通信原理实验--数字基带传输仿真实验
- 格式:doc
- 大小:2.86 MB
- 文档页数:40
实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。
c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。
d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。
归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。
单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。
实验四时分复用数字基带通信系统电子二班 044 陈增贤一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。
2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。
3.掌握位同步信号、帧同步信号在数字分接中的作用。
二、实验内容1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。
2.观察位同步信号抖动对数字信号传输的影响。
3.观察帧同步信号错位对数字信号传输的影响。
4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。
三、基本原理本实验要使用数字终端模块。
1. 数字终端模块工作原理:原理框图如图4-1所示,电原理图如图4-2所示(见附录)。
它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。
两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。
两个串行数据信号码速率为数字源输出信号码速率的1/3。
延迟1延迟2整形延迟3FS-INBS-INS-INFD FD-7FD-15FD-8FD-16BD显示串/并变换串/并变换F2÷3并/串变换并/串变换D2B1F1D1SD-DBD显示B2图4-1 数字终端原理方框图延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。
移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。
在FD-7及BD 的作用下,U65(4094)将第一路串行信号变成第一路8位并行信号,在FD-15和BD 作用下,U70(4094)将第二路串行信号变成第二路8位并行信号。
太原理工大学现代科技学院现代通信原理课程实验报告专业班级通信17-3 学号 2017101086 姓名丁一帆指导教师李化实验名称 2ASK 调制与解调Matlab Simulink 仿真 同组人专业班级 通信17-3 学号 2017101086 姓名 丁一帆 成绩一、实验目的1.掌握 2ASK 的调制原理和 Matlab Simulink 仿真方法 2.掌握 2ASK 的解调原理和 Matlab Simulink 仿真方法 二、实验原理2ASK 二进制振幅调制就是用二进制数字基带信号控制正弦载波的幅度,使载波振幅随着二进制数字基带信号而变化,而其频率和初始相位保持不变。
信息比特是通过载波的幅度来传递的。
其信号表达式为:0()()cos c e t S t t ω=⋅,S(t)为单极性数字基带信号。
由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号“1”时,传输载波;当调制的数字信号为“0”时,不传输载波。
2ASK 信号的时间波形e2ASK(t)随二进制基带信号S(t)通断变化。
所以又被称为通断键控信号 三、实验内容、步骤1 Simulink 模型的建立通过Simulink 的工作模块建立2ASK 二级调制系统,用频谱分析仪观察调制前后的频谱,用示波器观察调制信号前后的波形……………………………………装………………………………………订…………………………………………线………………………………………正弦波源,这里使用的是Signal Processing Blockset\DSP Sources\Sine Wave,设定其幅度为2V,频率为2Hz。
基带信号源,使用的是Communications Blockset\Comm Sources\Random Data Sources\Bernoulli Binary Generator,可以产生随机数字波形。
《通信原理》实验报告一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、掌握HDB3码的编译规则。
4、了解滤波法位同步在码变换过程中的作用。
二、实验器材1、主控&信号源模块,2号、3号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图2、HDB3编译码实验原理框图四、实验步骤实验项目一AMI编译码(归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
