第二节 测试装置的静态特性
测试装置的静态特性是指静态测量情况下描述实际测试 装置与理想定常线性系统的接近程度。 •线性度 •灵敏度 •分辨力 •回程误差 •漂移
一、线性度
定义:测量装置输出、输入之间的关系与理想比例关系 的偏离程度。 线性误差的两种表达形式: * 静态标定所得输入、输出数据点与理想直线的最大偏差Δmax * 百分数表达
2 n H ( s) 2 2 s 2n s n
二、一阶、二阶系统的特性 (1)一阶系统
+ u i(t ) - R + C u o(t ) -
dxo RC xo xi dt
dy t a0 y t b0 x t 一般形式的一阶微分方程式: a1 dt dy t 改写为: T y t Sx t dt
(4)脉冲响应函数
已知: 若装置的输入为单位脉冲函数 由于 ,则有 。
对上式两边取拉氏逆变换,且令 则有
上式表明,单位脉冲函数的响应同样可描述测量系统的动态特性,它同 传递函数是等效的,不同的是一个在复频域 ,一个是在时间域,通常称 h(t) 为脉冲响应函数。脉冲响应函数可视为系统特性的时域描述。
T=a1/a0-系统时间常数 ; S=b0/a0-系统静态灵敏度 ; 为了分析方便,令S=1,
dy t T y t x t dt
一阶系统的特性
•传递函数: H ( s ) •频响函数:H ( )
1 Ts 1
1 jT 1
1 1 (T ) 2
x(t) 0 t0 t
测量装置实现测量不失真的频率特性
时域条件
y(t)= A0 x(t- t0)
式中:A0、t0均为常数。