第25章热点专题训练
- 格式:doc
- 大小:141.00 KB
- 文档页数:3
第06讲 难点探究专题:几何图形中的动态问题(5类热点题型讲练)目录【考点一 利用分类讨论思想解决几何图形中旋转多解问题】【考点二 几何图形中动角求定值问题】【考点三 几何图形中动角探究数量关系问题】【考点四 几何图形中动角求运动时间问题】【考点五 几何图形中动角之新定义型问题】【考点一 利用分类讨论思想解决几何图形中旋转多解问题】例题:(24-25七年级上·全国·期末)1.如图①,点O 在直线AB 上,过O 作射线,120OC BOC Ð=°,三角板的顶点与点O 重合,边OM 与OB 重合,边ON 在直线AB 的下方.若三角板绕点O 按10/s °的速度沿逆时针方向旋转一周,在旋转的过程中,第 s 时,直线ON 恰好平分锐角AOC Ð(图②).【变式训练】(23-24七年级下·广东广州·期末)2.在同一平面内,将两副直角三角板的两个直角顶点重合,并摆成如图所示的形状.已知30D Ð=°,60E Ð=°,45B C Ð==°∠,若保持三角板ADE 不动,将三角板ABC 绕点A 在平面内旋转.当AB DE ^时,EAC Ð的度数为 .(23-24七年级下·天津和平·期中)3.在数学研究中,观察、猜想、实验验证、得出结论,是我们常用的几何探究方式.请你利用一副含有45°角的直角三角板ABC 和含有30°角的直角三角板BDE 尝试完成探究.试探索;保持三角板ABC 不动,将45°角的顶点与三角板BDE 的60°角的顶点重合,然后摆动三角板BDE ,使得ABD Ð与ABE Ð中其中一个角是另一个角的两倍,请写出所有满足题意的ABE Ð的度数 .【考点二 几何图形中动角求定值问题】例题:(23-24七年级下·辽宁鞍山·开学考试)4.在一次数学实践探究活动中,小明和他的同伴们将一个直角三角尺按如图所示方式放置,发现了其中的奥秘.(1)如图①,三角尺ABP 的直角顶点P 在直线CD 上,点A ,B 在直线CD 的同侧.若40APC Ð=°,求BPD Ð度数.(2)绕点P 旋转三角尺ABP ,使点A ,B 在直线CD 的同侧,如图②,若PM 平分APC Ð,PN 平分BPD Ð,他们发现MPN Ð的度数为定值,请你求出这个定值.(3)绕点P 旋转三角尺ABP ,使点A ,B 在直线CD 的异侧,PM 平分APC Ð,PN 平分BPD Ð,设BPD a Ð=,如图③,探究MPN Ð的度数.【变式训练】(23-24七年级上·江苏徐州·期末)5.已知110AOB Ð=°,40COD Ð=°.OE 平分AOC Ð,OF 平分BOD Ð.(1)如图①,当OB OC ,重合时,求AOE BOF Ð-Ð的值;(2)当COD Ð从图①所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(010t <<);在旋转过程中AOE BOF Ð-Ð的值是否会因t 的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.(23-24七年级下·陕西榆林·开学考试)6.【问题情境】已知,120AOB Ð=°,40COD Ð=°,OE 平分AOC Ð,OF 平分BOD Ð.【特例分析】(1)如图1,当OB 、OC 重合时,求AOE BOF Ð-Ð的值;【深入探究】(2)如图2,当OB 、OC 不重合,OC 在OB 的下方时,设BOC x Ð=,AOE BOF Ð-Ð 的值是否会因为x 的变化而变化? 若不发生变化,请求出该定值;若发生变化,请说明理由;【问题解决】(3)在(2)的条件下,当12COF Ð=°时,求ÐBOE 的度数.(23-24七年级上·广东汕头·期末)7.如图,90AOB Ð=°,40DOE =°∠角的顶点O 互相重合,将AOB Ð绕点O 旋转.(1)当射线OB ,OD 重合时,AOE Ð=______°,(2)在AOB Ð绕点O 旋转的过程中,若射线OB ,OD 与OE 中的某一条射线是另两条射线所夹角的角平分线,则BOD Ð的度数为______;(3)在AOB Ð绕点O 旋转的过程中,若射线OB 始终在DOE Ð的内部.①普于思考的小明发现,在旋转过程中,AOE BOD Ð-Ð的值为定值,请你求出这个定值;②作BOD Ð和AOE Ð的平分线OM ,ON ,在旋转过程中MON Ð的值是否发生变化?若不变,请求出这个定值,若变化,请求出变化的范围.【考点三 几何图形中动角探究数量关系问题】例题:(23-24七年级上·吉林·期末)8.已知90AOB COD Ð=Ð=°,OE 平分BOC Ð.(1)如图,若30AOC Ð=°,则DOE Ð的度数是______°;(直接写出答案)(2)将(1)中的条件“30AOC Ð=°”改为“AOC Ð是锐角”,猜想DOE Ð与AOC Ð的关系,并说明理由.【变式训练】(23-24六年级下·山东烟台·期中)9.如图,90EOC Ð=°,请你根据图形,求解下列问题:(1)在,,,EOA AOC EOB EOD ÐÐÐÐ中,哪些角是锐角?哪些角是直角?哪些角是钝角?哪些角是平角?并用“<”把它们连接起来;(2)BOD Ð是哪两个角的和?(3)写出,,,EOD EOC DOC EOA ÐÐÐÐ中某些角之间的两个等量关系;(4)如果EOD COB Ð=Ð,则BOD Ð的度数为_________°.(2024七年级上·河北·专题练习)10.已知O 为直线AB 上一点,射线OD OC OE 、、位于直线AB 上方,OD 在OE 的左侧,120AOC Ð=°,80DOE Ð=°.(1)如图1,当OD 平分AOC Ð时,求EOB Ð的度数;(2)点F 在射线OB 上,若射线OF 绕点O 逆时针旋转n °(0180n <<且60n ¹),3FOA AOD Ð=Ð.当DOE Ð在AOC Ð内部(图2)和DOE Ð的两边在射线OC 的两侧(图3)时,FOE Ð和EOC Ð的数量关系是否改变,若改变,说明理由,若不变,求出其关系.(23-24七年级上·福建福州·期末)11.如图1,将一副三角板的直角顶点C 叠放在一起.(1)观察分析∶若30DCE Ð=°,则ACB =∠ ,若145ACB Ð=°,则DCE Ð= ;(2)猜想探究∶如图2,若将两个同样的三角尺,60°锐角的顶点A 重合在一起,请你猜想DAB Ð与CAE Ð有何关系,请说明理由;(3)拓展应用∶如图3,如果把任意两个锐角AOB COD ÐÐ、的顶点O 重合在一起,已知AOB a Ð=,COD b Ð=(a 、b 都是锐角),请你直接写出AOD Ð与BOC Ð的关系.(23-24七年级上·江苏苏州·期末)12.数学实践课上,小明同学将直角三角板AOB 的直角顶点O 放在直尺EF 的边缘,将直角三角板绕着顶点O 旋转.(1)若三角板AOB 在EF 的上方,如图1所示.在旋转过程中,小明发现AOE Ð、BOF Ð的大小发生了变化,但它们的和不变,即AOE BOF Ð+Ð=______°.(2)若OA 、OB 分别位于EF 的上方和下方,如图2所示,则AOE Ð、BOF Ð之间的上述关系还成立吗?若不成立,则它们之间有怎样的数量关系?请说明你的理由;(3)射线OM 、ON 分别是AOE Ð、ÐBOE 的角平分线,若三角板AOB 始终在EF 的上方,则旋转过程中,MON Ð的度数是一个定值吗?若是,请求出这个定值;若不是,请说明理由.【考点四 几何图形中动角求运动时间问题】例题:(23-24六年级下·黑龙江哈尔滨·期末)13.在数学实验课中,学生进行操作探究,用一副三角板(其中45ABC ACB Ð=Ð=°,90BAC EDF Ð=Ð=°,30DFE Ð=°,60DEF Ð=°)按如图1所示摆放,边BC 与EF 在同一条直线MN 上(点C 与点E 重合).如图2,将三角板ABC 从图1的位置开始绕点C 以每秒5°的速度顺时针旋转,当边BC 与边EF 重合时停止运动,设三角板ABC 的运动时间为t 秒.(1)当t 为何值时,CA 平分DCF Ð?(2)当t 为何值时,3ACF BCD Ð=Ð?【变式训练】(23-24七年级上·安徽合肥·期末)14.如图,O 为线段AB 上一点,90COD Ð=°,OE 为COD Ð的角平分线,定义OC 与OA 重合时为初始位置,将COD Ð绕着点O 从初始位置开始,以10/°秒的速度顺时针旋转,至OD 与OA 重合时终止.(1)当COD Ð从初始位置旋转6秒,求此时EOB Ð的度数;(2)当COD Ð从初始位置旋转至120EOB Ð=°时,求此时t 的值;(3)当COD Ð从初始位置旋转至EOB m Ð=°时,t =__________秒(用含有m 的代数式直接表示).(23-24七年级上·福建厦门·期末)15.【实践操作】三角尺中的数学(1)如图1,将两块三角尺的直角顶点C 叠放在一起,90ACD ECB Ð=Ð=°.①若38ECD Ð=°,则ACB =∠ ;若150ACB Ð=°,则ECD Ð= ;②猜想ACB Ð与ECD Ð的大小有何数量关系,并说明理由.(2)如图2,若是将两个同样的含60°锐角的直角三角尺叠放在一起,其中60°锐角的顶点A 重合在一起,90ACD AFG Ð=Ð=°.①探究GAC Ð与DAF Ð的大小有何数量关系,并说明理由;②若一开始就将ADC △与AFG V 完全重合(AF 与AC 重合),保持ADC △不动,将AFG V 绕点A 以每秒10°的速度逆时针旋转一周,旋转时间为t .在旋转的过程中,t 为何值时AG AC ^.(24-25七年级上·全国·单元测试)16.