时域波形:编码输出信号频谱:注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为编码输出的数据。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5(AMI-A1),观察基带码元的奇数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-A1。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP6(AMI-B1),观察基带码元的偶数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-B1。
4、用示波器减法功能观察AMI-A1与AMI-B1相减后的波形情况,并与AMI编码输出波形相比较。
注:CH1(上面的波形)为AMI-A1,CH2(下面的波形)为AMI-B1,中间的波形为AMI-A1与AMI-B1相减后的情况。
5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为译码输出的数据。
思考:译码过后的信号波形与输入信号波形相比延时多少?1个码元6、用示波器分别观测TP9(AMI-A2)和TP11(AMI-B2),从时域或频域角度了解AMI码经电平变换后的波形情况。
通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。
这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。
实验步骤:第一步:实现数字基带信号的产生。
我们采用MATLAB编写代码来产生数字基带信号。
具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。
第二步:实现数字基带信号的传输。
我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。
具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。
第三步:实现数字基带信号的调制。
我们采用调制器进行数字信号的调制。
常见的数字调制方式有AM调制、FM调制、PM调制等。
此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。
第四步:实现数字基带信号的解调。
我们采用解调器来实现数字基带信号的解调。
常见的数字解调方式有包络检测法、抑制互调法等。
此处我们选择了直接判决法来进行数字基带信号的解调。
第五步:实现数字基带信号的重构。
我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。
此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。
实验结果:通过对仿真实验的分析,我们得出了一些结论。
首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。
其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。
第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。
最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。
通信工程专业综合设计报告(仿真部分)内容:数字基带传输系统的MATLAB仿真实现2PSK的调制、信道模拟、判决及解调班级:通信08-1学号:姓名:指导教师:仿真成绩:同组人姓名:内蒙古工业大学课程设计任务书课程名称:现代通信网络课程设计学院:信息工程学院班级:通信08-1班学生姓名:贾美玲学号: 200810204020 _ 指导教师:黎玉玲一、题目数字基带/频带通信系统设计二、目的与意义‘“数字基带/频带通信系统设计”是针对通信专业学生的实践教学环节,通过设计,要求学生利用所学专业知识和软件、硬件工具,掌握通信系统的分析、设计、仿真及调试技巧,深入理解通信系统的基本组成,扩张专业背景知识,培养工程技能和实际操作能力。
三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等)1.系统软件仿真:通过MATLAB编程对典型通信系统(如数字基带传输系统和数字频带传输系统)的各组成部分进行建模和仿真分析,实现通信系统仿真。
2.系统硬件设计:基于通信原理实验平台,按照系统设计方案,搭建硬件调试电路,实现通信系统的硬件设计与调试。
3.分析结果,完成报告:分析比较软件仿真结果与硬件调试结果,完成设计报告。
四、工作内容、进度安排1.查阅资料:搜集通信系统相关资料,熟悉通信系统相关内容(1天)2.方案选择与设计:根据要求选择通信系统设计方案,定义各模块仿真函数,确定所使用的硬件电路板,写出硬件设计思想与步骤。
