导数计算练习题
- 格式:doc
- 大小:269.50 KB
- 文档页数:4
求导练习题经典【求导练习题经典】一、函数f(x) = x^2 - 3x + 2,求f'(x)。
对于这道经典的求导练习题,我们要求函数f(x)的导函数f'(x)。
根据求导的基本法则,我们可以按照以下步骤进行计算。
首先,根据幂函数的导数规则,我们可以求得(x^n)' = nx^(n-1)。
因此,f'(x) = (x^2 - 3x + 2)'= (x^2)' + (-3x)' + (2)'= 2x - 3。
所以,函数f(x)的导数f'(x)等于2x - 3。
二、函数g(x) = 3e^x + 2ln(x),求g'(x)。
对于这个题目,我们需要求函数g(x)的导函数g'(x)。
根据求导的基本法则,我们可以按照以下步骤进行计算。
首先,根据指数函数的导数规则,我们可以求得(e^x)' = e^x。
而根据对数函数的导数规则,我们可以求得(ln(x))' = 1/x。
因此,g'(x) = (3e^x + 2ln(x))'= (3e^x)' + (2ln(x))'= 3(e^x)' + 2(ln(x))'= 3e^x + 2(1/x)= 3e^x + 2/x。
所以,函数g(x)的导数g'(x)等于3e^x + 2/x。
三、函数h(x) = (sin x)^2 + 2cos(x),求h'(x)。
对于这个题目,我们需要求函数h(x)的导函数h'(x)。
根据求导的基本法则,我们可以按照以下步骤进行计算。
首先,根据三角函数的导数规则,我们可以求得(sin x)' = cos x。
而根据幂函数的导数规则,我们可以求得(x^n)' = nx^(n-1)。
因此,h'(x) = ((sin x)^2 + 2cos(x))'= (sin^2 x)' + (2cos(x))'= (sin^2 x)' + (2(cos x))'= 2(sin x)(cos x) + 2(-sin x)= 2sin x(cos x - 1)。
高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
导数的运算练习题在微积分学中,导数是非常重要的概念之一,它用于描述函数在某一点附近的变化率。
掌握导数的运算是学习微积分的基础,本文将为大家提供一些导数的运算练习题,帮助读者巩固掌握导数的计算方法。
1. 计算下列函数的导数:(1)f(x) = x^3 + 2x^2 - 5x + 1(2)g(x) = sin(x) - cos(x)(3)h(x) = e^x + ln(x)(4)i(x) = √(x^2 + 1)2. 计算下列函数的导数:(1)f(x) = 2x^3 - 3x^2 + 4x - 1(2)g(x) = cos(x) + sin(x) + tan(x)(3)h(x) = ln(x^2) - e^(2x)(4)i(x) = √x + 1/x3. 计算下列函数的导数:(1)f(x) = x^4 + 2x^3 - 3x^2 + 4x - 1(2)g(x) = sin(2x) - cos(2x)(3)h(x) = e^(x^2) + ln(x^3)(4)i(x) = ln(x) + e^x4. 计算下列函数的导数:(1)f(x) = x^5 + 2x^4 - 3x^3 + 4x^2 - 5x + 1(2)g(x) = sin(x)cos(x)(3)h(x) = ln(x) + e^x - x(4)i(x) = e^(2x) + ln(x^2)通过以上的练习题,读者可以熟悉导数的计算方法,掌握常用函数的导数运算规则。
在计算导数时,读者需要注意以下几点:1. 基本函数的导数规则:对于多项式函数,求导后,指数降低1,系数不变;对于三角函数,求导后,正弦变余弦,余弦变负正弦;对于指数函数,求导后,底数不变,指数变形式的导数。
2. 乘法法则:若函数为两个函数的乘积,则导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。
3. 除法法则:若函数为两个函数的商,则导数等于分子函数的导数乘以分母函数,减去分母函数的导数乘以分子函数,再除以分母函数的平方。
使用导数求解最值问题练习题解析:在微积分中,使用导数来求解最值问题是一种常见的方法。
最值问题可以分为求解最大值和最小值两种情况。
下面,我们将通过一些练习题来进一步理解和掌握使用导数求解最值问题的方法。
练习题一:求函数f(x) = 3x^2 - 6x + 2的最小值。
解答:首先,我们可以计算出函数f(x)的导数。
对f(x)进行求导,得到f'(x) = 6x - 6。
接下来,我们需要解方程f'(x) = 0,来确定导数为0的横坐标。
将f'(x) = 6x - 6置为0,解得x = 1。
再进一步,我们需要判断x = 1是函数f(x)的极小值点还是极大值点。
为了确定,我们可以求取二阶导数f''(x)。
计算f''(x),得到f''(x) = 6。
由于f''(x) > 0,说明x = 1处的二阶导数为正,即函数f(x)在x = 1处的二阶导数大于0。
根据二阶导数定理,这意味着x = 1处为函数f(x)的极小值点。
因此,最小值为f(1) = 3(1)^2 - 6(1) + 2 = -1。
练习题二:求函数g(x) = x^3 - 4x^2 + 5x的最大值。
解答:同样地,我们首先计算函数g(x)的导数。
