天然放射现象
- 格式:ppt
- 大小:320.50 KB
- 文档页数:15
天然放射现象天然放射现象是指自然界中广泛存在的一种现象,即某些物质会自发发出辐射。
这种放射现象在地球上很常见,而且具有不可预测性和广泛性。
天然放射现象涉及多种物质和过程,对人类生活和环境都有一定影响。
天然放射现象的种类天然放射现象可以分为多种类型,其中最常见的方式包括以下几种:1.放射性元素的自然衰变:放射性元素具有不稳定的原子核,会随时间自发发生衰变,并伴随着辐射的释放。
常见的放射性元素包括铀、钍和钾等。
2.宇宙射线:宇宙射线是太阳系外部来自宇宙的高能粒子流,它们穿过大气层并与地球大气和地表物质发生相互作用,产生次生辐射。
3.地球自身的放射:地球内部也存在放射性元素,如铀、钍、钾等,它们的放射能够通过地壳传播到地表,产生地壳辐射。
地球的内部核和地表活动也会产生放射性元素,如岩浆的喷发和地壳的变动等。
4.大气中的辐射:大气层中也存在一些带电粒子和高能辐射源,如雷电、核爆炸等产生的辐射。
天然放射现象的影响天然放射现象对人类和环境都会产生一定的影响,尤其是长期暴露在放射性辐射环境中的人类。
以下是一些主要影响:1.健康影响:长期接触高剂量的辐射可能导致癌症、生殖和遗传基因的突变等健康问题。
一些地区的天然放射性元素释放量较高,可能对当地居民的健康产生影响。
2.环境影响:天然放射现象会影响环境中的生物多样性和生态系统的平衡。
某些地区的天然放射水平较高,会导致当地植被和动物的数量和种类发生变化。
3.科学研究:天然放射现象也被广泛用于科学实验和研究中,尤其是核物理、地质学和气象学等领域对天然辐射的研究。
天然放射现象的防护针对天然放射现象的影响,人们可以采取一定的防护措施,减少辐射对人类和环境的损害:1.监测:定期监测地表和空气的辐射水平,了解当地天然辐射情况,及时采取措施。
2.限制暴露:减少暴露在放射性元素较高的区域,减少长时间接触放射性元素的可能性。
3.防护设备:在需要接触辐射性物质的情况下,使用合适的防护设备,如防护服、面罩等。
真诚为您提供优质参考资料,若有不当之处,请指正。
1 / 1 2019-2020年高三物理第三册天然放射现象教学目的:1、知道天然放射现象2、说出三种射线的特点3、说明α衰变、β衰变的规律,会写衰变方程。
4、知道半衰期的概念教学重点:(1)三种射线的性质;(2)原子核的衰变方程;(2)※半衰期及有关计算。
教学过程:(一)引入新课:原子原子核、电子是组成物质的最小微粒?(二)新授1、天然放射现象:物质放射出α射线、β射线、γ射线的性质,叫做放射性,具有放射性的元素叫放射性元素。
1896年法 贝克勒耳首先发现天然放射现象,后居里·夫妇发现钋P O 和镭R a 。
2、三种射线的本质及特性:(将射线放入强磁场中的 研究)α射线:氦核流速度约为光速的 1/10。
贯穿本领最小,但有很强的电离作用,很容易使空气电离,使照相底片感光的作用也很强;β射线:高速运动的电子流。
速度接近光速,贯穿本领很强。
很容易穿透黑纸,甚至能穿透几毫米厚的铝板,但它的电离作用比较弱。
γ射线:为波长极短的电磁波。
性质非常象X射线,只是它的贯穿本领比X射线大的多,甚至能穿透几厘米厚的铅板,但它的电离作用却很小。
3、 放射性元素的衰变:原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。
常见的衰变有两种,放出α粒子的衰变叫α衰变,放出β粒子的衰变叫β衰变,γ射线是随着α射线或β射线的放出而产生的。
例:(α衰变)(β衰变)衰变规律:α衰变:β衰变:1、 核反应遵从的规律 ①质量数守恒②电荷数守恒2、 半衰期:放射性元素的原子核有半数发生发生衰变需要的时间叫半衰期。
半衰期与放射性元素的物理化学状态无关,只由核的内部因素决定,不同的元素有不同的半衰期。
(三)小结:天然放射现象的本质是核的衰变,核衰变时遵从衰变规律,且有半衰期。