(1天)3.子模块实现:利用MATLAB仿真语言编写模块函数,仿真实现各模块功能,搭建硬件电路调试。
(5天)4.系统实现:将各子模块连接,调试主程序实现系统功能,完成硬件调试。
(2天)5.考试与设计报告撰写:完成课程设计考试,整理设计资料及内容,撰写设计报告。
(1天)五、主要参考文献1、《基于MATLAB的通信系统仿真》,赵静等,北京航空航天大学出版社。
3、《通信原理》,樊昌信等,国防工业出版社。
审核意见系(教研室)主任(签字)指导教师下达时间年月日指导教师签字:_______________一、设计内容:数字频带传输系统的MATLAB仿真实现[1]个人部分:2PSK的调制、信道模拟、抽样判决及解调1、2PSK的调制基本任务:原始PCM脉冲编码信号的2PSK调制1)、主要步骤和要求:对原始的PCM脉冲编码信号进行2PSK调制。
实验三 数字基带传输系统的建模与仿真一. 实验目的1. 了解数字基带传输系统的建模过程2. 了解数字基带传输系统的仿真过程二. 实验内容建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,信道为加性高斯信道,接收滤波器与发送滤波器相匹配,接收机能自行恢复系统同步信号。
要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
三. 实验原理数字基带传输系统框图如图5-1所示,它主要由脉冲形成器、发送滤波器、信道、接收滤波器和抽样判决器等部件组成为保证数字基带。
系统正常工作,通常还应有同步系统。
图中各部分原理及作用如下:脉冲形成器:输入的是由电传机、计算机等终端设备发送来的二进制数据序列或是经模/数转换后的二进制脉冲序列,用{}k d 表示,它们一般是脉冲宽度为T 的单极性码。
脉冲形成器的作用是将{}k d 变换成比较适合信道传输的码型,并提供同步定时信息,使信号适合信道传输,保证收发双方同步工作。
发送滤波器:发送滤波器的传输函数为()T G ω,其作用是将输入的矩形脉冲变换成适合信道传输的波形。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
信道:信道传输函数为()C ω。
基带传输的信道通常为有线信道,如市话电缆和架空明线等,信道的传输特性通常是变化的,信道中还会引入噪声。
在通信系统的分析中,常常把噪声等效,集中在信道引入。
这是由于信号经过信道传输,受到很大衰减,在信道的输图5-1 数字基带传输系统出端信噪比最低,噪声的影响最为严重,以它为代表最能反映噪声干扰影响的实际情况。
但如果认为只有信道才引入噪声,其他部件不引入噪声,是不正确的。
G ,它的主要作用是滤除带外噪声,对信道接收滤波器:接收滤波器的传输函数为()R特性进行均衡,使输出信噪比尽可能大并使输出的波形最有利于抽样判决。
抽样判决器:它的作用是在信道特性不理想及有噪声干扰的情况下,正确恢复出原来的基带信号。
数字基带传输实验报告数字基带传输实验报告1. 引言数字基带传输是现代通信系统中的重要组成部分,它负责将数字信号转换为模拟信号,以便在传输过程中进行传输。
本实验旨在通过搭建数字基带传输系统的实验平台,探索数字信号的传输特性和相关参数的测量方法。
2. 实验设备和方法实验所使用的设备包括信号发生器、示波器、传输线等。
首先,我们将信号发生器的输出连接到传输线的输入端,然后将传输线的输出端连接到示波器,以便观察信号的传输效果。
在实验过程中,我们会改变信号发生器的输出频率和幅度,以研究其对传输信号的影响。
3. 实验结果与分析通过实验观察和数据记录,我们发现信号发生器的输出频率对传输信号的带宽有着直接的影响。
当信号发生器的输出频率增加时,传输信号的带宽也随之增加。
这是因为高频信号具有更多的频率成分,需要更大的带宽来进行传输。
此外,我们还观察到信号发生器的输出幅度对传输信号的幅度衰减有着重要的影响。
当信号发生器的输出幅度增加时,传输信号的幅度衰减也随之增加。
这是因为高幅度信号在传输过程中容易受到噪声和衰减的影响。
4. 数字信号的传输特性数字信号的传输特性是指信号在传输过程中的失真情况。
在实验中,我们观察到信号的失真主要表现为幅度衰减和相位偏移。
幅度衰减是指信号在传输过程中幅度减小的现象,而相位偏移是指信号在传输过程中相位发生变化的现象。
这些失真现象会导致信号的质量下降,从而影响通信系统的性能。
5. 数字信号的传输参数测量在实验中,我们还对数字信号的传输参数进行了测量。
其中,最重要的参数是信号的带宽和信号的衰减。
带宽的测量可以通过观察传输信号在示波器上的频谱来进行,而衰减的测量可以通过比较信号发生器的输出幅度和传输信号的接收幅度来进行。
通过测量这些参数,我们可以评估数字基带传输系统的性能,并进行相应的优化。
6. 结论通过本实验,我们深入了解了数字基带传输的原理和特性。
我们发现信号的频率和幅度对传输信号的带宽和幅度衰减有着直接的影响。
通信原理实验数字基带传输系统matlab-概述说明以及解释1.引言概述部分的内容可以如下所示:1.1 概述在现代通信领域中,数字基带传输系统是一种重要的通信技术,用于在信号传输中将模拟信号转换为数字信号,并进行传输和接收。
