOC =22°,求∠AOC 的度数.解:根据题意可画图,如图所示,AOC =∠BOA-∠BOC=75°-22°=53°.如果你是老师,能判小明满分吗?若能,请说明理由,若不能,请将错误指出来,并给出你认为正确的解法.7.已知OC 平分∠AOB,OD 是∠BOC 内的一条三等分线,试问∠AOB 是∠COD 的几倍?类型4 运用整体思想求角的度数8.如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.参考答案1.因为∠1=65°15′,∠2=78°30′,所以∠1+∠2=65°15′+78°30′=143°45′.所以∠3=180°-(∠1+∠2)=180°-143°45′=36°15′.2.因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.3.因为∠AOB=90°,OC 平分∠AOB,所以∠BOC=12∠AOB=45°.因为∠BOD=∠COD-∠BOC=90°-45°=45°,∠BOD =3∠DOE,所以∠DOE=15°.所以∠COE=∠COD-∠DOE=90°-15°=75°.4.设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.5.设∠1=x °,则∠2=∠AOD=3∠1=3x °.因为∠1=12∠BOC,所以∠BOC=2x °.因为∠BOC+∠2+∠AOD+∠1=360°,所以2x +3x +3x +x =360.解得x =40.所以∠1=40°,∠2=120°.6.小明不会得满分,他忽略了一种情况,正确解法:①如图1,∠AOC =∠BOA-∠BOC =75°-22°=53°;②如图2,∠AOC =∠BOA+∠BOC=75°+22°=97°.综上所述:∠AOC 的度数为53°或97°.7.如图1,∠COD =13∠BOC,设∠COD=x ,则∠BOC=3x.因为OC 平分∠AOB,所以∠AOB=2∠BOC=6x.即∠AOB=6∠COD;如图2,∠BOD =13∠BOC,则∠COD=23∠BOC,设∠COD=2x ,则∠BOC =3x.同样∠AOB=6x ,即∠AOB=3·2x=3∠COD.故∠AOB 是∠COD 的6倍或3倍.8.因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC=12∠AOC,∠MOC =12∠BOC.所以∠MON=∠NOC-∠MOC =12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12×90°=45°.期末复习 基本平面图形01 知识结构基本平面图形⎩⎪⎨⎪⎧线⎩⎪⎨⎪⎧直线射线线段角⎩⎪⎨⎪⎧角的表示方法角的比较大小多边形和圆 本章知识是几何学习的基础,在考试中涉及的考点主要有直线、射线、线段的基本性质,线段长度的有关计算,角度的相关计算以及多边形和圆的简单计算等.02 典例精讲【例1】 已知线段AB =8 cm ,在直线AB 上画线段BC 使BC =3 cm ,则线段AC =________.【思路点拨】 由于题中未指明点的位置,即点C 可以在线段AB 上,也可以在线段AB 的延长线上.【方法归纳】 进行线段的计算时,要先分析得出线段之间隐含的数量关系,然后利用相关的性质来解答.【例2】 (大连中考)如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠COB =35°,则∠AOD 等于( )A .35°B .70°C .110°D .145°【方法归纳】 解答这类问题的方法是通过寻找角与角之间的联系,运用角的和差进行计算.【例3】 阅读材料:多边形边上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图1给出了四边形的具体分割方法,分别将四边形分成了2个、3个、4个小三角形.请你按照上述方法将图2中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n 边形.【方法归纳】 解决此类探究题的方法是从特殊到一般,先分析当n =4、5、6时的情况.分别寻找n 边形与分成的三角形的个数的关系,根据此关系总结出一般规律.03整合集训一、选择题(每小题3分,共30分)1.如图,射线AB与AC所组成的角的表示方法不正确的是( )A.∠1B.∠AC.∠BACD.∠CAB2.下列各图中的几何图形能相交的是( )3.两个锐角的和一定是( )A.锐角B.直角C.钝角D.以上都有可能4.如图,C是AB的中点,D是BC的中点.下列等式不正确的是( )A.CD=AC-BD B.CD=AD-BCC.CD=AB-BD D.CD=AB-AD5.如图,图中小于平角的角的个数是( )A.3 B.4C.5 D.66.把两块三角板按如图所示那样拼在一起,则∠ABC等于( )A.90°B.100°C.105°D.120°7.如果线段AB=6 cm,BC=4 cm,且线段A、B、C在同一直线上,那么A、C间的距离是( )A.10 cm B.2 cmC.10 cm或2 cm D.无法确定8.上午9时30分,时钟的时针和分针所成的角为( )A.90°B.100°C.105°D.120°9.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为( ) A.4,3 B.3,3C.3,4 D.4,4A-B-C-D-E-GA.6种B.12种C.15种D.30种二、填空题(每小题4分,共20分)11.填空:6 000″=________=________°.12.如图,已知A、B、C、D是同一直线上的四点,看图填空:AC=________+BC,BD=AD-________,AC <________.13.