要记住各种射线的本质。
(四)课堂练习:练习三:(1)、(3)(五)作 业:练习三:(2)、(4)。
2放射性衰变[学习目标] 1.了解放射性和天然放射现象,知道三种射线的实质和特征.2.了解衰变的概念,知道放射现象的实质就是原子核的衰变.3.了解半衰期的概念,知道半衰期的统计意义,并会计算半衰期.一、天然放射现象1.天然放射性:(1)1896年,法国物理学家亨利·贝克勒尔发现,铀化合物能放出看不见的射线,这种射线可以使密封完好的照相底片感光.物质发射射线的性质称为放射性,具有放射性的元素称为放射性元素.(2)玛丽·居里和她的丈夫皮埃尔·居里发现了两种比铀放射性更强的新元素,命名为钋、镭.2.天然放射现象:放射性元素自发地发出射线的现象.原子序数大于83的元素,都能自发地发出射线,原子序数较小的元素,有的也能放出射线.例如14 6C有放射性.二、衰变1.放射性衰变:放射性元素是不稳定的,它们会自发地蜕变为另一种元素,同时放出射线,这种现象为放射性衰变.2.衰变形式:常见的衰变有两种,放出α粒子的衰变为α衰变,放出β粒子的衰变为β衰变,而γ射线是伴随α射线或β射线产生的.3.衰变方程举例:(1)α衰变:238 92U→234 90Th+42He(2)β衰变:234 90Th→234 91Pa+0-1e.4.原子核衰变前、后电荷数和质量数均守恒.三、三种射线的性质1.α射线:带正电的α粒子流,α粒子是氦原子核,α射线的速度只有光速的10%,穿透能力弱,容易被物质吸收,一张薄薄的铝箔或一层裹底片的黑纸,都能把它挡住.2.β射线:带负电的电子流,它的速度很快,穿透力强,在空气中可以走几十米远,而碰到几毫米厚的铝片就不能穿过了.3.γ射线:本质上是一种波长极短的电磁波,波长约是X射线波长的1%,穿透力极强,能穿过厚的混凝土和铅板.四、半衰期1.半衰期:放射性元素的原子核有半数发生衰变所需要的时间,叫做这种元素的半衰期.2.半衰期是大量原子核衰变的统计规律,反映放射性元素衰变的快慢.3.半衰期是由原子核自身的因素决定的,跟原子所处的化学状态和外部条件没有关系.1.判断下列说法的正误.(1)α射线实际上就是氦原子核,α射线具有较强的穿透能力.( × ) (2)原子核在衰变时,它在元素周期表中的位置不变.( × ) (3)同种放射性元素,在化合物中的半衰期比在单质中长.( × )(4)放射性元素的半衰期与元素所处的物理和化学状态无关,它是一个统计规律,只对大量的原子核才适用.( √ )(5)氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后只剩下一个氡原子核.( × ) 2.碘131的半衰期约为8天,若某药物含有质量为m 的碘131,经过32天后,该药物中碘131的质量大约还有__________________________________. 答案m 16解析 由题意可知m 余=3281.216m m ⎛⎫=⎪⎝⎭一、对三种射线性质的理解如图1为三种射线在匀强磁场中的运动轨迹示意图.图1(1)α射线向左偏转,β射线向右偏转,γ射线不偏转说明了什么?(2)α粒子的速度约为β粒子速度的十分之一,但α射线的偏转半径大于β射线的偏转半径说明什么问题?答案 (1)说明α射线带正电,β射线带负电,γ射线不带电.(2)根据带电粒子在匀强磁场中运动的半径公式r =m v qB 可知,α粒子的m q 应大于β粒子的mq ,即α粒子的质量应较大.α、β、γ三种射线的比较种类α射线β射线γ射线组成高速氦核流高速电子流光子流(高频电磁波)质量4m p(m p=1.67×10-27kg)m p1 836静止质量为零带电荷量2e -e 0 速率0.1c 0.99c c穿透能力最弱,用一张纸就能挡住较强,不能穿透几毫米厚的铝片最强,能穿透厚的混凝土和铅板电离作用很强较弱很弱在电、磁场中偏转偏转不偏转例1一置于铅盒中的放射源可以发射α、β和γ射线,由铅盒的小孔射出,在小孔外放一铝箔,铝箔后面的空间有一匀强电场.