本文将介绍关于通信原理实验中数字基带传输系统的实验内容以及利用MATLAB 进行实验的应用。
数字基带传输系统是一种将模拟信号转换为数字信号的技术,它通过将连续时间信号进行采样和量化处理,并使用调制技术将数字信号转换为模拟信号。
这种技术在现代通信系统中得到了广泛应用,例如无线通信、有线通信、数据传输等。
本文主要介绍了通信原理实验中数字基带传输系统的相关内容。
在实验中,我们将学习数字基带传输系统的基本原理和工作流程,了解信号的采样、量化和调制技术等关键概念。
同时,我们将探索MATLAB在通信原理实验中的应用,利用MATLAB软件进行数字信号处理、调制解调器设计和性能评估等实验内容。
在深入了解数字基带传输系统的基本原理和工作流程之后,我们将通过实验结果总结,分析实验中各个环节的性能指标和优劣。
同时,我们还将对数字基带传输系统的未来发展进行展望,探讨其在通信领域的应用前景和发展方向。
通过本文的学习,读者将能够更好地理解数字基带传输系统在通信原理实验中的应用,了解MATLAB在数字信号处理和调制解调器设计方面的功能和优势。
这将有助于读者更好地掌握数字基带传输系统的原理和实现,为通信技术的发展和应用提供有力支持。
文章结构是指文章整体的组织框架,它决定了文章的逻辑顺序和内容安排。
本文将分为引言、正文和结论三个部分。
具体的文章结构如下:引言部分(Chapter 1):概述、文章结构和目的1.1 概述在本章中,我们将介绍通信原理实验中的数字基带传输系统,并重点介绍MATLAB在通信原理实验中的应用。
数字基带传输系统是现代通信领域中的重要课题之一,它在各种无线通信系统中起着关键作用。
1.2 文章结构本文将分为引言、正文和结论三个部分。
课程设1 需求分析1.设基带传输系统响应是α=1的升余弦滚降系统,画出在接收端的基带数字信号波形及其眼图。
2.设定二进制数字基带信号 an∈{+1,-1},g(t)= 1 0≤t≤Ts;t为其他值时g(t)= 0。
系统加性高斯白噪声的双边功率谱密度为0。
画出:(1) 经过理想低通H(f)= 1 │f│≤5/(2 Ts) 后的眼图。
(2) 经过理想低通H(f)= 1 │f│≤1/ Ts后的眼图。
(3) 比较分析上面图形。
在该部分中叙述:对题目中要求的功能进行的简单的叙述分析,把题目内容给介绍一下,还需要介绍分工情况。
2 概要设计1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图2-1 基带系统的分析模型抑制码间干扰。
设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。
其中1()()2j t h t H e d ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数(3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图2-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。
由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。
在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。
这种滤波器克服了拖尾太慢的问题。
从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。
通信工程专业《通信原理》课程设计题目基于MATLAB/Simulink的基带传输系统的仿真学生姓名学号所在院(系)专业班级通信工程专业xx 班指导教师xx 合作者 xx xx完成地点xx 理工学院物理与电信工程学院实验室2014年 3 月 12 日《通信原理》课程设计通信原理课程设计任务书院(系) 物电学院专业班级通信1104 学生姓名 xxx一、通信原理课程设计题目基于MATLAB/Simulink的基带传输系统的仿真二、通信原理课程设计工作自2014年2月24日起至2014年3月14日止三、通信原理课程设计进行地点: 物电学院实验室四、通信原理课程设计的内容要求:1建立一个基带传输系统模型,选用合适基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计,假设接收定时恢复是理想的。
2.设计题目的详细建模仿真过程分析和说明,仿真的结果可以以时域波形,频谱图,星座图,误码率与信噪比曲线的形式给出。
课程设计说明书中应附仿真结果图及仿真所用到的程序代码(MATLAB)或仿真模型图(Simulink/SystemView)。
如提交仿真模型图,需提交相应模块的参数设置情况。
3.每人提交电子版和纸质的说明书及源程序代码或仿仿真文件。