如图①,把一副三角板拼在一起,边OA OC ,与直线EF 重合,其中45AOB Ð=°,60COD Ð=°.此时易得75BOD Ð=°.(1)如图②,三角板COD 固定不动,将三角板AOB 绕点O 以每秒5°的速度顺时针开始旋转,在转动过程中,三角板AOB 一直在EOD Ð的内部,设三角板AOB 运动时间为t 秒.①当2t =时,BOD Ð= °;②当t 为何值时,2AOE BOD Ð=Ð?(2)如图③,在(1)的条件下,若OM 平分BOE ON Ð,平分AOD Ð.①当20AOE Ð=°时,MON Ð= °;②请问在三角板AOB 的旋转过程中,MON Ð的度数是否会发生变化?如果发生变化,请说明理由;如果不发生变化,请求出MON Ð的度数.【考点五 几何图形中动角之新定义型问题】例题:(23-24七年级上·陕西汉中·期末)17.【问题背景】如图1,已知射线OC 在AOB Ð的内部,若AOB Ð,AOC Ð和BOC Ð三个角中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB Ð的“量尺金线”.【问题感知】(1)一个角的平分线________这个角的“量尺金线”;(填“是”或“不是”)【问题初探】(2)如图2,60MPN Ð=°.若射线PQ 是MPN Ð的“量尺金线”,则QPN Ð的度数为________;【问题推广】(3)在(2)中,若MPN x Ð=°,060x °<£°,射线PF 从PN 位置开始,以每秒旋转3°的速度绕点P 按逆时针方向旋转,当FPN Ð首次等于180°时停止旋转,设旋转的时间为()s t .当t 为何值时,射线PM 是FPN Ð的“量尺金线”?(用含x 的式子表示出t 即可)【变式训练】(23-24七年级上·辽宁葫芦岛·期末)18.【问题初探】在一个角的内部,从顶点画一条射线,得到三个角,若其中有一个角是另一个角的2倍,则称这条射线是已知角的“奇妙线”.例如:图1中2AOC BOC Ð=Ð,则射线OC 是AOB Ð的“奇妙线”.(1)一个角的角平分线______这个角的“奇妙线”;(填“是”或“不是”)【类比分析】(2)如图2,若60MPN Ð=°,在MPN Ð内部画一条射线PQ ,使PQ 是MPN Ð的“奇妙线”,求MPQ Ð的度数;【变式拓展】(3)如图3,若60MPN Ð=°,且射线PQ 绕点P 从PN 位置开始以每秒10°的速度逆时针旋转,同时射线PM 以每秒6°的速度也绕点P 逆时针旋转,当射线PQ 与射线PM 重合时全部停止运动.设旋转时间为t 秒,请直接写出t 为何值时,射线PQ 是MPN Ð的“奇妙线”.(2023七年级上·全国·专题练习)19.[阅读理解]定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”,如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分RPT Ð,则有2RPT RPS Ð=Ð,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.[迁移运用](1)如图1,射线PT _____(选填“是”或“不是”)射线PS ,PR 的“双倍和谐线”;射线PS _____(选填“是”或“不是”)射线PR ,PT 的“双倍和谐线”;(2)如图2,点O 在直线MN 上,OA MN ^,40AOB Ð=°,射线OC 从ON 出发,绕点O 以每秒4°的速度逆时针旋转,运动时间为t 秒,当射线OC 与射线OA 重合时,运动停止.①当射线OA 是射线OB ,OC 的“双倍和谐线”时,求t 的值;②若在射线OC 旋转的同时,AOB Ð绕点O 以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD 平分AOB Ð,当射线OC 位于射线OD 左侧且射线OC 是射线OM ,OD 的“双倍和谐线”时,求CON Ð的度数.1.6或24##24或6【分析】本题考查了角平分线的定义,解题的关键是分两种情况进行讨论,分别依据直线ON 恰好平分锐角AOC Ð,得到三角板旋转的度数,进而得到t 的值.【详解】解:120BOC Ð=°Q ,60AOC \Ð=°,当直线ON 恰好平分锐角AOC Ð时,如图:1302BON AOC Ð=Ð=°,此时,三角板旋转的角度为903060°-°=°,60106t \=°¸°=;当ON 在AOC Ð的内部时,如图:三角板旋转的角度为3609030240°-°-°=°,2401024t \=°¸°=;t \的值为:6或24.故答案为:6或24.2.60°或120°【分析】本题考查了三角板中角度计算问题及三角形内角和,根据题意画出图形,再根据角之间的关系结合三角形内角和即可得出答案.【详解】解:当∥D E A C 时,AB DE ^,分以下两种情况:如图1所示,DE AC Q P ,60E Ð=°60EAC E \Ð=Ð=°;如图2所示,DE AC Q P ,90CAB Ð=°190CAB \Ð=Ð=°60E Ð=°Q 9030EAB E \Ð=°-Ð=°3090120EAC EAB CAB \Ð=Ð+Ð=°+°=°综上所述,EAC Ð的度数为60°或120°根据答案为:60°或120°.3.20°或40°或60°或120°【分析】本题考查的是角的和差运算.分四种情况分别画出图形,再结合角的和差运算可得答案.【详解】解:如图,∵2ABD ABE Ð=Ð,60EBD Ð=°,∴602ABE ABE Ð+°=Ð,∴60ABE Ð=°;如图,∵2ABD ABE Ð=Ð,60EBD Ð=°,∴360EBD ABE ABD ABE Ð=Ð+Ð=Ð=°,∴20ABE Ð=°,如图,∵2ABE ABD Ð=Ð,60EBD Ð=°,∴1602EBD ABE ABD ABE ABE Ð=Ð+Ð=Ð+Ð=°,∴40ABE Ð=°,如图,∵2ABE ABD Ð=Ð,60EBD Ð=°,∴1602EBD ABE ABD ABE Ð=Ð-Ð=Ð=°,∴120ABE Ð=°,综上:ABE Ð为20°或40°或60°或120°.故答案为:20°或40°或60°或120°.4.(1)50BPD Ð=°(2)135MPN Ð=°(3)135MPN Ð=°【分析】本题考查角的和差,角平分线的定义.(1)根据180BPD APB APC Ð=°-Ð-Ð即可求解;(2)由90APB Ð=°可得到90APC BPD Ð+Ð=°,根据角平分线的定义,可得45APM BPN Ð+Ð=°,进而根据角的和差即可求解;(3)由BPD a Ð=,90APB Ð=°求得=90APD a а-,90APC a Ð=°+,根据角平分线的定义可得1452APM a Ð=°+,12DPN a Ð=,最后根据MPN APM APD DPN Ð=Ð+Ð+Ð即可求解.【详解】(1)解:90APB Ð=°Q ,40APC Ð=°180180904050BPD APB APC \Ð=°-Ð-Ð=°-°-°=°;(2)解:∵90APB Ð=°,∴18090APC BPD APB +=°-Ð=°∠∠,PM Q 平分APC Ð,PN 平分BPD Ð,12APM CPM APC \Ð=Ð=Ð,12BPN DPN BPD Ð=Ð=Ð()111190452222APM BPN APC BPD APC BPD \Ð+Ð=Ð+Ð=Ð+Ð=´°=°,4590135MPN APM APB BPN \Ð=Ð+Ð+Ð=°+°=°;(3)解:∵BPD a Ð=,90APB Ð=°,∴90APD APB BPD a Ð=Ð-Ð=°-,∴()1801809090APC APD a a Ð=°-Ð=°-°-=°+,∵PM 平分APC Ð,∴()1119045222APM APC a a Ð=Ð=°+=°+,∵PN 平分BPD Ð,∴1122DPN BPD a Ð=Ð=,11459013522MPN APM APD DPN a a a Ð=Ð+Ð+Ð=°++°-+=°.5.(1)35°;(2)不变,35AOE BOF Ð-Ð=°是定值,见解析.【分析】本题考查了角度的计算以及角的平分线的定义,理解角度之间的和差关系是解题的关键.∠AOE -∠BOF 的值是定值,(1)首先根据角平分线的定义求得111105522AOE AOB а´°=Ð==,11402022BOF COD Ð=Ð=´°=°,然后求解即可;(2)首先由题意可得3BOC t Ð=°,再根据角平分线的定义得出31103AOC AOB t t Ð=Ð+°=°+°,3403BOD COD t t Ð=Ð+°=°+°,然后由角平分的定义解答即可.【详解】(1)解:∵OE 平分AOC Ð,OF 平分BOD Ð,∴111105522AOE AOB а´°=Ð==,11402022BOF COD Ð=Ð=´°=°,∴552035AOE BOF Ð-Ð=°-°=°;(2)解:35AOE BOF Ð-Ð=°是定值.理由如下:由题意:3BOC t Ð=°,则31103AOC AOB t t Ð=Ð+°=°+°,3403BOD COD t t Ð=Ð+°=°+°,∵OE 平分AOC Ð,OF 平分BOD Ð,∴()113110355222AOE AOC t t Ð=Ð=°+°=°+°,()11340320222BOF BOD t t Ð=Ð=°+°=°+°,3355203522AOE BOF t t æöæöÐ-Ð=°+°-°+°=°ç÷ç÷èøèø.∴AOE BOF Ð-Ð的值是定值,定值为35°.6.