把一个圆形蛋糕平均分成8等份,则每份的圆心角的度数为________.14.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,若∠AOC=28°,则∠COD =________,∠BOE=________.15.一个四边形截去一个角后变成________________.三、解答题(共50分)16.(6分)计算:(1)48°39′+67°41′;(2)46°35′×3.17.(8分)如图,已知线段a.(1)用尺规作一条线段AB,使AB等于2a.(2)延长线段BA到C,使AC等于AB.18.(8分)平面测量时,通常以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角,在测绘、航海中经常用到.如图,OA表示北偏东20°方向的一条射线.仿照这条射线画出表示下列方向的射线:(1)北偏西50°;(2)南偏东10°;(3)西南方向(即南偏西45°).19.(8分)平面上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A、B、C、D四个村庄的地理位置如图所示).20.(10分)如图,AD=12,AC=BD=8,E、F分别是AB、CD的中点,求EF的长.21.(10分)如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE,∠BOE的度数.参考答案典例精讲例1 5 cm 或11 cm例2 C例3 ①连接六边形一个顶点和其他与之不相邻的各顶点,共分成了4个三角形;②连接六边形某一边上一点和其他与之不在同一直线上的各顶点,共分成了5个三角形;③连接六边形内一点和各顶点,共分成了6个三角形.推广结论至n 边形,分割后得到的小三角形的个数分别为n -2,n -1,n整合集训1.B 2.A 3.D 4.C 5.C 6.D 7.C 8.C 9.C 10.C11.100′ 5312.AB AB AD 13.45° 14.152° 62° 15.三角形或四边形或五边形 16.(1)原式=116°20′. (2)原式=139°45′.17.如图.(1)先画一条射线AP ,然后在射线AP 上用圆规顺次截取两个线段长为a ,则AB =2a ,(2)用圆规截取AC 等于AB.18.如图所示.19.如图所示,连接AC 、BD ,它们的交点是H ,点H 就是修建水池的位置,这一点到A 、B 、C 、D 四点的距离之和最小.20.因为AD =12,AC =BD =8,所以BC =AC +BD -AD =4.所以EF =BC +12(AB +CD)=BC +12(AD -BC)=8. 21.因为OD 是∠AOC 的平分线,∠AOD =14°,所以∠AOC =2∠AOD =2×14°=28°.因为∠AOB =180°,OE 是∠COB 的平分线,所以∠BOE =12∠BOC =12×(180°-∠AOC)=76°,∠DOE =12∠BOC +12∠AOC =76°+14°=90°.。
七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。
4.3角同步练习一、选择题1、如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A. 60°B. 90°C. 120°D. 150°2、如图,下列说法:①∠α就是∠AOD;②∠α就是∠DOA;③以O为顶点的角有两个;④图中只有两个角能用顶点的大写字母表示.其中正确的有().A.0个B.1个C.2个D.3个3、下列对角的表示方法理解错误的是( )A.角可用三个大写字母表示,顶点字母写在中间 ,每边上的点写在两旁B.任何角都可以用一个字母表示C.记角时可靠近顶点处加上弧线,注上数字表示D.记角时可靠近顶点处加上弧线,注上希腊字母来表示4、下列说法中正确的有()①由两条射线组成的图形叫做角②角的大小与边的长短无关,只与两条边张开的角度有关③角的两边是两条射线④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大10倍A、1个B、2个C、3个D、4个5、一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A. 75°B. 105°C. 45°D. 135°6、点B在点A的北偏东60°方向上,点C在点A的正西方,∠BAC的度数是().A.30°B.90°C.120°D.150°7、借助一副三角尺,能画出的度数是().A.65°B.75°C.85°D.95°8、下列说法中正确的是( )A.两条射线组成的图形叫做角B.两边成一直线的角是平角C.一条射线是一个周角D.平角是一条直线9、下图中表示∠ABC的是()10、下列说法中正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A. 1个B. 2个C. 3个D. 4个二、填空题11、在7:30时,钟表上的时针与分针之间的夹角是 _________度。
七年级上学期第四章基本平面图形同步练习题
一.选择题(共30小题)
1.点A、B、C在同一条数轴上,其中点A、B表示的数分别为-3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6
2.如图,C、D是线段AB上的两点,且D是线段AC的中
点,若AB=10cm,BC=4cm,则AD的长为()
A.2cm B.3cm C.4cm D.6cm
3.如图,OA是北偏东30°方向的一条射线,若射线OB与射线
OA垂直,则OB的方位角是()A.北偏西30° B.北
偏西60° C.东偏北30° D.东偏北60°
4.若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是