参考文献:[1]邓华.MATLAB通信仿真及其应用实例详解[M].人民邮电出版社.2003年[2]郑智琴.Simulink电子通信仿真与应用[M].国防工业出版社.2002年[3]赵鸿图.通信原理MATLAB仿真教程[M].人民邮电出版社.2010年[4]刘学勇.详解MATLAB/Simulink通信系统建模与仿真[M].电子工业出版社.2011年[5]达新宇.通信原理实验与课程设计[M].北京邮电大学出版社.2005年[6]邵玉斌.MATLAB/Simulink通信系统建模与仿真实例分析[M].清华大学出版社.2008年指导教师xx 系(教研室)通信工程系接受论文 (设计)任务开始执行日期2014年2月24日学生签名基于MATLAB/Simulin的基带传输系统的仿真xxx(x理工学院物理与电信工程学院通信1104班,xx xx xxxx3)指导教师:xx[摘要]未经调制的数字信号所占据的频谱是从零频或者很低频率开始,称为数字基带信号,不经载波调制而直接传输数字基带信号的系统,称为数字基带传输系统。
BPSK 传输系统实验一、实验原理(一)基带成型基带传输是频带传输的基础,也是频带传输的等效低通信号表示。
基带传输系统的框图如图1所示。
图1 基带传输系统的框图(二)BPSK 调制解调理论上二进制相移键控(BPSK )可以用幅度恒定,而其载波相位随着输入数据m (1、0码)而改变,通常这两个相位相差180°。
如果每比特能量为E b ,则传输的BPSK 信号为:)2cos(2)(c c bb f T E t S θπ+=其中 ⎩⎨⎧===11800000m m c θ 升余弦滤波器的传递函数为:⎪⎪⎩⎪⎪⎨⎧+>+<<-+-+-≤≤=S S S S S RC T f T f T f T T f f H 2/)1(||02/)1(||2/)1()21|)|2(cos(1[212/)1(||01)(αααααπα其中,α是滚降因子,取值范围为0到1。
一般α=0.25~1时,随着α的增加,相邻符号间隔内的时间旁瓣减小,这意味着增加α可以减小位定时抖动的敏感度,但增加了占用的带宽。
BPSK 的调制工作过程如下:首先输入数据进行Nyquist 滤波,滤波后的结果分别送入I 、Q 两路支路。
因为I 、Q 两路信号一样,本振频率是一样的,相位相差180度, 所以经调制合路之后仍为BPSK方式。
二、实验内容(一)基带成形1.α=0.3升余弦滤波的眼图观察(1)以发送时钟(TPM01)作同步,观测发送信号(TPi03)的波形。
技巧:按下示波器“显示”按钮,将“持续”设置为2秒。
注意不观测眼图时需将示波器“显示”菜单内“持续”设置回关闭。
测量过零率抖动与眼皮厚度(换算成百分数)。
实验现象及分析:上图中CH1黄色波形为TPM01发送时钟,CH2蓝色波形为TPi03眼图。
由图中红框中光标1光标2的时间差可以读出测量值为11.6us。
由上图可以读出T=32us。
理论上发送时钟是32kHz,因而T=1/32kHz=31.25us。
数字基带通信系统实验报告摘要本实验旨在通过搭建数字基带通信系统的实际硬件实验平台,理解和掌握数字基带通信系统的基本原理和实现方法。
通过实验,我们验证了数字基带通信系统的性能,并对系统中的关键参数进行了优化和调整。
本文详细介绍了实验平台的搭建过程、系统参数的调整,以及实验结果的分析和讨论。
1. 引言数字基带通信系统是现代通信系统中的关键组成部分,它是将原始信号进行数字化处理后通过传输介质进行传递的系统。
数字基带通信系统在无线通信、光纤通信等领域具有广泛的应用。
本实验通过搭建数字基带通信系统的实际硬件平台,对系统进行调试和优化,以提高系统的性能和可靠性。
2. 实验平台搭建本实验使用了一套数字基带通信系统的实际硬件平台。
平台包括了发送端和接收端两个部分。
发送端包括信号源、调制器和DAC(数字-模拟转换器),接收端包括ADC(模拟-数字转换器)、解调器和信号检测器。
信号源产生了原始信号,经过调制器和DAC转换为模拟信号后送入传输介质。
接收端接收到模拟信号后,经过ADC转换为数字信号,再经过解调器解调和信号检测器进行信号恢复。
实验平台的搭建过程如下:1.将信号源与调制器相连,调制器与DAC相连,形成发送端。
2.将传输介质与DAC相连,传输介质与ADC相连,ADC与解调器相连,解调器与信号检测器相连,形成接收端。
3.通过相关的接口和电缆连接发送端和接收端。
4.系统参数调整在搭建好实验平台后,我们进行了一系列的参数调整和优化,以提高系统的性能。
具体包括以下几个方面的调整:1.信号源的频率和幅度调整:根据实际需求,调整信号源的频率和幅度,以适应不同的通信场景和条件。
2.调制器的调整:根据传输介质和系统要求,选择合适的调制方式,调整调制器的参数,以提高系统的传输效率和可靠性。
3.DAC和ADC的采样率和分辨率调整:根据信号源的频率和系统要求,选择合适的采样率和分辨率,以保证信号的准确传输和恢复。
4.解调器和信号检测器的参数调整:根据传输介质和调制方式,调整解调器和信号检测器的参数,以提高系统的解调和信号恢复能力。
实验一数字基带信号系统实验一、实验目的1、了解插入帧同步码信号的帧结构特点。
2、了解数字绝对波形输出特点。
3、了解单极性码、归零码、不归零码等基带信号波形特点。