(1)40°;(2)不会变化,定值为40°;(3)52°【分析】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.(1)首先根据角平分线的定义求得AOE Ð和BOF Ð的度数,然后根据AOE BOF Ð-Ð求解;(2)根据角平分线的定义得出:()11112060222AOE AOC x x Ð=Ð=´°+=°+,1160204022AOE BOF x x æöÐ-Ð=°+-°+=°ç÷èø,然后代入求值即可;(3)根据12COF Ð=°,40COD Ð=°,求出401228DOF Ð=°-°=°,根据角平分线的定义求出28BOD BOF Ð=Ð=°,1682EOC AOC Ð=Ð=°,根据角度间的关系,求出结果即可.【详解】解:(1)∵OE 平分AOC Ð,OF 平分BOD Ð,120AOB Ð=°,40COD Ð=°,∴111206022AOE AOC Ð=Ð=´°=°,11402022BOF BOD Ð=Ð==°´°,∴602040AOE BOF Ð-Ð-°=°=°;(2)AOE BOF Ð-Ð的值是定值;理由如下:∵BOC x Ð=,∴120AOC AOB BOC x Ð=Ð+Ð=°+,40BOD x Ð=°+,∵OE 平分AOC Ð,OF 平分BOD Ð,∴()11112060222AOE AOC x x Ð=Ð=´°+=°+,()1114020222BOF BOD x x Ð=Ð=´°+=°+,∴1160204022AOE BOF x x æöÐ-Ð=°+-°+=°ç÷èø.∴AOE BOF Ð-Ð的值是定值,定值为40°;(3)∵12COF Ð=°,40COD Ð=°,∴401228DOF Ð=°-°=°,∵OF 平分BOD Ð,∴28BOD BOF Ð=Ð=°,∴281216BOC BOD COF Ð=Ð-Ð=°-°=°,∴12016136AOC AOB BOC Ð=Ð+Ð=°+°=°,∵OE 平分AOC Ð,∴1682EOC AOC Ð=Ð=°,∴681652BOE EOC BOC Ð=Ð-Ð=°-°=°.7.(1)50(2)20°或40°或80°(3)①50°;②MON Ð度数不发生变化,为定值65°,理由见解析【分析】本题主要考查了几何图形中角度的计算,角平分线的定义:(1)直接根据角之间的关系进行求解即可;(2)分当OB 是DOE Ð的角平分线时,当OD 是ÐBOE 的角平分线时,当OE 是BOD Ð的角平分线时,三种情况讨论求解即可;(3)①9040AOE BOE BOD BOE =°-=°-∠∠,∠∠,则904050AOE BOD BOE BOE -=°--°+=°∠∠∠∠;②先由角平分线的定义得到11452022EON BOE BOM BOE =°-=°-∠∠,∠,再由MON EON BOE BOM =++∠∠∠∠即可得到结论.【详解】(1)解:∵90AOB Ð=°,40DOE =°∠,∴当射线OB ,OD 重合时,50AOE AOB DOE Ð=-=°∠∠,故答案为:50;(2)解:如图2-1所示,当OB 是DOE Ð的角平分线时,则1202BOD DOE ==°∠;如图2-2所示,当OD 是ÐBOE 的角平分线时,则40BOD DOE ==°∠∠;如图2-3所示,当OE 是BOD Ð的角平分线时,则280BOD DOE Ð=Ð=°;综上所述,BOD Ð的度数为20°或40°或80°;(3)解:①如图所示,∵90AOB Ð=°,40DOE =°∠,∴9040AOE BOE BOD BOE =°-=°-∠∠,∠∠,∴904050AOE BOD BOE BOE -=°--°+=°∠∠∠∠;②MON Ð度数不发生变化,为定值65°,理由如下:∵90AOB Ð=°,40DOE =°∠,∴9040AOE BOE BOD BOE =°-=°-∠∠,∠∠,∵OM ,ON 分别是BOD Ð和AOE Ð的平分线,∴111145202222EON AOE BOE BOM BOD BOE ==°-==°-∠,∠,∴1145206522MON EON BOE BOM BOE BOE BOE =++=°-++°-=°∠∠∠∠∠∠∠.8.(1)60(2)1452DOE AOC Ð=°+Ð,理由见解析【分析】本题主要考查了几何图形中角度的计算,角平分线的定义:(1)先根据角之间的关系得到60BOC Ð=°,再由角平分线的定义得到30COE Ð=°,则60DOE COD COE =Ð-=°∠∠;(2)仿照(1)求解即可.【详解】(1)解:∵30AOC Ð=°,90AOB Ð=°,∴60BOC AOB AOC Ð=Ð-Ð=°,∵OE 平分BOC Ð,∴1302COE BOC Ð=Ð=°,∵90COD Ð=°,∴60DOE COD COE =Ð-=°∠∠,(2)解:1452DOE AOC Ð=°+Ð,理由如下:∵90AOB Ð=°,∴90BOC AOB AOC AOC Ð=Ð-Ð=°-Ð,∵OE 平分BOC Ð,∴114522COE BOC AOC ==°-∠,∵90COD Ð=°,∴1190454522DOE COD COE AOC AOC =Ð-=°-°+=°+∠∠∠∠.9.(1)EOD Ð是锐角,AOC Ð是直角,EOB Ð是钝角,EOA Ð是平角,EOD AOC EOB EOA Ð<Ð<Ð<Ð(2)BOD BOC CODÐ=Ð+Ð(3)EOC EOD DOC Ð=Ð+Ð,2EOA EOC Ð=Ð(答案不唯一)(4)90【分析】本题考查锐角、直角、钝角、平角的定义,角度之间的和差关系,利用数形结合的数学思想是解决问题的关键.(1)根据锐角、直角、钝角、平角的定义,结合图形即可求解;(2)根据图形即可求解;(3)根据图形即可求解;(4)由题意可知90EOD COD Ð+Ð=°,结合EOD COB Ð=Ð,即可得90COB COD BOD Ð+Ð=Ð=°.【详解】(1)解:由图可知,EOD Ð是锐角,AOC Ð是直角,EOB Ð是钝角,EOA Ð是平角,则EOD AOC EOB EOA Ð<Ð<Ð<Ð;(2)由图可知,BOD BOC COD Ð=Ð+Ð;(3)由图可知,EOC EOD DOC Ð=Ð+Ð,2EOA EOC Ð=Ð(答案不唯一)(4)∵90EOC Ð=°,∴90EOD COD Ð+Ð=°,又∵EOD COB Ð=Ð,∴90COB COD BOD Ð+Ð=Ð=°,10.(1)40°(2)不改变,2EOF EOC Ð=Ð,理由见解析【分析】此题主要考查了角平分线的性质以及角的有关计算,解决问题的关键是根据角的和差关系进行计算.(1)利用角平分线和图形寻找出角之间的关系即可得到结论;(2)分两种情况,找出角之间的关系即可求出结论.【详解】(1)解:∵OD 平分AOC Ð,∴1602COD AOC Ð=Ð=°,∵80DOE Ð=°.∴20COE DOE COD Ð=Ð-Ð=°,∴12020140AOE AOC COE Ð=Ð+Ð=°+°=°,∴18040BOE AOE Ð=°-Ð=°;(2)解:①DOE Ð在AOC Ð内部时.令AOD x Ð=°,则2DOF x Ð=°,802EOF x Ð=°-°,∴()120280240EOC x x x x Ð=°-°+°+°-°=°-°,∴2EOF EOC Ð=Ð;②DOE Ð的两边在射线OC 的两侧时.令AOD x Ð=°,则2DOF x Ð=°,120DOC x Ð=°-°,280EOF x Ð=°-°,∴()8012040EOC x x Ð=°-°-°=°-°,∴2EOF EOC Ð=Ð.综上可得,FOE Ð和EOC Ð的数量关系不改变,2EOF EOC Ð=Ð.11.(1) 150°; 35°;(2)180DAB CAE ÐÐ+=°,理由见解析.(3)AOD BOC a b Ð+Ð=+,理由见解析.【分析】(1)根据三角板的特点及角度和差求解即可;(2)根据三角板的特点及角度和差求解即可;(3)根据角度和差求解即可;本题考查了角的运算,熟练掌握角度和差运算是解题的关键.【详解】(1)由题意可得:90ACD BCE Ð=Ð=°,∵30DCE Ð=°,∴60ACE BCD Ð=Ð=°,∴9060150ACB BCE ACE Ð=Ð+Ð=°+°=°,同理:145ACB BCE ACE Ð=Ð+Ð=°,∴55ACE Ð=°,∴35DCE Ð=°故答案为:150°,35°;(2)180DAB CAE ÐÐ+=°,理由:由题意可知:90BAE DAC Ð=Ð=°,∴90DAE EAC EAC CAB Ð+Ð=Ð+Ð=°,∴180DAE EAC EAC CAB Ð+Ð+Ð+Ð=°,∵DAB DAE EAC EAC Ð=Ð+Ð+Ð,∴180DAB CAE ÐÐ+=°;(3)AOD BOC a b Ð+Ð=+,理由:∵AOB AOC COB a Ð=Ð+Ð=,COD COB BOD b Ð=Ð+Ð=,∴COD AOB COB BOD AOC COB a b Ð+Ð=Ð+Ð+Ð+Ð=+,∵AOD BOD AOC COB Ð=Ð+Ð+Ð,∴AOD BOC a b Ð+Ð=+.12.(1)90(2)90AOE BOF Ð-Ð=°,理由见解析(3)MON Ð的度数是一个定值,理由见解析【分析】本题考查了三角板中角度计算,与角平分线的有关的角的计算,掌握角平分线的定义是解答本题的关键.(1)由平角的性质可求解;(2)由补角和余角的性质可求解;(3)由角平分线的定义和平角的性质可求解.