()A.15° B.30° C.45° D.75°
5.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如
果∠AOB=40°,∠COE=60°,则∠BOD的度数为()
A.50 B.60 C.65 D.70
6.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是
BO的中点,则MN=()A.10cm B.6cm C.8cm D.9cm
7.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),
且2AB=BC=3CD,若A、D两点表示的数
的分别为-5和6,点E为BD的中点,
那么该数轴上上述五个点所表示的整数中,离线段BD的中点最近的整数是()
A.-1 B.0 C.1 D.2
8.时钟在3点半时,分针与时针所夹的角的度数是()
A.67.5° B.75° C.82.5° D.90°
9.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,
则∠BOD等于()A.145° B.110° C.70° D.35°
10.2012年12月26日京广高铁全线通车.一列往返于北京和广州
的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票. A.6 B.12 C.15 D.30
11.如图,点A、B、C顺次在直线l上,点M是线段AC的
中点,点N是线段BC的中点.若想求出MN的长度,那么
只需条件()A.AB=12 B.BC=4 C.AM=5 D. CN=2
12.如图,地图上A地位于B地的正北方,C地位于B地的北偏东50°方向,
且C地到A地、B地的距离相等,那么C地位于A地的()A.南偏东50°
方向 B.北偏西50°方向 C.南偏东40°方向 D.北偏西
40°方向
13.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则
MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm
14.如图,如果在阳光下你的身影的方向北偏东60°方向,
那么太阳相对于你的方向是()A.南偏西60°B.南偏
西30°C.北偏东60°D.北偏东30°
15.如图,小明在操场上从A点出发,先沿南偏东30°方向
走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度
数是()A.120° B.135° C.150° D.160°
16.如图,B处在A处的南偏西45°方向,C处在A处的南偏
东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()
A .40°
B .75°
C .85°
D .140°
17.下列说法错误的是( )A .两点确定一条直线 B .线段是直线的一部分 C .一条直线是一个平角 D .把线段向两边延长即是直线
18.如图,C 、B 是线段AD 上的两点,若AB=CD ,BC=2AC ,那么AC 与CD 的关系是为( )
A .CD=2AC
B .CD=3A
C C .CD=4B
D D .不能确定
19.用一副三角板画角,不能画出的角的度数是( )
A .15°
B .75°
C .145°
D .165°
20.求一个五边形的内角和时,可以从一个顶点出发引对角线,将五边形分成三角形,那么三角形个数是( )A .6 B .5 C .4 D .3
21.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,
则∠AOC+∠DOB=( )A .120° B .180° C .150° D .135°
22.如图,C ,D 是线段AB 上两点,若CB=4cm ,DB=7cm ,且D 是AC
的中点,则AC 的长等于( ) A .3cm B .6cm C .11cm D .14cm
23.四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,
若EH=5,则FG 的长度是( )
A .2.5
B .5
C .6
D .10
24.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠BOC=80°,则∠
AOE 的度数是( )A .40° B .50° C .80° D .100°
25.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB=80°,
∠BOC=40°,则∠AOC 等于( )
水所走路程之和最小,可以选择的地点应在( )A .B 楼 B .C 楼 C .D 楼 D .E 楼 27.如图,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地
到B 地,设甲、乙走过的路程分别为a 、b ,则a 与b 的大小关系是
( )A .a=b B .a <b C .a >b D .不能确定
28.如图,长度为12cm 的线段AB 的中点为M ,C 点将线段MB 分成
MC :CB=1:2,则线段AC 的长度为( )
A .2cm
B .8cm
C .6cm
D .4cm
29.已知线段AB=8,延长AB 到C ,使BC=2
1AB ,若D 为AC 的中点,则BD 等于( )A .1 B .2 C .3 D .4
30.如图,已知∠AOC=90°,∠COB=α,OD 平分∠AOB ,则∠COD 等于( )
A .
2α B .45°-2α C .45°-α D .90°-α。