进入电场后,射线变为a、b两束,射线a沿原来的方向行进,射线b发生了偏转,如图2所示,则图中的射线a为________射线,射线b为________射线.图2答案γβ解析放射源可以发射α、β、γ三种射线,α射线的穿透能力弱,不能穿透铝箔,β射线和γ射线的穿透能力强,可以穿透铝箔.由于β射线带负电,经过电场时受到电场力的作用会发生偏转,γ射线不带电,经过电场时不发生偏转,所以题图中射线a是γ射线,射线b是β射线.1.对放射性和射线的理解:(1)一种元素的放射性,与其是单质还是化合物无关,这说明一种元素的放射性和核外电子无关.(2)射线来自于原子核,说明原子核是可以再分的.2.对三种射线性质的理解:(1)α射线带正电、β射线带负电、γ射线不带电.α射线、β射线是实物粒子流,而γ射线是光子流,属于电磁波的一种.(2)α射线、β射线都可以在电场或磁场中偏转,但偏转方向不同,γ射线则不发生偏转.(3)α射线穿透能力弱,β射线穿透能力较强,γ射线穿透能力最强,而电离本领相反.针对训练1天然放射性元素放出的三种射线的穿透能力实验结果如图3所示,由此可推知()图3A.②来自原子核外的电子B.①的电离作用最强,是一种电磁波C.③的电离作用较强,是一种电磁波D.③的电离作用最弱,是一种电磁波答案 D解析①射线能被一张纸挡住,说明它的穿透能力差,所以①射线是α射线,α射线是高速运动的氦核流,它的电离作用最强,选项B错误;②射线的穿透能力较强,能穿透纸但不能穿透几毫米厚的铝板,说明它是β射线,β射线来自于原子核,不是来自于原子核外的电子,选项A错误;③射线的穿透能力最强,能够穿透几厘米厚的铅板,③射线是γ射线,γ射线的电离作用最弱,穿透能力最强,它是能量很高的电磁波,故选项C错误,D正确.二、原子核的衰变规律与衰变方程如图4为α衰变、β衰变示意图.图4(1)当原子核发生α衰变时,原子核的质子数和中子数如何变化?(2)当发生β衰变时,新核的核电荷数相对原来的原子核变化了多少?新核在元素周期表中的位置怎样变化?答案 (1)α衰变时,质子数减少2,中子数减少2.(2)β衰变时,核电荷数增加1.新核在元素周期表中的位置向后移动一位.1.衰变种类、实质与方程(1)α衰变:A Z X ―→A -4Z -2Y +42He实质:原子核中,2个中子和2个质子结合得比较牢固,有时会作为一个整体从较大的原子核中被释放出来,这就是放射性元素发生的α衰变现象.如:238 92U ―→234 90Th +42He. (2)β衰变:A Z X ―→ A Z +1Y +0-1e.实质:原子核中的中子转化成一个质子且放出一个电子即β粒子,使电荷数增加1,β衰变不改变原子核的质量数,其转化方程为:10n ―→11H +0-1e. 如:234 90Th ―→234 91Pa +0-1e.(3)γ射线是伴随α衰变或β衰变产生的. 2.衰变规律衰变过程遵循质量数守恒和电荷数守恒. 3.确定原子核衰变次数的方法与技巧(1)方法:设放射性元素A Z X 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A ′Z ′Y ,则衰变方程为:A Z X →A ′Z ′Y +n 42He +m 0-1e根据电荷数守恒和质量数守恒可列方程: A =A ′+4n ,Z =Z ′+2n -m .以上两式联立解得:n =A -A ′4,m =A -A ′2+Z ′-Z .由此可见,确定衰变次数可归结为解二元一次方程组.(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数对质量数没有影响),然后根据衰变规律确定β衰变的次数.例223892U核经一系列的衰变后变为206 82Pb核,问:(1)一共经过几次α衰变和几次β衰变?(2)20682Pb与238 92U相比,质子数和中子数各少了多少?