【详解】(1)解: 180AOE AOB BOF ÐÐÐ++=°Q ,90AOE BOF \Ð+Ð=°;故答案为90;(2)解:90AOE BOF Ð-Ð=°,理由如下:180AOE AOF Ð+Ð=°Q ,90AOF BOF Ð+Ð=°,90AOE BOF \Ð-Ð=°;(3)解:MON Ð的度数是一个定值,理由如下:Q 射线OM 、ON 分别是AOE Ð、ÐBOE 的角平分线,12EOM AOE \Ð=Ð,111()45222EON BOE AOE AOB AOE Ð=Ð=Ð+Ð=Ð+°,45MON EON EOM \Ð=Ð-Ð=°.13.(1)t 为21(2)t 为22.5秒或24.75秒【分析】本题考查了三角板有关的角度计算,角平分线的定义,(1)根据角平分线的定义可得12ACF DCF Ð=Ð,从而得到三角板ABC 旋转的角度,再结合三角板ABC 运动的速度即可解题;(2)根据3ACF BCD Ð=Ð出现的情况分类讨论,再根据3ACF BCD Ð=Ð将BCD Ð与DCF ACB Ð-Ð的结果关联即可求解.【详解】(1)解:如图1,CA Q 平分DCF Ð,11603022ACF DCF \Ð=Ð=´°=°,\旋转的角度为1804530105°-°-°=°,105521t \=¸=(秒),答:当t 为21时,CA 平分DCF Ð.(2)解:由题可知:当3ACF BCD Ð=Ð时会出现以下两种情况:①如图2,由图可得:()()604515ACF BCD DCF ACD ACB ACD DCF ACB Ð-Ð=Ð-Ð-Ð-Ð=Ð-Ð=°-°=°,又3ACF BCD Ð=ÐQ ,315BCD BCD \Ð-Ð=°,7.5BCD Ð=°,\旋转的角度为180607.5112.5--=°°°°,\112.5522.5t ==¸(秒),②如图3,由图可得:()()604515ACF BCD DCF ACD ACD ACB DCF ACB Ð+Ð=Ð-Ð+Ð-Ð=Ð-Ð=°-°=°,又3ACF BCD Ð=ÐQ ,315BCD BCD \Ð+Ð=°, 3.75BCD Ð=°,\旋转的角度为18060 3.75123.75°°°°-+=,123.75524.75t \=¸=(秒),答:当t 为22.5秒或24.75秒时,3ACF BCD Ð=Ð.14.(1)75°(2)1.5(3)27102m t =-+【分析】本题考查了解一元一次方程,角平分线的定义,几何图形中的角度计算;(1)根据角平分线的定义可得1452DOE COD Ð=Ð=°,根据题意得61060AOC Ð=´°=°,进而根据补角的定义求得BOD Ð,根据EOB EOD DOB Ð=Ð+Ð,即可求解;(2)根据(1)的方法得出()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,将120EOB Ð=°代入,解一元一次方程,即可求解;(3)根据(2)可得()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,将EOB m Ð=°代入,解关于t 的一元一次方程,即可求解.【详解】(1)解:∵90COD Ð=°,OE 为COD Ð的角平分线,∴1452DOE COD Ð=Ð=°,∵COD Ð从初始位置旋转6秒,∴61060AOC Ð=´°=°,∴6090150AOD AOC COD Ð=Ð+=°+°=°,∴18030DOB AOD Ð=°-Ð=°,∴453075EOB EOD DOB Ð=Ð+Ð=°+°=°,(2)解:∵90COD Ð=°,OE 为COD Ð的角平分线,∴1452DOE COD Ð=Ð=°,∵COD Ð从初始位置旋转t 秒,∴1010AOC t t Ð=´°=°,∴1090AOD AOC COD t Ð=Ð+=°+°,∴()1809010DOB AOD t Ð=°-Ð=-°,∴()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,∵120EOB Ð=°,∴459010120t +-=,解得: 1.5t =;(3)解:由(2)可得()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,∵EOB m Ð=°,∴459010t m +-=,解得:27102m t =-+.故答案为:27102m -+.15.(1)①142°;30°;②猜想180ACB ECD Ð+а=,理由见解析(2)①120GAC DAF Ð+Ð=°,理由见解析;②3或21【分析】此题考查了三角板中角度的技术,解答本题的关键是仔细观察图形,根据图形得出各角之间的关系.(1)①本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出ACB Ð,DCE Ð的度数;②根据前两个小问题的结论猜想ACB Ð与ECD Ð的大小关系,结合前两问的解决思路得出证明;(2)①根据(1)解决思路确定GAC Ð与DAF Ð的大小并证明即可;②分点G 在AC 上方和下方两种情况讨论求解即可.【详解】(1)解:①∵=90ACD а,38ECD Ð=°,∴52ACE ACD ECD =-=°∠∠∠,∵90ECB Ð=°,∴142ACB ECB ACE =+=°∠∠∠;∵150ACB Ð=°,90ECB Ð=°,∴60ACE ACB ECB =-=°∠∠∠,∵=90ACD а,∴30ECD ACD ACE Ð=-=°∠∠故答案为:142°;30°;②猜想180ACB ECD Ð+а=,理由如下:∵90ECB Ð=°,=90ACD а,∴90ACB ACD DCB DCB Ð=Ð+Ð=°+Ð,90DCE ECB DCB DCB Ð=Ð-Ð=°-Ð,∴180ACB ECD Ð+а=;(2)解:①120GAC DAF Ð+Ð=°,理由如下:∵GAC GAD DAF FAC Ð=Ð+Ð+Ð,60DAC GAF ÐÐ==°,∴GAC DAF GAD DAF FAC DAFÐÐÐÐÐÐ+=+++GAF DAC=Ð+Ð6060=°+°120=°;②如图所示,当点G 在AC 上方时,∵AG AC ^,∴90CAG Ð=°,∴由(3)①的结论可知,12030DAF CAG =°-=°∠∠,∴30CAF CAD DAF =-=°∠∠∠,∴30310t ==;如图所示,当点G 在AC 下方时,则在3t =的基础上再旋转180度时,AG AC ^,∴18032110t =+=;综上所述,t 的值为3或21.16.(1)①65;②10;(2)①37.5;②MON Ð的度数不发生变化,理由见解析.【分析】本题考查了几何图形中的角度计算,角平分线的定义,读懂题意,能准确得出相应角的数量关系是解本题的关键.(1)①根据题意和角的和差进行求解即可;②由2,AOE BOD Ð=Ð结合题意可得75,AOE BOD Ð+Ð=°从而得出25,50,BOD AOE Ð=°Ð=°进而求出时间t ;(2)①根据OM 平分,BOE ÐON 平分,AO D Ð可得1,2EOM BOM EOB Ð=Ð=Ð 12AON DON AOD Ð=Ð=Ð,则可以MON MOB BON Ð=Ð+Ð整理为()1,2MON EOA BOD Ð=Ð+Ð进而得出答案;②根据OM 平分,BOE ÐON 平分AOD Ð,可得122.5,2MOE AOE Ð=Ð+° 160,2NOD AOE Ð=°-Ð进而推导出1112022.56022MON AOE AOE Ð=°-Ð-°-°+Ð,继而得出答案.【详解】(1)解:①当2t =时,5210AOE Ð=°´=° ,∴751065BOD Ð=°-°=°,故答案为:65;②∵2AOE BOD Ð=Ð,75AOE BOD Ð+Ð=°,∴25BOD Ð=°,∴50AOE Ð=°,50105t °\==°(秒) ,∴当t 为10秒时,2AOE BOD Ð=Ð;(2)解:①∵OM 平分BOE ON Ð,平分AOD Ð,11,22EOM BOM EOB AON DON AOD \Ð=Ð=ÐÐ=Ð=Ð,12MON MOB BON EOB BOD DON \Ð=Ð+Ð=Ð+Ð-Ð()1122EOA AOB BOD AOD =Ð+Ð+Ð-Ð()111222EOA AOB BOD AOB BOD =Ð+Ð+Ð-Ð+Ð11112222EOA AOB BOD AOB BOD =Ð+Ð+Ð-Ð-Ð()12EOA BOD =Ð+Ð1752=´°37.5,=°故答案为:37.5;°MON Ð②的度数不发生变化,理由如下:∵OM 平分,BOE Ð111()22.5222MOE BOE AOE ACB AOE °\Ð=Ð=Ð+Ð=Ð+∵ON 平分,AO D Ð()1118022NOD AOD DOC AOE \Ð=Ð=°-Ð-Ð()11202AOE =°-Ð160,2AOE =°-Ð180MON DOC MOE NOD Ð=°-Ð-Ð-ÐQ1112022.56022MON AOE AOE æöæö\Ð=°-Ð+°-°-Ðç÷ç÷èøèø1112022.56022AOE AOE =°-Ð-°-°+Ð37.5=°.17.(1)是;(2)20或30或40;(3)12x ,23x ,x ;【分析】本题主要考查新定义下的角的计算,几何图形中的角度计算,理解题意,列出相应的式子求解,是解题关键.(1)根据“量尺金线”的定义进行判断即可;(2)根据“量尺金线”的定义分三种情况讨论计算即可;(3)射线PM 是FPN Ð的“量尺金线”,PM 在FPN Ð的内部,PF 在NPM Ð的外部,然后分三种情况求解即可.