高中物理 宇宙热历史概述粒子退耦原子复合过程微波背景辐射大爆炸核合成
- 格式:ppt
- 大小:4.04 MB
- 文档页数:31
4.4 粒子物理与宇宙的起源[先填空]1.对粒子的认识过程(1)“基本粒子”:知道原子核的组成之后,人们以为电子、质子、中子等是组成物质的最基本的粒子.(2)新粒子的发现①1912年,赫斯证实有射线从宇宙空间射来,之后,许多物理学家对宇宙射线研究发现了一些新粒子.②人们用高能加速器实验,发现了更多的新粒子,如1937年发现μ子,1947年发现了k介子和π介子,此后又发现了子,现在已发现的粒子总数达400多种.2.夸克模型(1)夸克:1964年美国物理学家盖尔曼提出了强子的夸克模型,认为强子是由夸克构成的.(2)分类:上夸克、下夸克、奇异夸克、粲夸克、底夸克、顶夸克;上夸克、下夸克带的电荷量分别为元电荷的+23e或-13e.(3)意义:电子电荷不再是电荷的最小单元,即存在分数电荷,但人们还无法获得自由的夸克.3.粒子的类型(1)强子:参与强相互作用,包括质子、中子、介子和超子.(2)轻子:不参与强相互作用,包括电子、μ子、τ子以及与之相联系的三种中微子.(3)传递相互作用的粒子:包括传递电磁作用的光子、传递弱相互作用的中间玻色子W±、Z 0,以及传递强相互作用的胶子.4.加速器和粒子物理:粒子物理学研究的工具是高能加速器和粒子探测器.高能加速器是指能使粒子能量达到3×109_eV 以上的加速器.[再判断]1.质子、中子、电子都是不可再分的基本粒子.(×)2.质子和反质子的电量相同,电性相反.(√)3.按照夸克模型,电子所带电荷不再是电荷的最小单元.(√) [后思考]1.为什么说基本粒子不基本?【提示】 一方面是因为这些原来被认为不可再分的粒子还有自己的复杂结构,另一方面是因为新发现的很多种新粒子都不是由原来认为的那些基本粒子组成的.2.什么是反粒子?所有的粒子都存在反粒子吗?【提示】 实验发现,许多粒子都有和它质量相同而电荷及其他一些物理量相反的粒子,叫反粒子.按照粒子的对称性,有一个粒子,就应该有一个反粒子.[核心点击]1.新粒子的发现及特点(1)质子是最早发现的强子,电子是最早发现的轻子,τ子的质量比核子的质量大,但力的性质决定了它属于轻子.(2)粒子具有对称性,有一个粒子,必存在一个反粒子,它们相遇时会发生“湮灭”,即同时消失而转化成其他的粒子.4.加速器的种类有:(1)回旋加速器,(2)直线加速器,(3)对撞机.1.关于粒子,下列说法正确的是( )A.电子、质子和中子是组成物质的不可再分的最基本的粒子B.强子中也有不带电的粒子C.夸克模型是探究三大类粒子结构的理论D.夸克模型说明电子电荷不再是电荷的最小单位E.超子的质量比质子的质量还大【解析】 由于质子、中子是由不同夸克组成的,它们不是最基本的粒子,不同夸克构成强子,有的强子带电,有的强子不带电,故A 错误,B 正确;夸克模型是研究强子结构的理论,不同夸克带电不同,分别为+23e 和-e3,说明电子电荷不再是电荷的最小单位,C 错误,D 正确;超子属于强子,其质量比质子质量还大些,E 正确.【答案】 BDE2.在β衰变中常伴有一种称为“中微子”的粒子放出.中微子的性质十分特别,因此在实验中很难探测.1953年,莱尼斯和柯文建造了一个由大水槽和探测器组成的实验系统,利用中微子与水中11H 的核反应,间接地证实了中微子的存在.