(3)综合写出这一衰变过程的方程.答案(1)86(2)1022(3)238 92U→206 82Pb+842He+60-1eU衰变为20682Pb经过x次α衰变和y次β衰变,由质量数守恒和电荷数守恒可得解析(1)设23892238=206+4x①92=82+2x-y②联立①②解得x=8,y=6.即一共经过8次α衰变和6次β衰变(2)由于每发生一次α衰变质子数和中子数均减少2,每发生一次β衰变,而质子数增加1,故20682Pb较238 92U质子数少10,中子数少22.(3)衰变方程为238 92U→206 82Pb+842He+60-1e.1.衰变方程的书写:衰变方程用“→”,而不用“=”表示,因为衰变方程表示的是原子核的变化,而不是原子的变化.2.衰变次数的判断技巧(1)衰变过程遵循质量数守恒和电荷数守恒.(2)每发生一次α衰变质子数、中子数均减少2.(3)每发生一次β衰变中子数减少1,质子数增加1.针对训练2在横线上填上粒子符号和衰变类型.(1)23892U→234 90Th+________,属于________衰变;(2)23490Th→234 91Pa+________,属于________衰变;(3)210 84Po→210 85At+________,属于________衰变;(4)6629Cu→6227Co+________,属于________衰变.答案(1)42Heα(2)0-1eβ(3)0-1eβ(4)42Heα解析 根据质量数和电荷数守恒可以判断:(1)中生成的粒子为42He ,属于α衰变.(2)中生成的粒子为 0-1e ,属于β衰变.(3)中生成的粒子为 0-1e ,属于β衰变.(4)中生成的粒子为42He ,属于α衰变.三、半衰期的理解和有关计算什么是半衰期?对于某个或选定的几个原子核,能根据该种元素的半衰期预测它的衰变时间吗?答案 半衰期是某种放射性元素的大量原子核有半数发生衰变所用的时间.半衰期是统计规律,故无法预测单个原子核或几个特定原子核的衰变时间.1.半衰期:表示放射性元素衰变的快慢. 2.半衰期公式:1/21/211=,=22ttT T N N m m 0⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭原余余,式中N 原、m 0分别表示衰变前的原子核数和质量,N 余、m 余分别表示衰变后的尚未发生衰变的原子核数和质量,t 表示衰变时间,T 1/2表示半衰期.3.适用条件:半衰期是一个统计概念,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定其何时发生衰变.4.应用:利用半衰期非常稳定的特点,可以测算其衰变过程,推算时间等. 例3 (多选)关于放射性元素的半衰期,下列说法正确的是( ) A .原子核全部衰变所需要的时间的一半 B .原子核有半数发生衰变所需要的时间 C .相对原子质量减少一半所需要的时间 D .该元素原子核的总质量减半所需要的时间 答案 BD解析 放射性元素的原子核有半数发生衰变所需要的时间叫做这种元素的半衰期,它与原子核全部衰变所需要的时间的一半不同.放射性元素发生衰变后成为一种新的原子核,原来的放射性元素原子核的个数不断减少,当原子核的个数减半时,该放射性元素的原子核的总质量也减半,故选项B 、D 正确.例4 (多选)地球的年龄到底有多大,科学家利用天然放射性元素的衰变规律,通过对目前发现的最古老的岩石中铀和铅含量来推算,测得该岩石中现含有铀是岩石形成初期时(岩石形成初期时不含铅)的一半.铀238衰变后形成铅206,铀238的相对含量随时间变化规律如图5所示,图中N 为铀238的原子数,N 0为铀和铅的总原子数.由此可以判断出( )图5A .铀238的半衰期为90亿年B .地球的年龄大致为45亿年C .被测定的岩石样品在90亿年时铀、铅原子数之比约为1∶4D .