【详解】解:(1)一个角的平分线中,大角是小角的2倍,满足“量尺金线”的定义,故答案为:是;(2)60MPN Ð=°,射线PQ 是MPN Ð的“量尺金线”,根据“量尺金线”的定义分三种情况讨论:当2QPN MPQ Ð=Ð时,如图,∵260QPN MPQ Ð+Ð=°,∴260403QPN Ð=°´=°;当2MPQ QPN Ð=Ð时,如图,∵260QPN MPQ Ð+Ð=°∴160203QPN Ð=´°=°;当2NPM QPN Ð=Ð时,如图,∵60MPN Ð=°,∴160302QPN Ð=´°=°;综上:当QPN Ð为20°,30°,40°时,射线PQ 是MPN Ð的“量尺金线”.(3)∵射线PM 是FPN Ð的“量尺金线”,∴PM 在FPN Ð的内部,∴PF 在NPM Ð的外部;分三种情况:①如图,当2NPM FPM Ð=Ð时,如图所示:1122FPM NPM x Ð=Ð=°∴1322FPN NPM FPM x x x Ð=Ð+Ð=°+°=°,∴()313s 22t x x =¸=;②如图,当2FPN MPN Ð=Ð时,如图所示:∴2FPN x Ð=°,∴()2s 3t x =;③当2FPM NPM Ð=Ð时,如图所示:∵2FPM x Ð=°,∴3FPN NPM FPM x Ð=Ð+Ð=°,∴()33s t x x =¸=;综上:当t 为x 或12x 或23x 时,射线PM 是FPN Ð的“量尺金线”.18.(1)是;(2)20°或30°或40°;(3)307t =或52或203.【分析】(1)根据奇妙线定义即可求解;(2)分三种情况,根据奇妙线定义即可求解;(3)分三种情况,根据奇妙线定义得到方程求解即可;本题考查了角平分线定义,角度和差,奇妙线的定义,理解“奇妙线”的定义是解题的关键.【详解】(1)解:根据角平分线的定义可知:由OC 平分AOB Ð,得:22AOB AOC BOC Ð=Ð=Ð,则一个角的角平分线是这个角的“奇妙线”,故答案为:是;(2)①当PQ 平分MPN Ð时,∴30MPQ Ð=°,②当13MPQ MPN Ð=Ð时,∴20MPQ Ð=°,③23MPQ MPN Ð=Ð,∴40MPQ Ð=°,则综上可知:MPQ Ð的度数为20°或30°或40°;(3)由题意得:如图,则10NPQ t Ð=°,16MPM t Ð=°,则11606M PN MPN MPM t Ð=Ð+Ð=°+°,∵射线PQ 是1M PN Ð的“奇妙线”,∴112NPQ M PN Ð=Ð①,即()1106062t t °=°+°,解得:307t =,113NPQ M PN Ð=Ð②,即()1106063t t °=°+°,解得:52=t ,123NPQ M PN Ð=Ð③,即()2106063t t °=°+°,解得:203t =,综上可知:307t =或52或203.19.(1)是;不是(2)①t 的值为52或352;②CON Ð的度数为160°或172°【分析】本题主要考查了角的计算、角平分线的定义等知识点,理解并熟练应用新定义是解题的关键.(1)利用“双倍和谐线”的定义结合图形进行判断即可;(2)①由题意得:904AOC t Ð=°-,40AOB Ð=°,利用分类讨论的思想方法分2AOC AOB Ð=Ð或2AOB AOC Ð=Ð两种情况讨论解答,依据上述等式列出方程即可;②由题意得:4CON t Ð=,902AON t Ð=°+,20AOD Ð=°,702DON AON AOD t Ð=Ð-Ð=°+,利用分类讨论的思想方法分2COM COD Ð=Ð或2COD COM Ð=Ð两种情况讨论解答,依据上述等式列出方程,解方程即可求得结论.【详解】(1)解:∵PS 平分RPT Ð,∴2TPR TPS Ð=Ð,∴射线PT 是射线PS ,PR 的“双倍和谐线”;∵PS 平分RPT Ð,∴RPS TPS Ð=Ð,∴射线PS 不是射线PR ,PT 的“双倍和谐线”.故答案为:是;不是.(2)解:①由题意得:904AOC t Ð=°-,40AOB Ð=°.∵射线OA 是射线OB ,OC 的“双倍和谐线”,∴2AOC AOB Ð=Ð或2AOB AOC Ð=Ð,如图所示:当2AOC AOB Ð=Ð时,则:904240t -=´,解得:52=t ;如图所示:当2AOB AOC Ð=Ð时,则:()402904t =-,解得:352t =;综上,当射线OA 是射线OB 、OC 的“双倍和谐线”时,t 的值为52或352;②由题意得:4CON t Ð=,902AON t Ð=°+,20AOD Ð=°,702DON AON AOD t Ð=Ð-Ð=°+,∵当射线OC 与射线OA 重合时,运动停止,∴此时AON CON Ð=Ð,∴9024t t +=,解得:45t =.∴当45t =秒时,运动停止,此时180AON Ð=°,。
第25章病毒感染的检查方法与防治原则第一节病毒的诊断随着对病毒感染从生物学及分子生物学水平的研究进展,病毒的诊断技术已由传统方法扩展至新的快速诊断技术。
病毒感染的快速诊断有利于对病毒感染者的治疗;例如对有些病毒(如疱疹病毒、人类免疫缺陷病毒)感染已有较特异的抗病毒药物治疗。
早期诊断及早期治疗对控制病毒感染十分重要。
此外,从群体感染角度分析,确诊病毒感染的病原在监测病毒的流行病学(如新型流感病毒、肺出血型汉坦病毒的发现等)方面也有重要的现实意义。
标本的采集与送检用于分离病毒或检测病毒及其核酸的标本应采集病人急性期标本。
根据不同病毒感染采取不同部位的标本(如鼻咽分泌物、脑脊液、粪便或血液)。
由于病毒在室温中很易被灭活,应在采集和运送标本中注意冷藏。
如欲检测抗体,早期单份血清可用于检测IgM抗体,而欲检测早期与恢复期的抗体效价的变化,则需采集早期与恢复期双份血清。
血清抗体检测标本应保存于-20℃。
病毒的分离、培养与鉴定目前最常用的方法是细胞培养。
在注明欲检测的病毒后,病毒分离培养的实验室将选择适当的原代培养细胞(敏感性高)及传代细胞系(便于在实验室保存)作病毒分离培养。
接种标本后,细胞可出现病变或也可并不出现病变而需用血细胞吸附等方法检测是否有病毒增殖,并进一步还需用特殊的抗体鉴定病毒的种类,例如用特异荧光抗体染色或抗体中和试验等。
当无病毒增殖时,可能标本中病毒含量较低,未被检出,则需要盲目传代3次后方可明确标本中是否存在病毒。
这一分离与鉴定病毒的全过程有时可长达2~3个月,而且仅在有设备、实验条件及合格工作人员的实验室方可进行。
虽然这种方法所需时间长、步骤多,但在确定病原上是“黄金标准”,即其准确性高而无误。
如我国台湾省确定由肠道病毒71型引起多数患儿发生脑膜炎并致死的研究报道,就是由分离培养及鉴定病毒所确诊。
如欲提高病毒感染细胞培养的敏感性,可将病毒接种于内有盖玻片的细胞培养瓶,经低温离心后,以增加病毒与细胞接触的机率。
九年级下册主阵地话题复习九年级数学上学期内容较多,而下学期开学时间又在三月初,离中考时间已经很近了,因此本学期不仅要完成九年级(上)数学学习任务,有必要对九年级(下)“反比例函数”“相似形”二章进行教学,导致本学期复习时间较短,最多只有两周左右的复习时间。
根据实际情况,特作计划如下:(一)备考目标(1)第21章“一元二次方程”主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,特别是“一元二次方程”的三个重要题型:①一元二次方程的定义:②一元二次方程的解法;③一元二次方程的应用。
在课堂上要逐一对这些题型归纳讲解,多强调解题方法的针对性。
最后针对平时练习中存在的问题,查漏补缺。
(2)第22章就是“二次函数”这个内容非常关键,Lauz重点备考,强化训练;(3)第23章是几何部分。
这章的重点是旋转的性质及其生活中的应用。
所以记住性质是关键,学会应用是重点。
要学会生活中的旋转是随时都可以转化成数学问题,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。
对常见的旋转题要多练多总结。
(4)第24章主要就是“圆”的教学,对这章的考试题型中实际问题背景学生可能将不一定熟识,所以要以与课本同步的题型居多,必须记诵圆的垂径定理,使学生积极主动动手操作方式直角三角形与垂径定理之间的联系,并得出结论,课堂上教师小结,尽量就是通识科多练习,该动手的必须多动手,尽可能的使学生自己总结出圆与多种几何图形融合的实际应用领域问题的方法。
(5)第25章“概率初步”,重点放在列举方法上(6)第26章“反比例函数”重点放到函数的性质和应用领域上。
(二)复习方法(1)强化训练这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。
特别是二次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。
还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
(2)强化管理,严格要求根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。