二、实验原理数字信源块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方块图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
图1-1 数字信源方框图图1-2帧结构MAR-OUTFS图1-3 FS、NRZ-OUT波形三、实验内容用示波器观察数字信源中晶振信号试点,信源位同步信号,信源帧同步信号,NRZ信号(绝对码)。
本模块有以下测试点及输入输出点:CLK 晶振信号测试点BS—OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ—OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)四、实验步骤本实验使用数字信源单元。
1、熟悉数字信源单元的工作原理,检查直流稳压电源输出正常的+5V,+12V、-12V电压,关直流稳压电源。
将与直流稳压电源相连(若未连接好请通知指导教师)的实验专用的电源四芯插头正确的插入实验板左上角的四芯插座中。
打开直流稳压电源,实验中不再改变电源输出参数。
(以后的实验中接通电源均照此操作!)2、用示波器观察数字信源单元上的各种信号波形。
01110010 11110000 00001111(1.)示波器的两个通道探头分别接信源单元的NRZ—OUT和BS—OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄。
)(2.)用开关K1产生代码X1110010(X为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
基带传输系统实验报告基带传输系统实验报告引言在现代通信领域,基带传输系统扮演着至关重要的角色。
它是将数字信号转换为模拟信号并进行传输的关键技术。
本实验旨在通过设计和实现一个基带传输系统,深入了解其原理和性能。
一、实验背景基带传输系统是一种数字通信系统,它将数字信号直接传输到信道中,而不需要进行调制。
这种传输方式可以减少传输过程中的信号失真,提高系统的可靠性和性能。
在本实验中,我们将使用MATLAB软件来模拟和分析基带传输系统。
二、系统设计1. 信号生成首先,我们需要生成一个数字信号作为输入。
可以选择不同的信号源,如正弦信号、方波信号或随机信号。
在本实验中,我们选择了正弦信号作为输入信号。
2. 信号调制接下来,我们需要将生成的数字信号调制为模拟信号。
调制的方式有很多种,如幅度调制(AM)、频率调制(FM)和相位调制(PM)。
在本实验中,我们选择了幅度调制。
3. 信号传输经过调制后的信号需要通过信道进行传输。
信道可以是有线传输介质,如电缆或光纤,也可以是无线传输介质,如无线电波。
在本实验中,我们使用MATLAB提供的信道模型进行模拟传输。
4. 信号解调接收端需要对传输过来的信号进行解调,将模拟信号转换为数字信号。
解调的方式与调制方式相对应。
在本实验中,我们使用幅度解调器对信号进行解调。
5. 信号恢复最后,我们需要对解调后的信号进行恢复,使其与原始输入信号尽可能接近。
这个过程通常包括滤波和采样。
在本实验中,我们使用低通滤波器对信号进行滤波,然后进行采样。
三、实验结果与分析通过实验,我们得到了基带传输系统的模拟结果。
通过对系统性能的分析,我们可以评估系统的可靠性和性能指标,如信噪比、误码率等。
1. 信号波形通过绘制输入信号、调制后的信号、传输后的信号和解调后的信号的波形图,我们可以直观地了解信号在各个环节中的变化情况。
波形图可以帮助我们判断系统是否存在信号失真或噪声干扰。
2. 信号频谱通过绘制输入信号、调制后的信号、传输后的信号和解调后的信号的频谱图,我们可以了解信号在频域上的特征。
四种常用的基带传输码型matlab仿真的实验原理基带传输码型是数字信号传输中的重要概念,主要用于在信道中传输数字信号。
在基带传输中,信号的频谱很宽,为了有效地传输信号,通常需要将信号的频谱限制在一定的范围内。
常用的基带传输码型有矩形脉冲、升余弦脉冲、高斯脉冲和多相码等。
在四种常用的基带传输码型的 MATLAB 仿真实验中,实验原理如下:
1. 矩形脉冲:矩形脉冲是一种简单的基带传输码型,其频谱为无限宽。
为了限制信号的频谱,通常将矩形脉冲通过一个低通滤波器,以得到一个具有一定带宽的信号。
在 MATLAB 中,可以使用 `rectpuls` 函数生成矩形脉冲信号。
2. 升余弦脉冲:升余弦脉冲是一种常用的基带传输码型,其频谱具有一定的带宽。
在 MATLAB 中,可以使用 `rcosine` 函数生成升余弦脉冲信号。
3. 高斯脉冲:高斯脉冲是一种具有较窄带宽的基带传输码型,其频谱密度较低。
在 MATLAB 中,可以使用 `gausswin` 函数生成高斯脉冲信号。
4. 多相码:多相码是一种通过相位调制实现的基带传输码型。
在 MATLAB 中,可以使用 `square` 函数生成方波信号,然后通过调整方波的相位得到多相码信号。
在 MATLAB 仿真实验中,可以通过生成各种基带传输码型信号,并对其频谱进行分析,以了解不同码型对信号频谱的影响。