对g(x)进行求导,得到g'(x) = 3x^2 - 8x + 5。
然后,我们需要解方程g'(x) = 0,来确定导数为0的横坐标。
将g'(x) = 3x^2 - 8x + 5置为0,由于该方程无实根,说明g(x)的导数没有为0的点。
由于g(x)是一个三次函数,它的图像是一个开口向上的抛物线。
根据函数的性质,我们可以知道,当x趋向于负无穷大或正无穷大时,g(x)将趋向于正无穷大。
因此,最大值不存在。
练习题三:求函数h(x) = x^4 - 6x^2的最小值。
解答:首先,计算函数h(x)的导数。
对h(x)进行求导,得到h'(x) = 4x^3 -12x。
导数与极值最大值与最小值问题练习题在微积分中,导数与极值问题是一类经典且重要的题型。
通过求取导数,我们可以确定函数的极值点,即最大值和最小值。
本文将给出一些导数与极值问题的练习题,帮助读者加深对该类型问题的理解与应用。
练习题一:求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。
解析:首先,我们需要求出函数的导数f'(x)。
对于f(x) = x^3 - 6x^2 + 9x + 2,导数为f'(x) = 3x^2 - 12x + 9。
接下来,我们将导数f'(x)置为零,求得极值点。
即,3x^2 - 12x + 9= 0。
通过求解这个方程,我们得到x = 1和x = 3两个解。
然后,我们需要分别计算这两个x值对应的函数值f(x)。
当x = 1时,f(x) = 1^3 - 6(1)^2 + 9(1) + 2 = 6;当x = 3时,f(x) = 3^3 - 6(3)^2 + 9(3)+ 2 = -2。
综上所述,在函数f(x) = x^3 - 6x^2 + 9x + 2中,极小值为-2,极大值为6,对应的x值分别为1和3。
练习题二:求函数g(x) = e^x - 4x的极值点。
解析:与前一题类似,我们首先求取函数g(x) = e^x - 4x的导数g'(x)。
根据指数函数的导数性质以及常数倍规则,我们有g'(x) = e^x - 4。
将导数g'(x)置为零,求得极值点。
即,e^x - 4 = 0。
通过求解这个方程,我们得到x = ln(4)。
接下来,计算x = ln(4)对应的函数值g(x)。
g(x) = e^x - 4x = e^(ln(4)) - 4(ln(4)) = 4 - 4ln(4)。
因此,在函数g(x) = e^x - 4x中,存在唯一的极值点x = ln(4),对应的极值为4 - 4ln(4)。
练习题三:求函数h(x) = x^4 - 8x^2 + 16的极值点。
专升本导数专项练习题一、选择题1. 函数 \( f(x) = x^3 - 2x^2 + x \) 的导数是:A. \( 3x^2 - 4x + 1 \)B. \( x^3 - 2x^2 \)C. \( 3x^2 - 4x \)D. \( 3x^2 - 4x + 1 \)2. 已知 \( y = \sin(x) \),那么 \( \frac{dy}{dx} \) 等于:A. \( \cos(x) \)B. \( \sin(x) \)C. \( -\cos(x) \)D. \( -\sin(x) \)3. 若 \( g(x) = e^x \),则 \( g'(x) \) 是:A. \( e^x \)B. \( e^{-x} \)C. \( x \cdot e^x \)D. \( 1 \cdot e^x \)二、填空题4. 函数 \( f(x) = 2x^4 + 5x^3 + 7 \) 的导数是 \(f'(x) = ________\)。
5. 若 \( h(x) = \ln(x) \),那么 \( h'(x) = ________\)。
6. 函数 \( F(x) = \frac{1}{x} \) 的导数是 \( F'(x) =________\)。
三、解答题7. 求函数 \( f(x) = x^2 - 3x + 2 \) 在 \( x = 1 \) 处的导数。
8. 计算函数 \( g(x) = x^2 + 2x + 1 \) 的导数,并说明其几何意义。
9. 若 \( H(x) = \sin(x) + \cos(x) \),求 \( H'(x) \) 并解释其物理意义。
四、综合题10. 已知 \( y = x^3 + 2x^2 - 5x + 7 \),求 \( y \) 关于 \( x \) 的二阶导数。
11. 假设 \( f(x) = \sqrt{x} \),求 \( f'(x) \) 并讨论 \( f(x) \) 在 \( x = 4 \) 处的切线斜率。
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