第二十五章概率初步1.了解必然事件、不可能事件和随机事件的概念.2.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义.3.能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率.4.能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系.5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义和计算教学,渗透辩证思想教育.“概率初步”是“统计与概率”领域的重要内容,在日常生活和生产中有广泛的应用,它与“统计”有关知识联系紧密,同时也是以后学习更深的“概率与统计”知识的基础,对概率的意义、求法及应用的学习与探究可以发展思维能力,有效改善学习方式,掌握认识事物的一般规律,对社会生活中的一些现象作出预测.概率是初中数学的重要内容,从数量上刻画了某个事件发生的可能性的大小,在我们日常生活中有着重要的意义.本章的主要内容包括事件的类型,概率的意义、计算方法、应用以及用频率或通过模拟试验来估计概率的大小.具体内容有概率的意义、用列举法求概率、利用频率估计概率、统计与概率的实际应用.概率问题是近年中考的热点之一,由单一的选择题、填空题延伸到分值较高的解答和应用题,甚至可以设计成开放探索题.本章内容不论在基础知识和数学思想方法上,还是在对能力培养上都非常重要.【重点】运用列表法或树状图法计算事件的概率.【难点】能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.1.通过实例让学生感受事件发生的可能性的大小及概率的意义.2.用列举法求概率时,首先要让学生准确判断在事件中每一种情况发生的可能性是相同的,较简单的可来求,需要两步或两步以上试验操作时,可以借助“树状图”来计算.以直接利用公式P(A)=mn3.要注意利用试验与估测的方法来理解概率和频率,尽管随机事件在每次试验中发生与否具有不稳定性,但只要试验的条件不变,这一事件出现的频率会随着试验次数的增加而趋于稳定,这个稳定的值就可以作为该事件发生的概率.4.通过对具体问题的模拟试验,感受通过统计数据推测的合理性,进一步体会统计与概率的关系.25.3用频率估计概率1课时25.1随机事件与概率1.了解必然事件、不可能事件和随机事件的概念, 知道随机事件发生有可能性大小之分.2.了解概率的意义.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.在合作探究学习过程中,激发学生的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【重点】会判断现实生活中哪些事件是随机事件.【难点】随机事件的特点、概率的意义.25.1.1随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点,会判断哪些事件是必然事件、不可能事件、随机事件,知道随机事件发生有可能性大小之分.经历试验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念.体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象.【重点】随机事件的特点, 会判断现实生活中哪些事件是随机事件.【难点】随机事件的概念.【教师准备】多媒体课件1~4,装有乒乓球的不透明袋子.【学生准备】复习小学学过的分数和初中学过的整式.导入一:播放一段天气预报,引出一句古语:“天有不测风云”.【课件1】请说明下列事件是否一定发生.(1)太阳从西边下山;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解.教师给出上述问题并问“上述结果是确定的吗”.学生阅读、观察、思考、回答问题.[设计意图]首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,提出这些问题符合由浅入深的理念,容易激发学生学习的积极性.导入二:同学们,今天我们先来玩一个摸球游戏.三个不透明的袋子中均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验,每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.[设计意图]通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解,能够巧妙地实现从实践认识到理性认识的过渡.在学生讨论、归纳的基础上,教师板书必然事件、不可能事件的定义:在一定条件下必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件.【课件2】5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小均相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举出与事件(3)相似的事件吗?提出问题,探索概念:(1)上述活动中的必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?结合问题,师生总结随机事件的特点:可能发生也可能不发生.思路二请同学们把下面的事件根据发生的可能性进行分类.【课件3】(1)通常加热到100 ℃时,水沸腾;(2)姚明在罚球线上投篮一次,命中;(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5) 经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心;(7)太阳东升西落;(8)人离开水可以正常生活100天;(9)正月十五雪打灯;(10)宇宙飞船的速度比飞机快.学生根据自己的观察,说出上述事件分三类:(1)(7)(10)、(4)(8)、(2)(3)(5)(6)(9).教师追问:各类事件各有什么特点?请同学们自己总结一下.学生思考后说:(1)(7)(10)是必然发生的事件;(4)(8)是不可能发生的事件;(2)(3)(5)(6)(9)是可能发生也可能不发生的事件.引导学生归纳必然事件、不可能事件、随机事件的定义.[设计意图]学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在充分比较后,达到加深理解的目的.二、随机事件发生的可能性大小组织学生进行摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?教师提出要求:学生通过试验观察结果,思考并阐述自己得出的结论及理解.教师进一步引导学生试验,归纳得出结论:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.[设计意图]“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切、有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情.三、例题讲解【课件4】在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品.其中,是必然事件;是不可能事件;是随机事件.在这200件产品中任意选出1件,级品的可能性大.(如果没有请填“无”)教师引导学生理解题意,尝试答题.学生完成解答过程:其中,④是必然事件;②是不可能事件;①③是随机事件.在这200件产品中任意选出1件,一级品的可能性大.[设计意图]学生利用所学内容进行解答,在巩固知识的同时,把随机事件和随机事件的可能性大小结合在一起.[知识拓展]必然事件是指一定能发生的事件,其发生的可能性是100%;不可能事件是指一定不能发生的事件,其发生的可能性是0;随机事件发生的可能性在0~1之间.1.在一定条件下,必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件;可能发生也可能不发生的事件称为随机事件.2.一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.1.下列事件中,是必然事件的为()A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2 ℃C.通常加热到100 ℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》解析:选项A和D是随机事件;选项B是不可能事件;选项C是必然事件.故选C.2.下列说法正确的是()A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.买彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球解析:选项A中事件发生的可能性虽然很小,但也有可能发生;选项B中的事件是必然事件,所以它一定会发生;选项C中买彩票的中奖率是1%,说明中奖的可能性小,有时买100张彩票也可能不中奖;选项D中的事件是随机事件.故选B.3.下列事件:①在足球赛中,弱队战胜强队;②任意取两个有理数,这两个数的和为正数;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中确定性事件的个数是()A.1个B.2个C.3个D.4个解析:①在足球赛中,弱队战胜强队,此事件为随机事件.②两个有理数的和有可能是正数、负数或零,此事件为随机事件.③任取两个正整数,其和大于1,此事件为确定性事件中的必然事件.④长分别为3,5,9厘米的三条线段能围成一个三角形,此事件为确定性事件中的不可能事件.故确定性事件为③和④,一共有2个确定性事件.故选B.4.