被测定的岩石样品在90亿年时铀、铅原子数之比约为1∶3 答案 BD解析 半衰期是有半数原子核发生衰变所需要的时间,根据题图可知半数衰变的时间是45亿年,选项A 错误,B 正确;90亿年是铀核的两个半衰期,有34的铀原子核发生衰变,还有14的铀原子核没有发生衰变,根据衰变方程可知一个铀核衰变时产生一个铅核,故衰变后的铀、铅原子数之比约为1∶3,选项C 错误,D 正确.1.半衰期是指放射性元素的原子核有半数发生衰变所需的时间,而不是样本质量减少一半的时间.2.半衰期是一个统计规律,适用于对大量原子核衰变的计算,对于少数原子核不适用. 3.半衰期由核内部自身的因素决定,与原子所处的化学状态和外部条件都无关. 4.注意区分两个质量已发生衰变的质量1/2112t T m ⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦,未发生衰变的质量1/212tT m ⎛⎫. ⎪⎝⎭针对训练3 大量的某放射性元素经过11.4天有78的原子核发生了衰变,该元素的半衰期为( ) A .11.4天 B .7.6天 C .5.7天D .3.8天答案 D解析 由于经过了11.4天还有18的原子核没有衰变,由m 余=⎝⎛⎭⎫12n m 0,可知该放射性元素经过了3个半衰期,即可算出半衰期是3.8天,故D 正确.1.(三种射线的特性)(多选)天然放射性物质的射线包含三种成分,下列说法中正确的是( ) A .α射线的本质是高速氦核流 B .β射线是不带电的光子C .三种射线中电离作用最强的是γ射线D .一张厚的黑纸可以挡住α射线,但挡不住β射线和γ射线 答案 AD解析 α射线的本质是高速氦核流,β射线是高速电子流,A 正确,B 错误;三种射线中电离作用最强的是α射线,C 错误;一张厚的黑纸可以挡住α射线,但挡不住β射线和γ射线,D 正确.2.(射线的区分)研究放射性元素射线性质的实验装置如图6所示.两块平行放置的金属板A 、B 分别与电源的两极a 、b 连接,放射源发出的射线从其上方小孔向外射出.则( )图6A .a 为电源正极,到达A 板的为α射线B .a 为电源正极,到达A 板的为β射线C .a 为电源负极,到达A 板的为α射线D .a 为电源负极,到达A 板的为β射线 答案 B解析 β射线为高速电子流,质量约为质子质量的11 836,速度接近光速;α射线为氦核流,速度约为光速的110.在同一电场中,β射线的偏转程度大于α射线的偏转程度,由题图知,向左偏的为β射线;因α粒子带正电,向右偏转,说明电场方向水平向右,a 为电源正极,故B 正确,A 、C 、D 错误.3.(原子核的衰变)放射性同位素钍232经α、β衰变会生成氡,其衰变方程为232 90Th →22086Rn +x α+y β,则( ) A .x =1,y =3 B .x =2,y =3 C .x =3,y =1 D .x =3,y =2答案 D解析 由衰变规律可知,β衰变不影响质量数,所以质量数的变化由α衰变的次数决定,由232 90Th变为220 86Rn ,质量数减少了232-220=12,每一次α衰变质量数减少4,因此α衰变次数为3次;3次α衰变电荷数减少了3×2=6个,而现在只减少了90-86=4个,所以发生2次β衰变(每次β衰变电荷数增加1),故x =3,y =2,故选项D 正确.4.(半衰期的相关计算)一个氡核222 86Rn 衰变成钋核218 84Po ,并放出一个α粒子,其半衰期T 1/2=3.8天.(1)写出该核反应方程;(2)求32 g 氡经过多少天衰变还剩余1 g 氡.答案 (1)222 86Rn →218 84Po +42He (2)19解析 (1)根据衰变过程中质量数和电荷数守恒可知:该核反应方程是222 86Rn →218 84Po +42He.(2)根据半衰期公式可知,m 余=1/21,2tT m ⎛⎫ ⎪⎝⎭原 解得t =3.8天×5=19天.考点一 天然放射现象及三种射线1.在天然放射性物质附近放置一带电体,带电体所带的电荷很快消失的根本原因是( ) A .