(1)中微子与水中的11H 发生核反应,产生中子(10n)和正电子( 0+1e),即中微子+11H ―→10n + 0+1e.可以判定,中微子的质量数和电荷数分别是________.(填写选项前的字母) A.0和0 B.0和1 C.1和0D.1和1(2)上述核反应产生的正电子与水中的电子相遇,与电子形成几乎静止的整体后,可以转变为两个光子(γ),即 0+1e + 0-1e ―→2γ.已知正电子和电子的质量都为9.1×10-31kg ,反应中产生的每个光子的能量约为________J.正电子与电子相遇不可能只转变为一个光子,原因是________.(3)试通过分析比较,具有相同动能的中子和电子的物质波波长的大小.【解析】 (1)发生核反应前后,粒子的质量数和电荷数均不变,据此可知中微子的质量数和电荷数都是0,A 正确.(2)产生的能量是由于质量亏损.两个电子转变为两个光子之后,质量变为零,则E =Δmc 2,故一个光子的能量为E 2,代入数据得E2=8.2×10-14J.正电子与水中的电子相遇,与电子形成几乎静止的整体,故系统总动量为零,故如果只产生一个光子是不可能的,因为此过程遵循动量守恒定律.(3)物质波的波长为λ=h p,要比较波长需要将中子和电子的动量用动能表示出来即p =2mE k ,因为m n >m e ,所以p n >p e ,故λn <λe .【答案】 见解析处理新粒子问题的方法核反应过程中新生成的粒子和实物粒子一样,也能产生物质波,它们之间发生相互作用时,同样遵循动量守恒定律等力学规律,所以应熟练地掌握物理知识和物理规律,并灵活应用.[先填空] 1.宇宙的演化宇宙是由一个超高温、超高密度的“原始火球”发生大爆炸而开始形成的.大爆炸之后随温度的降低,宇宙物质从密到疏,逐渐形成气态物质、气云、恒星体系,成为今天的宇宙天体.2.恒星的演化(1)形成:大量星际物质逐渐凝聚成星云,大块星云在引力作用下逐渐凝成原恒星. (2)演化①原恒星收缩,温度升高达7×106_K 时,开始氢聚变成氦的热核反应,产生的斥力与引力达到平衡,恒星进入相对稳定阶段,迄今90%的恒星处在该阶段,时间持续约100亿年左右.②随着氢的减少,核反应的能量不足,星体又开始收缩、温度随之上升,温度达到1×108K 时,发生“氦燃烧”形成碳,恒星演化为红巨星.③恒星核能耗尽就进入末期,其形态有白矮星、中子星和黑洞. [再判断]1.目前,太阳内的热核反应主要是氢核聚变为氦核的反应.(√)2.宇观世界和微观世界是彼此孤立的,没有任何相互联系.(×)3.宇宙将一直会膨胀下去.(×)[后思考]物理学家把自然界的力归结为哪几种相互作用?【提示】物理学家已经把自然界多得数不胜数的力,归结为强相互作用、电磁相互作用、弱相互作用、引力相互作用这四种作用.物理学家的进一步追求,就是把这四种各有特色的相互作用再综合在一个统一的理论体系中.[核心点击]1.恒星的诞生2.恒星的稳定期当温度超过107K时,氢通过热核反应成为氦,释放的核能主要以电磁波的形式向外辐射.辐射产生的向外的压力与引力产生的收缩压力平衡,这时星核稳定下来.恒星在这一阶段已停留了50亿年.太阳目前正处于这一阶段的中期,要再过50亿年才会转到另一个演化阶段.3.恒星的衰老当恒星核心部分的氢大部分聚变为氦以后,核反应变弱,辐射压力下降,星核在引力作用下再次收缩.