一个小球在如图所示的地面上随意滚动,小球“停在黑色方块上”与“停在白色方块上”的可能性哪个大?(方块的大小、质地均相同)解:图中有9块黑色方块,15块白色方块,所以停在白色方块上的可能性大.25.1.1 随机事件一、认识必然事件、不可能事件、随机事件二、随机事件发生的可能性大小三、例题讲解一、教材作业【必做题】教材第128页的练习,教材第129页练习的1~3题.【选做题】教材第135页习题25.1的7题.二、课后作业【基础巩固】1.在一个质地均匀的正方体的六个面上,分别标有1,2,3,4,5,6,“抛出正方体,落地后朝上的一面标有6”这一事件是 ()A.必然事件B.随机事件C.不可能事件D.以上都不对2.下列事件是不可能事件的是()A.某个数的绝对值小于0B.0的相反数为0C.某两个数的和为0D.某两个负数的积为正数3.某次国际乒乓球比赛中,只有甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()A.冠军属于甲B.冠军属于乙C.冠军属于中国人D.冠军属于外国人【能力提升】4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.下列是随机事件的是()A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边C.面积相等的两个三角形全等D.三角形内心到三边距离相等6.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定7.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生8.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是()A.李东夺冠的可能性比较小B.李东和他的对手比赛10局,他一定赢8局C.李东夺冠的可能性比较大D.李东肯定赢9.一个袋子中装有除颜色外都相同的6个红球和4个黄球,从袋子中任意摸出一个球,则:(1)“摸出的球是白球”是什么事件?(2)“摸出的球是红球”是什么事件?(3)“摸出的球不是绿球”是什么事件?(4)摸出哪种颜色球的可能性大?【拓展探究】10.如图所示,第一列表示各盒中球的颜色、个数情况,第二列表示摸到红球的可能性大小,请你用线把它们连接起来.【答案与解析】1.B(解析:抛掷一个质地均匀的正方体,落地后朝上的那一面有可能标有1,也有可能标有2,3,4,5,6,所以“抛出正方体,落地后朝上的一面标有6”是随机事件.)2.A(解析:任何实数的绝对值都不小于0,所以选项A是不可能事件;选项B是必然事件;选项C是随机事件;选项D是必然事件.)3.C(解析:因为进入决赛的都是中国人,所以冠军一定属于中国人,即“冠军属于中国人”是必然事件.)4.A(解析:由于袋子中装有4个黑球和2个白球,摸出的三个球的情况有如下三种:两个白球和一个黑球,一个白球和两个黑球,三个黑球,因此摸出的三个球中至少有一个球是黑球,所以“摸出的三个球中至少有一个球是黑球”是必然事件.)5.C(解析:“角平分线上的点到角两边的距离相等”是必然事件;“三角形任意两边之和大于第三边”是必然事件;“三角形内心到三边距离相等”是必然事件;面积相等的两个三角形不一定全等,所以选项C是随机事件.)6.C(解析:因为在一副扑克牌中,Q和K的数量相同,所以抽到它们的可能性相同.)7.D(解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.)8.C(解析:李东夺冠的可能性是80%,只能说明李东夺冠的可能性较大,不能说明比赛10局,李东一定赢8局,也不能说明李东一定赢.)9.解:(1)“摸出的球是白球”是不可能事件. (2)“摸出的球是红球”是随机事件. (3)“摸出的球不是绿球”是必然事件. (4)摸出红球的可能性大.10.解:由题意知各盒中总球数都是10,所以摸到红球的可能性大小与每个盒中红球的个数有关.①中不可能摸到红球;②中不太可能摸到红球;③中可能摸到红球;④中很可能摸到红球;⑤中一定能摸到红球.连线如下图所示.本节课的设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏、抽签、掷骰子游戏引导学生分清什么是必然事件,什么是不可能事件,什么是随机事件,增加学生的学习兴趣.学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现得不够,关注学生的学习过程不够全面.指导学生联系生活实际,思考事件发生的可能性.练习(教材第128页)解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件.练习(教材第129页)1.解:“落在海洋里”的可能性更大.2.解:(1)不能. (2)抽到黑桃的可能性大. (3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同.3.解:例如:明天会下雪;经过一个十字路口碰到红灯;买一张彩票中大奖等都是随机事件.在写有0,1,2, (9)这十张卡片上,任取一张,得到一个大于10的数是不可能事件,得到一个小于10的数是必然事件.(答案不唯一)实施新课标以来,在数学教学中应该注意数学来源于生活又服务于生活的原则,为学生创设情境,使学生置身于这些情境中不知不觉地学习数学知识,并在学习过程中始终关注学生情感态度的变化和发展,以教师为引导,学生为主体来开展教学,在这样的背景下,教师组织教学就有更高的要求.当然,如果教师能时刻关注学生,运用人性化、充满灵性、悟性的教学,那么学生就更能感受到数学无处不在的魅力.在小学阶段,学生已经了解了随机现象发生的可能性,本节课主要是在此基础上对随机事件进行进一步的研究.本节课的重点为随机事件的特点,难点为判断现实生活中哪些事件是随机事件.为了能突破这一重难点,本节课设计了多个游戏,让学生真正地参与到活动中去,在参与中消化知识.(2014·南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球.下列说法中正确的是()A.可能性为13B.属于不可能事件C.属于随机事件D.属于必然事件〔解析〕本题考查了事件可能性的判断,解题的关键是紧扣定义.因为袋子中只装有红球,所以摸出一个球是红球属于必然事件,并且必然事件的概率,即可能性大小为1.故选D.25.1.2概率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=m.经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法.理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值.【重点】随机事件的概率的定义;“事件A发生的概率是P(A)=m(在一次试验中有n种等可能的结果,n其中事件A包含m种)”的求概率的方法及运用.【难点】了解概率的定义,理解概率计算的两个前提条件.【教师准备】多媒体课件1~8.【学生准备】1枚质地均匀的硬币.导入一:老师有一个小麻烦,请大家一起来想想办法.【课件1】周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球票给谁.请大家帮我想个办法来决定把球票给谁.学生制订方案:抓阄、抽签、猜拳、投硬币……教师对学生的较好想法予以肯定.追问:为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.在学生讨论发言后,教师给予评价并归纳总结.[设计意图] 提供的问题情境贴近学生生活,不仅能提高学生参与的积极性,而且让学生在潜意识中开始接触概率.导入二:同学们,我们一起玩一个游戏好不好?【课件2】 抛出你手中的硬币,记录抛出结果.抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?学生抛掷硬币、回答,教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等. [设计意图] 以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画.在学生观察、归纳的基础上,教师板书概率定义:一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P (A ).思路二进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?学生思考、回答,教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用16表示每一种点数出现的可能性大小.教师指出:16刻画了试验中随机事件发生的可能性大小.一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P (A ).[设计意图] 给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义.学生思考、交流,教师适当引导,启发学生注意到,以上试验有两个共同特点:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等.【课件4】 从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生思考、交流,教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.学生回答问题,教师进行纠正点拨.“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的比为25.于是“抽到偶数”的概率P (抽到偶数)=25;同理,“抽到奇数”的概率P (抽到奇数)=35.教师追问:对于具有上述特点的试验,如何求某事件的概率?师生归纳结论:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中m 种结果,那么事件A 发生的概率P (A )=m .【课件5】 根据上述求概率的方法,事件A 发生的概率P (A )的取值范围是怎样的?。
