高分子超_微滤膜的亲水化改性_从PEG化到离子化
- 格式:pdf
- 大小:1.03 MB
- 文档页数:5
高分子分离膜的改性方法张爱娟(04300036)[摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。
由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。
其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。
[关键词]:膜;改性;物理改性;化学改性一 引言膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。
然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。
目前使用的大多数膜的材料是聚丙烯(PP)。
聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。
当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。
即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。
因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。
对膜材料的改性的方法有物理改性,化学改性和表面生物改性。
二物理改性2.1 表面物理改性2.1.1 表面涂覆改性【1】以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。
高分子材料的合成与改性方法高分子材料是一类具有长链结构的大分子化合物,广泛应用于塑料、橡胶、纤维等各个领域。
为了提高高分子材料的性能和应用范围,人们经过长期研究,发展了多种合成和改性方法。
本文将介绍一些常见的高分子材料的合成与改性方法。
一、高分子材料的合成方法1. 缩聚聚合法缩聚聚合法是一种常用的高分子材料合成方法。
它通过将两个或多个小分子单体,在适当的条件下,通过缩聚反应或聚合反应连接成长链高分子化合物。
常见的缩聚聚合法包括:(1)酯交换聚合法:如聚酯的合成。
该方法以酯类单体为原料,通过酯交换反应,合成具有酯键的长链高分子。
(2)醚化聚合法:如聚醚的合成。
该方法以含有醚键的单体为原料,通过醚化反应,将多个单体连接成长链高分子。
(3)胺缩合聚合法:如聚酰胺的合成。
该方法以胺类和酸酐为原料,通过胺缩合反应,生成酰胺键,形成长链高分子。
2. 聚合反应法聚合反应法是指通过单体的自由基聚合、离子聚合或开环聚合等反应,将单体聚合成高分子链的方法。
常见的聚合反应法包括:(1)自由基聚合法:如聚丙烯的合成。
该方法以丙烯单体为原料,通过自由基引发剂引发聚合反应,形成聚合度较高的聚丙烯。
(2)阴离子聚合法:如聚乙烯的合成。
该方法以乙烯单体为原料,通过阴离子引发剂引发聚合反应,生成聚合度较高的聚乙烯。
3. 交联聚合法交联聚合法是指通过交联剂将线性高分子材料进行交联,形成具有空间网络结构的材料。
该方法可以提高高分子材料的力学性能和热稳定性,常见的交联聚合法包括:(1)辐射交联法:如交联聚乙烯的合成。
该方法以聚乙烯为原料,通过辐射照射,引发聚乙烯链的交联,形成具有交联结构的聚乙烯材料。
(2)化学交联法:如交联聚氨酯的合成。
该方法以含有多官能团的单体为原料,通过化学反应引发交联反应,形成交联结构的聚氨酯材料。
二、高分子材料的改性方法1. 加入填料加入填料是一种常用的高分子材料改性方法。
填料可以提高高分子材料的强度、硬度、耐磨性和导热性等性能,常见的填料有纤维素、硅酸盐、碳黑等。
高分子分离膜发展高分子分离膜是一种具有微孔结构和分子筛效应的薄膜材料,广泛应用于分离、纯化和浓缩等领域。
近年来,随着科学技术的不断发展和应用需求的增加,高分子分离膜得到了广泛的研究和发展,取得了显著的进展。
高分子分离膜在水处理领域发挥着重要的作用。
水资源是人类赖以生存和发展的重要基础,而水的处理和利用对于保障人类的生活和环境的可持续发展至关重要。
高分子分离膜作为一种有效的水处理技术,可以实现对水中杂质、溶解物和微生物等的分离和去除,从而提高水的品质和净化效果。
例如,利用高分子分离膜可以实现海水淡化,将咸水转化为可供人类生活和工业用水的淡水,解决水资源短缺问题。
此外,高分子分离膜还可以应用于废水处理、饮用水净化和水资源回收等方面,为人类创造更加洁净和可持续的水环境。
高分子分离膜在生物医药领域具有广阔的应用前景。
随着人口老龄化和健康意识的提高,生物医药领域对于高效、精确的分离和纯化技术的需求日益增加。
高分子分离膜作为一种理想的分离材料,具有良好的生物相容性和选择性,可以应用于生物大分子的分离、纯化和浓缩等过程。
例如,利用高分子分离膜可以实现药物的纯化和提纯,提高药物的质量和疗效;同时,高分子分离膜还可以用于生物分子的分离和富集,如蛋白质的纯化、DNA的提取和细胞的分离等,为生物医药研究和临床诊断提供了重要的工具和技术支持。
高分子分离膜还在能源领域展示出了巨大的应用潜力。
能源是人类社会发展的基础和动力,而高分子分离膜作为一种能够实现能量转换和分离的关键材料,对于能源的合理利用和高效转化具有重要意义。
例如,高分子分离膜可以应用于燃料电池中的质子交换膜,实现氢离子的传输和电荷的分离,提高燃料电池的效率和稳定性。
高分子分离膜作为一种重要的分离材料,在水处理、生物医药和能源等领域具有广泛的应用前景和巨大的发展潜力。
随着科学技术的不断进步和应用需求的增加,相信高分子分离膜将在未来发展中发挥更加重要的作用,为人类的生活和社会发展做出更大的贡献。
聚乙二醇对聚醚砜超滤膜的结构和亲水性能的影响作者:董曲钱建华秦刘伟曹原曹晨来源:《现代纺织技术》2017年第02期摘要:聚醚砜(PES)是一种制备超滤膜的常用材料,为改善其亲水性,文章在以聚醚砜为原料,二甲基乙酰胺(DMAc)为溶剂,聚乙烯吡咯烷酮(PVP)为添加剂,制备成铸膜液的基础上添加不同分子量和含量的聚乙二醇(PEG)。
应用扫描电子显微镜观察了膜的微观结构,测定了平板膜的接触角、截留率和水通量等性能。