山东省泰安第一中学2011级(数学)学案(选修1)第18课时精品文档导数计算练习题已知f x x 2,则f 3等于()0 B. 2xC. 6D. 9f x 0的导数是()B. 1C.不存在D .不确疋y 饭的导数是( )3x 2B. ^x 2C. 1D . 2-323#x曲线 y x n 在x 2处的导数是12,则n 等于()1B. 2C . 3D . 4若f x 奴,则f 1等于(B.-C. 3D .-33y x 2的斜率等于2的切线方程是( )2x y 1 0 B. 2x y 1 0 或 2x y 12x y 1 0D. 2x y 0在曲线y x 2上的切线的倾斜角为一 的点是()1、 A.2、 A.3、A. 4、 A. 5、A. 6、A. C. 7、4 0,0 B. 2,48、 (理科) sinx 是可导函数,则 y x 等于(16A. f sin xB. f sin xcosxC. f sinx sinxD. f cosx cosx9、(理科)函数y 223x 2的导数是(6x C. 8 2 x 3x 26x 1x 3x 26x山东省泰安第一中学2011级(数学)学案(选修1)第18课时精品文档10、曲线y 4x X3在点1, 3处的切线方程是(A. y 7x 4B. y 7x 2C. y X 4D. y11、点在曲线23上移动’设点处切线的倾斜角为,则角的取值范围是()A.0,—2 0,- U 乞2 4D.12、求函数y 1 2x2在点X 1处的导数。
13、求在抛物线2y X上横坐标为3的点的切线方程。
14、求曲线y 疔上点(1,1)处的切线方程。
15、求下列各函数的导数(1) 3X22~~2XX3(仮1)(十1)(x 1)72?山东省泰安第一中学2011级(数学)学案(选修1)第18课时⑺ y (X a)(x b)16、求下列各函数的导数x n in Xlog^/x5x1 x1 2(6)17、求下列各函数的导数精品文档(1) xin X(1) xsin x cosx山东省泰安第一中学2011级(数学)学案(选修1)第18课时y x 2si n1健康文档 放心下载 放心阅读x8 2 x 3x 218、 (理科) 求下列各函数的导数 (1) (12x5 x ) (23x 2)j1 5x 2T x 2~a 2lOg a (1 X 2)In x 2(8) sin nx (9) ・ nsin x(10)y sin nx (11)y, X In tan- 2精品文档(12)。
导数的运算一、单选题(共33题;共66分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -2.函数的导数为()A. B. C. D.3.设函数,若,则等于()A. B. C. D.4.设则等于( )A. B. C. D.5.已知函数的导函数,且满足,则=( )A. B. C. 1 D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B.C.D.8.已知函数的值为()A. B. C. D.9.下列求导运算正确的是()A. B. C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B. C. D.11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin 2xC. 1-2sin 2xD. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D. =13.设函数的导函数为,且,则=( )A. 0B. -4C. -2D. 214.设,若,则()A. B. C. D.15.已知函数,则其导数()A. B. C. D.16.若函数,则的值为()A. 0B. 2C. 1D. -117.已知函数,且,则的值为()A. B. C. D.18.已知函数,为的导函数,则的值为()A. B. C. D.19.下列求导运算正确的是()A. B. C. D.20.已知函数的导函数为,且满足,则()A. B. C. D.21.若,则函数的导函数()A. B. C. D.22.函数的导数为()A. B. C. D.23.下列导数式子正确的是()A. B. C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B. C. D.26.已知,则()A. B. C. D.27.设,,则x0=( )A. e2B. eC.D. ln 228.下列求导数运算正确的是()A. B. C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)30.下列求导运算正确的是( )A. B. C. D.31.已知,则 ( )A. B. C. D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B. eC.D. ln 233.下列导数运算正确的是()A. B. C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。
导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。