《公共政策:考点热点与真题解析》首都师范大学出版社,2020年版首都师范大学出版社使用说明在编写的过程中参考了国内主流的公共政策学科如下几本相关教材:谢明,《公共政策概论》,中国人民大学出版社谢明,《公共政策导论》,中国人民大学出版社严强,《公共政策学》,社会科学文献出版社陈振明,《公共政策分析》,中国人民大学出版社陈振明,《政策科学—公共政策分析导论》,中国人民大学出版社陈庆云,《公共政策分析》,中国人民大学出版社宁骚,《公共政策学》,高等教育出版社李国正,《公共政策分析》,首都师范大学出版社本书由北京大学、中国人民大学、清华大学、厦门大学等国内知名高校的博士、硕士历经2年编写完成。
本文结合了当前公共管理学研究的热点理论以及社会时政热点问题,并融合了国内数十所行政管理考研院校的真题。
考生在备考过程中,可以结合本书整理笔记或直接背诵。
行文框架:第一篇导论第1章公共政策的基本概念(谢明)第2章公共政策的学科要素和研究路径(宁骚)第3章公共政策活动(严强)第二篇公共政策理论第4章政策模型及相关理论(谢明)第5章公共政策分析模型及框架(陈庆云)第三篇公共政策系统第6章政策系统(陈振明、陈庆云)第7章政策主体(严强、谢明)第8章政策价值(严强)第9章政策工具(严强、宁骚、张成福党秀云)第10章政策客体(谢明)第11章政策环境(谢明)第四篇公共政策过程第12章社会问题与政策议程(谢明、宁骚、严强)第13章政策规划(严强、谢明)第14章政策决策(陈振明、严强)第15章政策执行(all)第16章政策评估(all)第17章政策监控(陈振明)第18章政策终结(谢明、宁骚)第五篇公共政策分析【注:这一部分还有些混乱,但考察不多,还需要再整合】第19章政策分析的框架和任务(严强)第20章公共政策的问题建构分析(严强)第21章公共政策的前景预测分析(严强)第22章公共政策的行动建议分析(严强)第23章公共政策分析方法论(陈庆云)第六篇公共政策管理第24章公共政策结构管理(严强)第25章创新性政策管理(严强)第26章应急型政策管理(严强)时政热点:【大致罗列热点,还未分类】1.上海试点垃圾分类2.知屋漏者在宇下,知政失者在草野——“民生”跟着“民声”走【民生问题】全面建立统一的城乡居民医保制度签发统一电子社保卡看病后可直接线上支付中小学、幼儿园相关负责人将与学生共同用餐3.构建合理网络空间治理模式为营造守信营商环境,推进网络诚信建设,由中国网络社会组织联合会、中国互联网发展基金会主办的电子商务诚信签名活动启动仪式上,阿里、京东、国美零售、唯品会等10家互联网企业代表签署了《电子商务诚信公约》。
专题25 探究小说的丰富意蕴和艺术手法人物是作品内容的重要因素,更确切地说是作品的主要构成部分。
因为小说的核心任务就是通过刻画人物、塑造典型人物形象来揭示社会生活的某些本质问题,从而表现作品的主题的。
热点题型一人物形象的概括与分析例1、阅读下面的文章,回答后面问题。
六指猴墨中白侯六是新来为东家赶马车的,右手六指,护院的都笑称他六指猴。
侯六也不恼,伸出手问:“像六指猴吗?”“六指猴是江洋大盗,你是给东家赶马车的。
”说完,大伙善意地笑了。
东家江大佬有钱,有钱的东家不住在泗州城。
东家喜欢住在五里城的凤凰墩。
凤凰墩背靠九座梅花山,西临拦山河,东边一条大道直通南边的泗州城。
东家爱去泗州城听戏。
东家听完泗州戏,侯六就陪他去梅岭茶馆。
东家和众玩家边品茶,边玩赏古玉。
众玩家要看东家腰上的玉。
东家掏出洁白的手帕,用嘴吹吹,才解下玉放在上面。
只见手帕上的蟠螭,圆眼怒睁,细眉飞扬,脚爪上翘,胛骨尽显,活泼有趣。
众人夸:“好玉。
”侯六却在旁边大碗喝着茶,喝完,就到泗州大街上逛。
东家品足了茶,侯六准时套好马车等他。
坎坷道,马车如履平地。
东家喜欢坐在车上眯着双眼哼着泗州戏,回味着茶馆玩玉时的惬意。
到家,东家拎起长衫下车,侯六就看到他腰带上那只活泼的蟠螭。
东家有钱,可有钱的东家人不坏。
东家喜欢拿出白花花的银子救济乡邻。
侯六常听人夸,东家是善人。
侯六拴好马,路过东家房时,就听东家和老婆说:“侯六人不小了,是该成家了……”侯六听后心一热,父母去世,无人再关心自己。
泗州大街,仁义当铺。
黑衣人闪身进屋。
老板贾仁义低声问:“玉呢?大人催要。
”黑衣人说:“盗不来。
”“没有你偷不来的宝贝,否则告知官府,丢的不仅是玉,还有多人的性命!”黑衣人不回答,抛下酬金,飞跃离去,眨眼钻进黑夜里。
天亮,府衙有人投案,声称自己是大盗六指猴。
师爷马皮金一看是马夫侯六,笑说:“你手长六手指,就是六指猴?”“我是六指猴,为东家赶车,实是想偷他的玉。
”马皮金只好向吴知府禀报。
25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。
方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
【九年级数学组】
课题:第25章热点专题训练
主备人:张光筑备课时间:授课人:授课时间:
教学目标:
1掌握本章重要知识点,会求事件的概率,能用概率的知识解决实际问题.
2.通过梳理本章知识,回顾解决生活中的概率问题,培养学生的分析问题和解决问题的能力.
教学重点:本章知识结构梳理及其应用.
学习难点::判断何时选用列表法求概率更方便.
教学过程设计
说明一、知识框图,整体把握
【教学说明】通过展示本章知识结构框图,可以系统地了解本章知
识及它们之间的关系.教学时,教师可边回顾边建立结构框图.
二、释疑解惑,加深理解
1.通过实例,体会随机事件与确定事件的意义,并能估计随机事件
发生可能性的大小.
2.结合具体情境了解概率的意义,会用列举法(列表和树状图法)
求一些随机事件发生的概率.P(A)=m/n(n是事件发生的所有的结果,
m是满足条件的结果.)
3.对于事件发生的结果不是有限个,或每种可能的结果发生的可能性
不同的事件,我们可以通过大量重复试验时的频率估计事件发生的概率.
三、典例精析,复习新知
例1一张圆桌旁有四个座位,A先坐在如图的座位上,
B、C、D三人随机坐在其他三个座位上,求A与B不相邻
的概率.
解:按顺时针方向依次对B、C、D进行排位,如下:
三个座位被B、C、D三人随机坐的可能性共有6种,由图可知:P(A与B不相邻)=2/6=1/3
例2有两个可以自由转动的均匀转盘A、B,分别被分成4等份,3等份,并在每份内均标有数字,如图所示:
王扬和刘菲同学用这两个转盘做游戏,游
戏规则如下:
①分别转动转盘A与B:
②两个转盘停止后,将两个指针所指的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止).若和为0,则王扬获胜;若和不为0,则刘菲获胜.
问:(1)用树状图法求王扬获胜的概率.
(2)你认为这个游戏公平吗?说明理由.
例3一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.
(1)小王通过大量反复试验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的频率稳定在1/4左右,请你估计袋中黑球的个数.
(2)若小王取出的第一个球是白球,将它放在桌上,闭上眼睛从袋中余下的球中再任意取一个球,取出红球的概率是多少?
分析:利用频率估计概率,建立方程.
解:(1)设黑球的个数为x个,则:x/20=1/4,解得:x=5.
所以袋中黑球的个数为5个.
(2)小王取出的第一个球是白球,剩下19个球中有6个红球.
∴P(红球)=6/19
四、复习训练,巩固提高
1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,是一“赵爽弦图”飞镖板,其直角三角形两直角边分别是2和4,小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投
掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()
2.如图,一转盘被等分成三个扇形,上面分别标有-1,1,
2中的一个数,指针位置固定,转动转盘后任其自由停止,这
时,某个扇形会恰好停止在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).
(1)若小静转动转盘一次,求得到负数的概率;
(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
五、师生互动,课堂小结
1.本堂课你对本章内容有一个全面的了解与掌握吗?你有哪些困惑与疑问?说说看.
2.布置作业:从教材“复习题25”中选取.
3.完成练习册中本课时的课后作业.
教学反思:。