这时引力势能产生的热将使温度升得更高,于是发生了氦核聚合成碳核的聚变反应.类似的过程一波接一波地继续下去,出现了氧、硅,直到铁等更重的元素.恒星在这个阶段要经历多次膨胀与收缩,光度也发生周期性的变化.当各种热核反应都不再发生时,由热核反应维持的辐射压力也消失了.星体在引力作用下进一步收缩,中心密度达到极大.4.恒星的归宿恒星最终归宿与恒星的质量大小有关:当恒星的质量小于1.4倍太阳质量时,演变为白矮星;当恒星的质量是太阳质量的1.4倍~2倍时,演变为中子星;当恒星的质量更大时,演变为黑洞.3.根据宇宙大爆炸的理论,在宇宙形成之初是“粒子家族”尽显风采的时期,那么在大爆炸之后最早产生的粒子是( )A.夸克B.质子C.轻子D.中子E.胶子【解析】 宇宙形成之初产生了夸克、轻子和胶子等粒子,之后又经历了质子和中子等强子时代,再之后是自由光子、中微子、电子大量存在的轻子时代,再之后是中子和质子组合成氘核,并形成氦核的核合成时代,之后电子和质子复合成氢原子,最后形成恒星和星系,因此A 、C 、E 正确,B 、D 错误.【答案】 ACE4.关于宇宙和恒星的演化,下列说法正确的是( ) A.宇宙已经停止演化B.恒星在主序星阶段时停留时间最长、最稳定C.当温度达到一定值时,恒星内发生氦聚变,亮度增强D.恒星最终都会演化为黑洞E.恒星最终可能演化为中子星【解析】 目前宇宙的演化仍在进行,A 错.恒星在主序星阶段时停留时间最长、最稳定,B 对.恒星内由氢聚变转变为氦聚变时,亮度增加,C 对.根据最终质量的不同恒星最终演化为白矮星或中子星或黑洞,D 错,E 对.【答案】 BCE5.已知从地球上的逃逸速度v =2GMR,其中G 、M 、R 分别为万有引力常量、地球的质量和半径 .已知G =6.67×10-11N·m 2/kg 2,光速c =2.99×108m/s ,逃逸速度大于真空中的光速的天体叫黑洞,设黑洞的质量等于太阳的质量M =1.98×1030kg ,求它可能的最大半径.【导学号:67080040】【解析】 由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度v 2,对于黑洞来说,其逃逸速度大于真空中的光速,即v 2>c ,所以R <2GMc2=2.95 km ,即太阳成为黑洞时的最大半径为2.95 km.【答案】 2.95 km根据大爆炸理论,在宇宙形成之初是“粒子家族”尽显风采的时期.在大爆炸之后逐渐形成了夸克、轻子和胶子等粒子,随后经过强子时代、轻子时代、核合成时代.继续冷却,质子、电子、原子等与光子分离而逐步组成恒星和星系.恒星最后的归宿有三种,它们是白矮星、中子星、黑洞.。
物理高三选修知识点总结物理是一门涉及各种物质运动、能量转化和相互作用的学科,是理工类学生必修的科目之一。
在高三的学习中,物理选修课是一个重要的组成部分,它涉及了一些高级的物理知识和概念。
下面是对物理高三选修知识点的总结:1. 电磁感应与电磁波- 麦克斯韦方程组:总结了电磁现象的定律和规律,其中包括高斯定理、法拉第电磁感应定律等。
- 波动光学:讨论了光的干涉、衍射和偏振等现象,以及光的电磁本质和波粒二象性等方面的内容。
- 电磁波:介绍了电磁波的特性、传播和应用等方面的知识,包括电磁波谱和无线电通信等。