此外,还可以通过改变码型参数(如脉冲宽度、相位等),观察信号频谱的变化情况,从而深入理解基带传输码型的工作原理。
数字基带传输实验实验报告一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。
二、系统框图及编程原理1.带限信道的基带系统模型(连续域分析)✧输入符号序列――✧发送信号―― ――比特周期,二进制码元周期✧发送滤波器―― 或或✧发送滤波器输出――✧信道输出信号或接收滤波器输入信号(信道特性为1)✧接收滤波器―― 或或✧接收滤波器的输出信号其中(画出眼图)✧如果位同步理想,则抽样时刻为✧抽样点数值为(画出星座图)✧判决为2.升余弦滚降滤波器式中称为滚降系数,取值为, 是常数。
时,带宽为Hz;时,带宽为Hz。
此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。
相应的时域波形为此信号满足在理想信道中,,上述信号波形在抽样时刻上无码间干扰。
如果传输码元速率满足,则通过此基带系统后无码间干扰。
3.最佳基带系统将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。
要求接收滤波器的频率特性与发送信号频谱共轭匹配。
由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。
设信道特性理想,则有(延时为0)有可选择滤波器长度使其具有线性相位。
如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。
由模拟滤波器设计数字滤波器的时域冲激响应升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。
抽样后,系统的频率特性是以为周期的,折叠频率为。
故在一个周期内以间隔抽样,N为抽样个数。
频率抽样为,。
相应的离散系统的冲激响应为将上述信号移位,可得因果系统的冲激响应。
5.基带传输系统(离散域分析)✧输入符号序列――✧发送信号―― ――比特周期,二进制码元周期✧发送滤波器――或✧发送滤波器输出――✧信道输出信号或接收滤波器输入信号(信道特性为1)✧接收滤波器――或✧接收滤波器的输出信号(画出眼图)✧如果位同步理想,则抽样时刻为✧抽样点数值为(画出星座图)✧判决为三.实验内容1、如发送滤波器长度为N=31,时域抽样频率为F_0=4/T_s,滚降系数分别取为0.1、0.5、1,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。
以此发送滤波器构成最佳基带系统,计算并画出接收滤波器的输出信号波形和整个基带系统的频率特性,计算第一零点带宽和第一旁瓣衰减。
2、根据基带系统模型,编写程序,设计无码间干扰的二进制数字基带传输系统。
要求要传输的二进制比特个数、比特速率R_b(可用与Ts的关系表示)、信噪比SNR、滚降系数α是可变的。
1) 生成一个0、1等概率分布的二进制信源序列(伪随机序列)。
可用MATLAB 中的rand 函数生成一组0~1之间均匀分布的随机序列,如产生的随机数在(0,0.5)区间内,则为0;如果在(0.5,1)区间内,则为1。
2) 基带系统传输特性设计。
可以采用两种方式,一种是将系统设计成最佳的无码间干扰的系统,即采用匹配滤波器,发送滤波器和接收滤波器对称的系统,发送滤波器和接收滤波器都是升余弦平方根特性;另一种是不采用匹配滤波器方式,升余弦滚降基带特性完全由发送滤波器实现,接收滤波器为直通。
3)产生一定方差的高斯分布的随机数,作为噪声序列,叠加到发送滤波器的输出信号上引入噪声。
注意噪声功率(方差)与信噪比的关系。
信道高斯噪声的方差为σ 2,单边功率谱密度N_0=2σ^2,如计算出的平均比特能量为Eb ,则信噪比为SNR =10 ? log10 (Eb / N0 )。
4)根据接收滤波器的输出信号,设定判决电平,在位同步理想情况下,抽样判决后得到接收到的数字信息序列波形。
3、假设加性噪声不存在,传输64个特定的二进制比特,如果比特速率R_b =1/T_s,基带系统不采用匹配滤波器,画出接收滤波器的输出信号波形和眼图,判断有无码间干扰,求出抽样判决后的数字序列。
如果将比特速率改为R_b=3/(4T_s )、4/(5T_s ),画出接收滤波器的输出信号波形和眼图,判断有无码间干扰,求出抽样判决后的数字序列。
4、传输1000个随机的二进制比特,比特速率Rb =1/Ts,信噪比分别取1dB、3dB、5dB时,得到相应的恢复数字信息序列,基带系统分别为匹配滤波器形式和非匹配滤波器形式、滚降系数分别为0.3、0.8,画出发送数字信息序列和接收数字信息序列的星座图,根据星座图判断信息传输质量。
讨论信噪比、匹配滤波器和滚降系数对系统信息传输质量的影响。
三、实验内容及程序分析I、实验一:发送滤波器长度为N=31,时域抽样频率F0为4 /Ts ,滚降系数分别取0.1、0.5、1,计算并画出此发送滤波器的时域波形和频率特性。
以此发送滤波器构成最佳基带系统,计算并画出接收滤波器的输出信号波形和整个基带系统的频率特性。