导数基础练习(共2页,共17题)一.选择题(共14题))=(二.填空题(共2题)的导数是三.解答题(共1题)导数基础练习(试题解析)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()红色sin2x、蓝色sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()+2红色lnx+2x、蓝色3x﹣y﹣1=0(即y=3x-1)3.若函数f(x)=sin2x,则f′()的值为()﹣代入求出值.,∴f′()==红色sin2x、蓝色2cos2x4.函数f(x)=xsinx+cosx的导数是()红色xsinx+cosx、蓝色xcosx5.的导数是()=红色、绿色y′=6.y=xlnx的导数是()红色xlnx、绿色lnx+17.函数y=cose x的导数是()红色cose x、绿色﹣e x sine x8.已知,则f′()=()红色、绿色-sinx9.函数的导数是(),∴y′==红色、蓝色10.函数y=x2﹣2x在﹣2处的导数是()红色y=x2﹣2x、蓝色y′=2x﹣2 11.设y=ln(2x+3),则y′=(),∴红色ln(2x+3)、蓝色12.已知函数,则f′(x)等于()13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()红色x2+3x、蓝色2x+314.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()==红色4x﹣x2、蓝色4﹣2x 二.填空题(共2题)15.求导:()′=,.)′=,∴答案为:红色、蓝色16.函数y=的导数是.y′=红色、蓝色三.解答题(共1题)17.求函数y=e x5-+2的导数.红色e x5-+2、蓝色﹣5e x5-。
1导数及求导法则练习题1.如果函数()f x 在点0x 可导,求:(1)000()()lim h f x h f x h →--; (2)000()()lim h f x h f x h hαβ→+--.2.求函数3y x =在点(2,8)处的切线方程和法线方程.3.设2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,试确定,a b 的值,使()f x 在1x =处可导.4.求下列各函数的导数:(1)231251y x x x =-++; (2)2sin y x x =;(3)1cos y x x =+; (4)1ln 1ln x y x -=+.5.求下列函数的导数:(1)36()y x x =-; (2)y =(3)2sin (21)y x =-;(4)21siny x x =; (5)ln 1x y x =-; (6)[]ln ln(ln )y x =;(7)ln(y x =; (8)arcsin 2x y x =+ 6.若以310cm /s 的速率给一个球形气球充气,那么当气球半径为2cm 时,它的表面积增加的有多快?7.求下列函数的高阶导数:(1)2sin 2y x x =,求y '''; (2)y =,求5x y =''.8.求由下列方程所确定的隐函数的导数:2 (1)3330y x xy +-=; (2)arctany x=.9.用对数求导法求下列各函数的导数: (1)y = (2)cos (sin )x y x = (sin 0)x >.10.求由下列各参数方程所确定的函数()y y x =的导数:(1)33cos sin x a t y b t ⎧=⎪⎨=⎪⎩; (2)e cos e sin t t x t y t ⎧=⎪⎨=⎪⎩,求π2d d t y x =.11.求下列函数的微分:(1)ln sin2x y =; (2)1arctan 1x y x +=-;(3)e 0x y xy -=; (4)24ln y y x +=.12.利用微分求近似值:(1)sin3030︒'; (213.已知单摆的振动周期2T =,其中2980cm /s g =,l 为摆长(单位为cm ),设原摆长为20cm ,为使周期T 增大0.05s ,摆长约需加长多少?14。
极限与导数练习题一、极限问题1. 计算以下极限:a) $ \lim_{x \to 0} \frac{\sin x}{x} $b) $ \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x $c) $ \lim_{x \to 0} \left( 1 + \frac{1}{x} \right)^x $d) $ \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} $2. 当 $ x \to 0 $ 时,证明以下极限等式:a) $ \lim_{x \to 0} \frac{\sin x}{x} = 1 $b) $ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} $c) $ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 $d) $ \lim_{x \to 0} \frac{(1 + x)^{\frac{1}{x}}}{e} = 1 $二、导数问题1. 求以下函数的导数:a) $ f(x) = x^3 + 2x^2 - 3x + 1 $b) $ g(x) = \sin x \cos x $c) $ h(x) = \frac{1}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}} + \frac{1}{\sqrt[4]{x}} $d) $ k(x) = \ln (2x + 3) $2. 求以下函数在指定点处的导数:a) $ f(x) = x^3 - 2x^2 + x $,求 $ f'(2) $b) $ g(x) = \frac{1}{x} $,求 $ g'(1) $c) $ h(x) = \sqrt{x} $,求 $ h'(4) $d) $ k(x) = e^x $,求 $ k'(0) $三、综合练习1. 求函数 $ f(x) = \frac{x^3 - 4x}{2x^2 + 3} $ 的极值点。