γ射线的贯穿作用 B .α射线的电离作用C.β射线的贯穿作用D.β射线的中和作用答案 B解析由于α粒子电离作用较强,能使空气中的分子电离,电离产生的电荷与带电体的电荷中和,使带电体所带的电荷很快消失.2.(多选)下列关于放射性元素发出的三种射线的说法中正确的是()A.α粒子就是氢原子核,它的穿透本领和电离本领都很强B.β射线是电子流,其速度接近光速C.γ射线是一种频率很高的电磁波,它可以穿透几厘米厚的铅板D.以上三种说法均不正确答案BC解析α粒子是氦原子核,它的穿透本领很弱而电离本领很强,A项错误;β射线是电子流,其速度接近光速,B项正确;γ射线的频率很高,穿透能力很强,可以穿透几厘米厚的铅板,C项正确,D项错误.3.如图1所示,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是()图1A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线答案 C解析γ射线为电磁波,在电场、磁场中均不偏转,故②和⑤表示γ射线,A、B、D项错;α射线中的α粒子为氦的原子核,带正电,在匀强电场中,沿电场方向偏转,故③表示α射线,由左手定则可知在匀强磁场中α射线向左偏,故④表示α射线,C项对.4.(2021·洛阳一中高二期末)如图2所示为研究某未知元素放射性的实验装置.实验开始时在薄铝片和荧光屏之间有图示方向的匀强电场E,通过显微镜可以观察到在荧光屏的某一位置上每分钟闪烁的亮点数,撤去电场后继续观察,发现每分钟闪烁的亮点数没有变化,再将薄铝片移开,观察到每分钟闪烁的亮点数大大增加.由此可以判断,放射源发出的射线最可能为()图2A.β射线和γ射线B.α射线和β射线C.β射线和X射线D.α射线和γ射线答案 D解析放射性元素可放射出的射线有三种:α射线、β射线和γ射线,三种射线中α射线和β射线带电,进入电场后会发生偏转,而γ射线不带电,在电场中不偏转.由题述将电场撤去,从显微镜内观察到荧光屏的同一位置上每分钟闪烁的亮点数没有变化,可知穿过薄铝片的射线中只含有γ射线.再将薄铝片移开,则从显微镜内观察到每分钟闪烁的亮点数大大增加,根据α射线的穿透本领最弱,一张纸就能挡住,分析得知放射源发出的射线中还含有α射线,故放射源发出的射线最可能为α射线和γ射线,选项D正确.考点二原子核的衰变半衰期5.新发现的一种放射性元素X,它的氧化物X2O的半衰期为8天,X2O与F2发生化学反应2X2O+2F2===4XF+O2之后,XF的半衰期为()A.2天B.4天C.8天D.16天答案 C解析放射性元素的半衰期由原子核内部自身的因素决定,与原子核的化学状态无关,故半衰期不变,仍为8天,选项A、B、D错误,C正确.6.某原子核A先进行一次β衰变变成原子核B,再进行一次α衰变变成原子核C,则() A.核C的质子数比核A的质子数少2B.核A的质量数减核C的质量数等于3C.核A的中子数减核C的中子数等于3D.核A的中子数减核C的中子数等于5答案 C解析原子核A进行一次β衰变后,一个中子转变为一个质子并释放一个电子,再进行一次α衰变,又释放两个中子和两个质子,所以核A比核C多3个中子、1个质子,选项C正确,A、B、D错误.7.(多选)(2021·衡水中学期中)下列说法正确的是()A.226 88Ra衰变为222 86Rn要经过1次α衰变和1次β衰变B.238 92U衰变为234 91Pa要经过1次α衰变和1次β衰变C.232 90Th衰变为208 82Pb要经过6次α衰变和4次β衰变D.238 92U衰变为222 86Rn要经过4次α衰变和4次β衰变答案BC解析原子核经1次α衰变和1次β衰变后质量数减4,核电荷数减1(先减2再加1),故A 错误;发生α衰变时放出42He,发生β衰变时放出电子0-1e,设238 92U衰变为234 91Pa发生了x次α衰变和y次β衰变,则根据质量数和电荷数守恒有:2x-y+91=92,4x+234=238,解得x =1,y=1,故衰变过程为1次α衰变和1次β衰变,故B正确;设232 90Th衰变为208 82Pb发生了x次α衰变和y次β衰变,则根据质量数和电荷数守恒有:2x-y+82=90,4x+208=232,解得x=6,y=4,故衰变过程要经过6次α衰变和4次β衰变,故C正确;设238 92U衰变为222 86Rn 发生了x次α衰变和y次β衰变,则根据质量数和电荷数守恒有:2x-y+86=92,4x+222=238,解得x=4,y=2,故衰变过程要经过4次α衰变和2次β衰变,故D错误.8.放射性元素氡(222 86Rn)经α衰变成为钋(218 84Po),半衰期约为3.8天,但勘测表明,经过漫长的地质年代后,目前地壳中仍存在天然的含有放射性元素222 86Rn的矿石,其原因是() A.目前地壳中的222 86Rn主要来自其他放射性元素的衰变B.在地球形成的初期,地壳中元素222 86Rn的含量足够高C.当衰变产物218 84Po积累到一定量以后,218 84Po的增加会减慢222 86Rn的衰变进程D.22286Rn主要存在于地球深处的矿石中,温度和压力改变了它的半衰期答案 A解析地壳中222 86Rn主要来自其他放射性元素的衰变,则A正确,B错误;放射性元素的半衰期与外界环境等因素无关,则C、D错误.考点三衰变综合问题9.(多选)在匀强磁场中,一个原来静止的原子核发生了衰变,得到两条如图3所示的径迹,图中箭头表示衰变后粒子的运动方向.不计放出的光子的能量,则下列说法正确的是()图3A .发生的是β衰变,b 为β粒子的径迹B .发生的是α衰变,b 为α粒子的径迹C .磁场方向垂直于纸面向外D .磁场方向垂直于纸面向里答案 AD解析 由动量守恒定律,原子核发生衰变后两粒子运动方向相反,由左手定则知两粒子电性相反,故发生的是β衰变.静止的原子核发生β衰变时,根据动量守恒定律知,β粒子与反冲核的动量p 大小相等、方向相反,由半径公式r =m v qB =p qB知,两粒子做匀速圆周运动的半径与电荷量成反比,β粒子电荷量小,则其半径较大,即b 是β粒子的运动轨迹,由左手定则可知磁场方向垂直纸面向里,选项A 、D 正确.10.一块氡222放在天平的左盘时,需要天平的右盘加444 g 砝码,天平才能处于平衡,氡222发生α衰变,经过一个半衰期以后,欲使天平再次平衡,应从右盘中取出的砝码为( )A .222 gB .8 gC .2 gD .4 g答案 D解析 原有氡222共444 g ,经过一个半衰期后有222 g 氡发生衰变,其衰变方程为222 86Rn → 218 84Po +42He ,但是衰变后生成的钋218还在左盘,也就是说,经过一个半衰期只有4 g 的α粒子从左盘放射出去,因此欲使天平再次平衡,右盘中只需取出4 g 砝码,故选项A 、B 、C 错误,D 正确.11.如图4所示,一天然放射性物质发出三种射线,经过一个匀强电场和匀强磁场共存的区域.调整电场强度E 和磁感应强度B 的大小,使得在MN 上只有两个点受到射线的照射,则下列判断正确的是( )图4A.射到b点的一定是α射线B.射到b点的一定是β射线C.射到b点的是α射线或β射线D.射到b点的一定是γ射线答案 C解析γ射线不带电,在电场和磁场中它都不受力的作用,只能射到a点,选项D错误.调整E和B的大小,既可以使带正电的α射线沿直线前进,也可以使带负电的β射线沿直线前进,沿直线前进的条件是电场力与洛伦兹力平衡,即qE=qB v.已知α粒子的速度比β粒子的速度小得多,当α粒子沿直线前进时,速度较大的β粒子向右偏转;当β粒子沿直线前进时,速度较小的α粒子也向右偏转,故选项C正确,A、B错误.12.(多选)1941年,王淦昌提出了利用轻原子核的K俘获反应来探测中微子的方案,并在美国《物理评论》上发表了“关于探测中微子的一个建议”一文,当年即由J.S.阿伦根据这一方案首次确切地证明了中微子的存在.