2. 热学与统计物理- 热力学定律与循环:包括热力学第一定律、热力学第二定律和卡诺循环等内容。
- 热平衡与热传导:介绍了热平衡的条件、热传导的基本原理和测量方法等方面的知识。
- 统计物理学:讨论了系统的微观状态与宏观性质之间的统计关系,包括玻尔兹曼熵和狄拉克物质统计等。
3. 粒子物理与宇宙学- 基本粒子:介绍了基本粒子的分类、性质和相互作用等内容,包括夸克、轻子、玻色子和费米子等。
- 核物理与放射性衰变:讨论了原子核的结构、核反应和放射性衰变等方面的知识。
- 宇宙学的基本概念:探讨了宇宙的起源、演化和结构等内容,包括宇宙微波背景辐射和宇宙的膨胀等。
4. 量子力学与固体物理- 波粒二象性:介绍了物质的波粒二象性和量子力学的基本原理,包括波函数、薛定谔方程和量子力学中的不确定性原理等。
- 量子力学的应用:讨论了量子力学在原子、分子和凝聚态物理等领域的应用,包括原子能级、电子结构和超导现象等。
- 固体物理学:涉及固体物理的各个方面,包括晶体结构、能带理论和半导体物理等知识。
以上是物理高三选修课中的一些重要知识点的总结。
通过学习这些内容,学生可以进一步加深对物理学的理解,为未来的研究和应用奠定基础。
希望这篇总结对你的学习有所帮助。
宇宙大爆炸理论解析宇宙大爆炸理论是关于宇宙起源和演化的一个重要理论。
它提供了对宇宙由无到有、由密到疏、由热到冷的过程的解释。
这一理论的提出不仅影响了天体物理学的发展,也对人类对宇宙起源的认知产生了深远的影响。
1.理论概述宇宙大爆炸理论认为,宇宙在数十亿年前起源于一次巨大的爆炸,从此开始了其演化的历程。
在初始的瞬间,整个宇宙被认为是一个极度炽热、高密度的点状物体,称为“奇点”。
随着时间的推移,宇宙经历了膨胀、冷却和结构形成的过程。
2.爆炸后的宇宙在大爆炸发生后,宇宙开始迅速膨胀,这被称为宇宙膨胀。
温度和密度随着膨胀的进行而逐渐降低,宇宙的物质开始由高能量粒子逐渐转变为原子和分子。
这一过程称为宇宙冷却。
在宇宙初期,大量的氢和少量的氦被合成出来,这种合成被称为原初核合成。
随着时间的推移,宇宙中的物质逐渐形成了星系、星球和其他天体。
3.宇宙微波背景辐射宇宙微波背景辐射是宇宙大爆炸理论的一大证据。
根据该理论,大爆炸发生后,宇宙中的物质经历了强烈的辐射,并持续膨胀至今。
这种辐射在宇宙膨胀过程中逐渐冷却,成为目前宇宙中存在的低温辐射。
宇宙微波背景辐射的发现为宇宙大爆炸理论提供了有力的证据。
4.理论证据和进一步研究除了宇宙微波背景辐射,宇宙大爆炸理论还得到了许多观测和实验的支持。
例如,宇宙的膨胀速度、宇宙背景辐射的空间分布以及宇宙的结构形成等方面的观测数据与该理论的预测相吻合。
科学家们还通过模拟实验和理论计算进一步验证了宇宙大爆炸理论的可行性。
然而,宇宙大爆炸理论仍然存在一些未解之谜和争议。
例如,关于宇宙什么时候和如何开始膨胀以及膨胀的原因仍然不太清楚。
宇宙的物质和能量构成的问题也是科学家们关注的焦点。
为了解决这些问题,科学家们正在进行进一步的研究,并提出了一些新的理论和模型来解释宇宙的起源和演化。
宇宙大爆炸理论提供了关于宇宙起源和演化的重要解释。
尽管仍然存在一些未解之谜和争议,这一理论通过观测数据和理论计算得到了广泛的支持。
宇宙的终极命运;热大爆炸和冷凝聚
宇宙的终极命运一直是人类探究的重要课题之一,而热大爆炸和冷凝聚则是关于宇宙演化的两种主要理论。