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )A. B.(0,3) C.(1,4) D.x e x x f )3()(-=)2,(-∞),2(+∞18.函数y =xx a22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xxa 22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数323922yx x x x 有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<aC.1=aD.31=a28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
、选择题1已知函数f(x)=ln(ax_1)的导函数是f'(x),且f'(2)=2,则实数a 的值为( )A. 1B . 2C . 3D . 12 3 42•已知函数f(x)的导函数为f'(x),且满足f(x) =2xf'(1)・Inx ,贝y f'(1)=() A. -e B.1 C.-1D.e3•若函数f(x)的导函数的图象关于 y 轴对称,则f(x)的解析式可能为( )A. f(x) =3cosx B . f(x) =x 3x 24.已知函数f (X) =2x 3 • 3x 2 k 3x ,在0处的导数为27,则k=()A. -27 B . 27 C . -3 D . 35. 已知函数f (x)的导函数为f '(x),且满足f(x^2xf '(1) l nx ,贝U f '(1)=()导数的计算第I 卷(选择题)21C3 A.B3248. 函数f ( x )-:,的导函数f ' (x ) 为()2XA.f' (x )sins - cosx2KB.f' (x )siny+ln2*cosx2XC. f' (x ) sinx - ln2*cosx2sD. f ' (x )= sinx+cosx9 .若 f(x)2=x -2x -4ln x ,贝U f (x) 0的解集为()7.已知f '(x)是f (x)二sin x • a cosx 的导函数,且Tt f v4C. f (x) =1 si n 2x Df (x) =e xxA. -1 B C. 1D6.函数f(x)二sin 2x 的导数是A. 2sin x B . 2sin 2x-ee( )C . 2cosxD . sin2x则实数a 的值为(10•已知函数f(x) =x 3在点P 处的导数值为3,则P 点的坐标为( )A 、 (— 2,- 8)B 、 (— 1,— 1)c (—2,— 8 )或(2, 8)D (—1,— 1)或(1, 1)11..卜列求导运算止确的是( )A. 1 1 (x+ )' =1+飞 B .(Iog 2x )' =1x xxln 2 C. x x (3 ) =3 • log 3e D .(x 2cosx ) '=—2xs inx 12. 1.函数y = —(e x 亠e»)的导数是( )21 1x-xx_xxxx xA. (e -e ) B . -(e e ) C . e-e D . e e2 2A. 1 B .3 C.^2x\ln21 .③若 f (x) -7, f (3)xA. 1 个BA. (0?亠)B.(_1,0) (2, ::) C.(2, ::) D. (-1,0)c .3x =3x log 3X x 2 cosx =-2xsinxy = f(x)的图象如图所示,则导函数 y = f '(x)可能为()15•设函数f (x)在定义域内可导,16 .下列结论: ①若 y = cosx, y = -sin x ;②若 1y 「x ,y114. F 列求导运算正确的是A.27二0 .正确个数是( .3个D13.已知函数fX 二sin2X ,则)请点击修改第卷的文字说明17 •求下列函数的导数x2(1) y =e(2) y =x sin x19•已知函数 f x =25x 313x 22016x-5,则 f 0 二 ________________ 20 •设函数f(x)的导数为f (x),且f(x^x 22xf (1),则f ⑵=21 •已知 f (x) =X 3+2xf'(1),贝y f'(1)= _____ .122•已知函数 f(x) =e x — f (0)x + —x 2,则 f (1) = _______2参考答案1. B【解析】aa 2试题分析:f '(x) f '(2) 2= a ,故选B.ax —1 2a -1 3考点:函数的导数.2. C【解析】1试题分析:•••函数f (x)的导函数为f x ,且满足f (x) = 2xf '⑴• In x , x 0 ,••• f x = 2 f 1 --,把x = 1x代入f x 可得f 1 =2f 11,解得f I F —1,故选C.考点:(1)导数的乘法与除法法则;(2 )导数的加法与减法法则•3. C【解析】试题分析:A 选项中,f Y xj n-Bs in x ,图像不关于y 轴对称排除A 选项;B 选项中,对称轴为排除B 选项;C 选项中f '(X)=2cos2x,图像关于y 轴对称;D 选项中f '(x)=e X 1不关于y 轴对称.3考点:1、导数运算;2、偶函数.4. D第II 卷(非选择题)三、填空题18. 