该实验被称为“王淦昌-阿伦实验”,为1942年国际物理学界重要成就之一.从1941年开始到1952年,物理学家按照王淦昌的建议,进行了一系列的实验,最终确认了中微子的存在.“轨道电子俘虏”是放射性同位素衰变的一种形式,即原子核俘获一个核外电子,核内一个质子变为中子,原子核衰变成一个新核,并且放出一个中微子(其质量小于电子质量且不带电).若一个静止的原子核发生“轨道电子俘获”(电子的初动量可不计),则()A.生成的新核与衰变前的原子核质量数相同B.生成的新核的核电荷数增加C.生成的新核与衰变前的原子核互为同位素D.生成的新核与中微子的动量大小相等答案AD解析衰变前后质子数与中子数之和相同,所以发生“轨道电子俘获”后新核与原核质量数相同,故A选项正确;新核质子数减少,故核电荷数减少,故B选项错误;新核与原核质子数不同,不是同位素,故C选项错误;以静止原子核及被俘获电子为系统,系统动量守恒,系统初动量为零,所以生成的新核与中微子的动量大小相等,方向相反,故D选项正确.13.在匀强磁场中,一个原来静止的原子核,由于放出一个α粒子,结果得到一张两个相切圆的径迹照片(如图5所示),今测得两个相切圆半径之比r1∶r2=1∶44.求:图5(1)图中哪一个圆是α粒子的径迹?(说明理由)(2)这个原子核原来所含的质子数是多少?答案 见解析解析 (1)因为两粒子的动量大小相等,所以轨道半径与粒子的电荷量成反比,所以圆轨道2是α粒子的径迹,圆轨道1是新生核的径迹.(2)设衰变后新生核的电荷量为q 1,α粒子的电荷量为q 2=2e ,它们的质量分别为m 1和m 2,衰变后的速度分别为v 1和v 2,所以原来原子核的电荷量q =q 1+q 2,根据轨道半径公式有r 1r 2=m 1v 1Bq 1m 2v 2Bq 2=m 1v 1q 2m 2v 2q 1, 又由于衰变过程中遵循动量守恒定律,则m 1v 1=m 2v 2,联立各式解得q =90e ,即这个原子核原来所含的质子数为90.14.天然放射性铀(238 92U)发生衰变后产生钍(234 90Th)和另一个原子核. (1)请写出衰变方程;(2)若衰变前铀(238 92U)核的速度为v ,衰变产生的钍(234 90Th)核的速度为v 2,且与铀核速度方向相同,试估算产生的另一种新核的速度.答案 (1)238 92U ―→234 90Th +42He (2)1214v ,方向与铀核速度方向相同 解析 (1)原子核衰变时电荷数和质量数都守恒,有238 92U ―→234 90Th +42He.(2)由(1)知新核为氦核,设氦核的速度为v ′,一个核子的质量为m ,则氦核的质量为4m 、铀核的质量为238m 、钍核的质量为234m ,。
天然放射现象名词解释
天然放射现象是指自然界中存在的放射性物质,在不受人为干预的情况下,自行发射出辐射的过程。
这种辐射可以来自于物质内部的原子核,也可以来自于物质与物质的接触过程中。
天然放射现象在科学研究中有着广泛的应用。
例如,在医学领域中,可以通过检测人体内的放射性物质来了解其健康状况;在地质学中,可以通过检测天然放射性物质来了解地质构造和矿产资源的情况;在环境保护中,可以通过监测天然放射现象来了解环境中放射性物质的分布和变化。
除了科学研究外,天然放射现象也有着广泛的应用于日常生活中。
例如,在核能领域中,可以通过利用天然放射现象产生的能量来制造核能反应堆;在医学影像学中,可以通过检测放射性物质发出的辐射来制作CT扫描和MRI等成像技术。
尽管天然放射现象在科学研究和应用领域都有着重要的价值,但也存在着一些挑战和问题。
例如,天然放射现象的探测和测量难度较高,需要使用特殊的设备和技术;此外,由于天然放射现象产生的辐射具有一定的放射性,对人类和环境的影响也较大,需要采取相应的环境保护措施。
因此,对天然放射现象进行深入的研究和了解,有助于更好地认识自然界,推动科学技术的发展,同时也需要采取有效措施来保护人类和环境的安全。