实验程序:N=32;%抽样点数32L=4;M=N/L;%码元数Rs=0.25;Ts=1/Rs;fs=L/Ts;Bs=fs/2;T=N/fs;t=-T/2+[0:N-1]/fs;f=-Bs+[0:N-1]/T;%升余弦滚降alpha=0.5alpha=0.5;Hcos=zeros(1,N);ii=find(abs(f)>(1-alpha)/(2*Ts)&abs(f)<=(1+alpha)/(2*Ts));Hcos(ii)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(ii))-(1-alpha)/(2*Ts)))); ii=find(abs(f)<=(1-alpha)/(2*Ts));Hcos(ii)=Ts;%gen sheng yu xianHrcos=sqrt(Hcos);ft=zeros(1,N);ft=real(f2t(Hrcos,fs));%alpha=0.1alpha=0.1;Hcos1=zeros(1,N);ii=find(abs(f)>(1-alpha)/(2*Ts)&abs(f)<=(1+alpha)/(2*Ts));Hcos1(ii)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(ii))-(1-alpha)/(2*Ts)))); ii=find(abs(f)<=(1-alpha)/(2*Ts));Hcos1(ii)=Ts;%gen sheng yu xianHrcos1=sqrt(Hcos1);ft1=zeros(1,N);ft1=real(f2t(Hrcos1,fs));%升余弦滚降alpha=1alpha=1;Hcos2=zeros(1,N);ii=find(abs(f)>(1-alpha)/(2*Ts)&abs(f)<=(1+alpha)/(2*Ts));Hcos2(ii)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(ii))-(1-alpha)/(2*Ts)))); ii=find(abs(f)<=(1-alpha)/(2*Ts));Hcos2(ii)=Ts;%gen sheng yu xianHrcos2=sqrt(Hcos2);ft2=zeros(1,N);ft2=real(f2t(Hrcos2,fs));%画图subplot(3,2,2);stem(f,Hrcos1,'.');axis([-Bs,Bs,0,max(Hrcos1)]);title('alpha=0.1的根升余弦发送滤波器的频域波形');grid;subplot(3,2,1);stem(t,ft1,'.');axis([-T/2,T/2,1.1*min(ft1),1.1*max(ft1)]);grid;title('alpha=0.1的根升余弦的发送滤波器的时域冲激响应'); subplot(3,2,4);stem(f,Hrcos,'.');axis([-Bs,Bs,0,max(Hrcos)]);title('alpha=0.5的根升余弦发送滤波器的频域波形');grid;subplot(3,2,3);stem(t,ft,'.');axis([-T/2,T/2,1.1*min(ft),1.1*max(ft)]);grid;title('alpha=0.5的根升余弦的发送滤波器的时域冲激响应'); subplot(3,2,6);stem(f,Hrcos2,'.');axis([-Bs,Bs,0,max(Hrcos2)]);title('alpha=1的根升余弦发送滤波器的频域波形');grid;subplot(3,2,5);stem(t,ft2,'.');axis([-T/2,T/2,1.1*min(ft2),1.1*max(ft2)]);grid;title('alpha=1的根升余弦的发送滤波器的时域冲激响应'); 实验一仿真结果:2、实验二根据基带系统模型,编写程序,设计无码间干扰的二进制数字基带传输系统。
要求要传输的二进制比特个数、比特速率Rb(可用与Ts的关系表示)、信噪比SNR、滚降系数α是可变的。
1) 生成一个0、1 等概率分布的二进制信源序列(伪随机序列)。
可用MATLAB 中的rand 函数生成一组0~1 之间均匀分布的随机序列,如产生的随机数在(0,0.5)区间内,则为0;如果在(0.5,1)区间内,则为1。
2) 基带系统传输特性设计。
可以采用两种方式,一种是将系统设计成最佳的无码间干扰的系统,即采用匹配滤波器,发送滤波器和接收滤波器对称的系统,发送滤波器和接收滤波器都是升余弦平方根特性;另一种是不采用匹配滤波器方式,升余弦滚降基带特性完全由发送滤波器实现,接收滤波器为直通。
3)产生一定方差的高斯分布的随机数,作为噪声序列,叠加到发送滤波器的输出信号上引入噪声。
注意噪声功率(方差)与信噪比的关系。
信道高斯噪声的方差为2,单,如计算出的平均比特能量为Eb ,则信噪比为边功率谱密度N0 = 22SNR =10 * log10 (Eb / N0 )。
4)根据接收滤波器的输出信号,设定判决电平,在位同步理想情况下,抽样判决后得到接收到的数字信息序列波形。