结果表明:随PEG的分子量和质量分数的增大,PES膜的水通量显著增加,亲水性能大幅提高,PEG的加入使PES膜结构产生更加致密且连通性更好的指状孔结构。
当PEG分子量为6 000,PEG质量分数为4%时,制备得到的PES平板膜具有最佳的亲水性能。
关键词:聚醚砜平板超滤膜;聚乙二醇;分子量;质量分数;亲水改性中图分类号:TQ028.8文献标志码:A文章编号:1009-265X(2017)02-0010-07Abstract:Polyether sulfone (PES) is a common material for preparing ultrafiltration membrane. To improve its hydrophilic performance, this paper adds polyethylene glycol (PEG)with different molecular weight and content on the basis of preparing membrane casting solution with polyether sulfone as raw material, dimethylacetamide (DAMc) as solvent and polyvinylpyrrolidone (PVP) as additive, observes microstructure of membrane with scanning electron microscope and measures contact angle, reject rate and water flux of flat sheet membrane. The result shows that water flux of PES membrane greatly increases and hydrophilic performance greatly improves with the increase of molecular weight and mass fraction of PEG; the addition of PEG makes PEG membrane have a more compact fingerlike pore structure with better connectivity. When PEG molecular weight is 6000 and mass fraction is 4%, PEG flat sheet membrane prepared has the best hydrophilic performance.Key words:polyether sulfone flat ultrafiltration membrane; polyethylene glycol; molecular weight; mass fraction; hydrophilic modification近年来,随着社会的快速发展,水体污染问题也日益突出,对于优良的过滤材料的需求也逐渐增大[12]。
亲水性膜的研究进展亲水性膜的研究进展文章标题:亲水性膜的研究进展摘要:亲水性膜因其耐污染等性能,成为当前分离膜研究的热点之一。
从疏水性材料亲水性改性和亲水性材料的角度出发,综述了亲水性分离膜的改性方法以及亲水性材料制备膜的优点。
关键词亲水性亲水性改性疏水性AdvancesonHydrophilicMembranes1、概述随着膜技术的发展,膜分离已经越来越广泛的应用于生产、生活的各个方面。
但其在使用过程中易被污染问题逐渐受到人们的重视。
常用于微滤和超滤的膜材料大多是疏水性的,如聚乙烯,聚丙烯,聚偏氟乙烯,聚砜等。
它们有良好的热稳定性及耐化学腐蚀性。
然而疏水性膜的缺点就是在使用过程中由于溶质吸附和孔堵塞而使得通量下降。
疏水性膜不被水润湿,为了让水透过膜必须进行材料表面改性,这些材料用于水过滤时必须对材料表面进行亲水化处理,而亲水化处理时引人的表面活性剂往往会影响它的一些使用,因此需要制备亲水性膜。
2、改性亲水性膜膜性能与膜材料的性质密切相关,使用疏水性材料所制备的膜,在使用时,水通量较低,在分离油/水体系(尤其是含蛋白质的溶液)时吸附污染严重,通量衰减很快,降低了膜的使用寿命,增加了操作费用,制约了其在膜分离领域的应用。
因此,大部分进行改性。
2.1膜表面化学处理改性化学改性是在疏水材料表面引人亲水性成分的化学改性方法。
Molly[1]通过两步化学改性在PVDF膜表面引入了羧基。
即先使膜在含有相转移催化剂——四丁基溴化铵的NaOH溶液中脱HF,生成纳米级的超薄活性皮层,再用强氧化剂氯酸钾/硫酸氧化活性皮层中不饱和基团,改性过程在N2保护氛围中进行。
XPS光谱及UV光谱分析表明,膜表面引入的极性基团为羧基。
接触角测定表明,改性后膜表面的接触角较改性前降低了11°,膜表面的亲水性有较大改善。
Y.Nagase[2]等人为了改进聚砜的气体和液体的通透性,用聚合物反应引入PDMS(聚二甲基硅氧烷)作为支链来修饰聚砜。
Fundamental and application of amphiphilic copolymers in high performance MF/UF membranes 作者: 朱宝库 崔月 王俊 王纳川 姚之侃 朱利平
作者机构: 浙江大学高分子科学与工程学系,膜与水处理技术教育部工程研究中心,高分子合成与功能构造教育部重点实验室,杭州310027
出版物刊名: 中国工程科学
页码: 87-93页
年卷期: 2014年 第12期
主题词: 两亲高分子 共混微孔膜 表面富集 亲水 抗污染
摘要:为提高分子超微滤膜材料的亲水性、抗污染性能、通量和寿命,降低膜材料制造成本,提出两亲高分子共混改性聚偏氟乙烯、聚氯乙烯、聚醚砜膜材料的基础与应用技术研究。
研究中,从分子结构设计出发,采用多种活性聚合法合成了一系列具有不同组成和序列结构的
两亲高分子,研究了不同组成与序列结构的两亲高分子在成膜过程中的表面富集的规律、两亲
高分子在共混膜中的稳定化机制等基础问题;从成膜热力学和动力学出发实现了共混膜多层次
微结构的调控,开发出多种两亲高分子合成及其共混超滤膜制备的技术,实现了膜材料规模化
生产及其在自来水净化、废水处理及医疗过滤等领域的应用。