设函数f x 的导数为「X ,且f x = fsin x cosx ,贝Uf2 In x(3) y =x【解析】试题分析:函数含x项的项是k3x,其在0处的导数是k3 =27,解得:k = 3,而其他项求导后还还有x ,在0处的导数都是0,故选D.考点:导数5. A【解析】1试题分析:函数f (x)的导函数为f(x),且满足f(x)=2xf'(1)・l nx,( x 0),所以厂(x) = 2f(1),把x = 1x代入f (x)可得f (1H2f (1) 1,解得f (1) = -1 ■故选A.考点:导数的计算.6. D【解析】F F试题分析: f x 二si nx si nx,根据乘法导数可有:「x〕:isi nx si n x • si n x • si nx = 2si n xcosx二si n2x。
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )x e x x f )3()(-=A. B.(0,3) C.(1,4) D. 18.函数y =xxa 22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xx a22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数()323922y x x x x =---<<有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<a)2,(-∞),2(+∞C.1=aD.31=a 28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
导数计算练习题
1、已知()2f x x =,则()3f '等于( )
A .0
B .2x
C .6
D .9 2、()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
3、y = )
A .23x
B .21
3x C .12- D 4、曲线n y x =在2x =处的导数是12,则n 等于( )
A .1
B .2
C .3
D .4
5、若()f x =()1f '等于( )
A .0
B .13-
C .3
D .13
6、2y x =的斜率等于2的切线方程是( )
A .210x y -+=
B .210x y -+=或210x y --=
C .210x y --=
D .20x y -=
7、在曲线2y x =上的切线的倾斜角为4
π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫ ⎪⎝⎭
8、(理科)设()sin y f x =是可导函数,则x y '等于( )
A .()sin f x '
B .()sin cos f x x '⋅
C .()sin sin f x x '⋅
D .()cos cos f x x '⋅
9、(理科)函数()2
2423y x x =-+的导数是( ) A .()2823x x -+ B .()2
216x -+ C .()()282361x x x -+- D .()()242361x x x -+-
10、曲线34y x x =-在点()1,3--处的切线方程是( )
A .74y x =+
B .72y x =+
C .4y x =-
D .2y x =-
11、点P 在曲线323
y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π⎡⎤⎢⎥⎣⎦ B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦
⎣⎭ C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦ 12、求函数212y x =-在点1x =处的导数。
13、求在抛物线2y x =上横坐标为3的点的切线方程。
14、求曲线y =上点(1,1)处的切线方程。
15、求下列各函数的导数
(1) 235y x x =-+
(2) 1y x
=+
(3) 2222x y x
=+
(4) 3y
=
(5) 1)y
=-
(6) (y x =+
(7) ()()y x a x b =--
16、求下列各函数的导数
(1)ln y x x =
(2)ln n y x x =
(3)log a y =
(4)1
1x y x +=-
(5)251x
y x =+
(6)232x
y x x =--
17、求下列各函数的导数
(1)sin cos y x x x =+
(2)1cos x
y x =-
(3)tan tan y x x x =-
(4)5sin 1cos x
y x =+
18、(理科)求下列各函数的导数
(1)25(1)y x =+
(2)2(23y x =+
(3)y
(4)
y =
(5) 2
log (1)a y x =+
(6) y =
(7) y =
(8) sin y nx =
(9) sin n y x =
(10) sin n y x =
(11) ln tan 2x
y =
(12)21
sin y x x =。