这些理论试图解释宇宙是如何形成、演化,以及最终可能走向何方。
热大爆炸理论认为,宇宙起源于一个极度高温、高密度的状态,随着时间的推移,宇宙经历了膨胀和冷却的过程。
大约138亿年前,整个宇宙被认为处于极端高温的状态,然后发生了一场剧烈的爆炸,即所谓的“热大爆炸”。
在这一瞬间,宇宙从一个微小的点迅速膨胀,创造出了时间、空间和物质。
随着宇宙的膨胀,温度逐渐降低,原子核和电子开始结合成原子,星体、星系等形成。
然而,热大爆炸并非宇宙的终点,根据当前的观测和理论,宇宙并不会永远持续膨胀下去。
相反,有一种与热大爆炸相对的理论,即“冷凝聚”理论。
据此理论,宇宙可能会在未来某个时刻停止膨胀,然后开始收缩,最终走向一个密度极高、温度极低的状态。
在这种情况下,整个宇宙将逐渐凝聚成一个无法想象的小点,甚至可能再次发生类似热大爆炸的事件,重新循环演化。
对于宇宙的终极命运,科学家们还没有达成一致的共识。
有些人认为宇宙会永远持续膨胀,直到无法观测,而有些人则认为宇宙会经历冷凝聚,最终归于静寂。
无论是哪种情况,宇宙的终极命运都充满了神秘与挑战,激发着人类对宇宙的好奇与探求。
在探究宇宙的终极命运的道路上,科学家们还需继续深入研究,利用先进的技术和观测手段,以期更好地理解宇宙的本质和演化规律。
或许在未来,我们能够揭示宇宙的终极命运,解开这个宇宙之谜,为人类带来更多关于宇宙奥秘的启示。
热学知识点的历史演变热学是物理学的重要分支之一,研究热能的性质、传递和转化等过程。
热学知识点的历史演变可以追溯到古希腊时期,随着科学的不断发展,人们对热学的认识也逐渐深化和完善。
本文将从古代到现代,介绍热学知识点的历史演变。
一、古代热学知识点的起源古希腊哲学家第阿那克西曼德认为,世界上最基本的物质是热。
他认为热是原始的物质,万物的起源。
古希腊物理学家狄摩克里特则提出了原子论,认为热是由微观粒子——原子的运动引起的。
这些古代哲学家和物理学家的观点为后世人们对热学的研究提供了基础。
二、近代热学知识点的建立17世纪,英国物理学家罗伯特·博义利通过一系列实验,提出了热是由物质的微观运动引起的观点。
他进一步发现了热的传递过程中存在的能量转化。
这一发现奠定了近代热学的基础。
18世纪,法国物理学家拉瓦锡提出了“一定量的热传导需要一定的时间和温度差”的热传导定律,进一步推动了热学知识点的发展。
三、热力学的确立与熵的概念19世纪初,法国物理学家卡诺提出了卡诺定理和卡诺循环,奠定了热力学的基础。
他的工作使热学知识点从简单的热传导和热转化扩展到了热力学系统的整体性质和热能转化效率的研究。
同时,德国物理学家克劳修斯首次提出了熵的概念,将热学系统的无序度量化,进一步完善了热学知识点。
四、热辐射和黑体辐射定律的发现19世纪末,德国物理学家麦克斯·普朗克提出了能量量子化的假设,解释了黑体辐射的分布规律,奠定了量子理论的基础。
这一发现开启了量子物理学的大门,也为热学知识点的发展提供了新的方向。
五、热力学的统计解释和微观基础20世纪初,奥地利物理学家卡尔·玻尔兹曼通过概率论和统计物理学的研究,将热力学规律用微观粒子的运动解释了起来。
他的工作为热学提供了微观基础,并建立了统计热力学的体系,进一步推动了热学知识点的发展。
六、现代热学的前沿研究随着科学技术的不断进步,现代热学的研究逐渐涵盖了更广泛的领域。