2017年广州市海珠区中考一模数学试卷(含答案)
- 格式:doc
- 大小:1.34 MB
- 文档页数:17
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1.如图,数轴上两点,表示的数互为相反数,则点表示的数是B. C. D. 无法确定2.如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A. B.C. D.3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A. ,B. ,C. ,D. ,4. 下列运算正确的是A. B.C.()5.关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B. C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7. 计算,结果是A. B. C. D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9. 如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A. B.C. D.10.,函数与在同一直角坐标系中的大致图象可能是A. B.C. D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,.15. 如图,圆锥的侧面展开图是一个圆心角为的扇形,若圆锥的底面圆半径是,则圆锥的母线.16. 如图,平面直角坐标系中是原点,平行四边形的顶点,的坐标分别是,,点,把线段三等分,延长,分别交,于点,,连接,则下列结论:①是的中点;②与相似;③四边形的面积是;其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题;共117分)17. 解方程组:18. 如图,点,在上,,,.求证:.19. 某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的;(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.20. 如图,在中,,,.(1)利用尺规作线段的垂直平分线,垂足为,交于点:(保留作图痕迹,不写作法);(2)若的周长为,先化简,再求的值.21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路公里,再由乙队完成剩下的筑路工程,已知乙队倍,甲队比乙队多筑路天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为,求乙队平均每天筑路多少公里.22. 将直线向下平移个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是.(1)求和的值;(2)结合图象求不等式的解集.23.已知抛物线,直线,的对称轴与交于点,点与的顶点的距离是.(1)求的解析式;(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.24. 如图,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动,当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.25. 如图,是的直径,,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.答案第一部分1. B2. A3. C4. D5. A6. B7. A8. C9. D 10. D第二部分11.12.13. ;14.15.16. ①③第三部分17.得:将代入得方程组的解是18. 因为,所以,,即,在和中,所以,.19. (1) E 类:(人),统计如图所示(2)(3)设人分别为,,,,,画树状图:所以这人做义工时间都在中的概率为.20. (1)如下图所示:(2),,,,,所以.21. (1)乙队筑路的总公里数:(公里).(2)设甲队每天筑路公里,乙队每天筑路公里.根据题意得:解得:经检验是原方程的解且符合题意.乙队每天筑路:答:乙队平均每天筑路公里.22. (1)由向下平移一个单位长度而得,,点纵坐标为且在上,点坐标为,点在反比例函数上,.(2)与的图象如图所示,由图可知当或.23.(1)的对称轴与的交点为,的对称轴为直线顶点坐标为,,,,,或.(2)①当时,与轴交点为,,随的增大而增大,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得.②当时,令,则,得,与轴交于点,,(ⅰ)当经过点,时,则有得(ⅱ)当经过点,时,则有得,综上,的解析式为:或.24. (1)因为四边形为矩形,所以,因为与交于点,且与关于对称,所以,,,所以,所以四边形是菱形.(2)①连接,使直线分别交于点,交于点,因为关于的对称图形为,所以,因为,,所以,,因为四边形是菱形,所以,.又矩形中,.所以为的中位线,所以,因为,,所以,所以,又,所以,,所以因为,所以,所以.②过点作交于点,因为由①可知:,所以点以的速度从到所需时间等同于以的速度从运动到所需时间.即:所以由运动到所需的时间就是的值.因为如图,当运动到,即时,所用时间最短,所以,在中,设,则,,所以,解得:或(舍去),所以所以当点点沿题述路线运动到点所需时间最短时,的长为,点走完全程所需要的时间为.25. (1)如图,连接,是的直径,.,,.(2)①.如图所示,作于,连接,由()可知为等腰直角三角形.又是的中点,,,为等腰直角三角形,,为的切线,,又,四边形为矩形,,.,,.,.,,,..当为钝角时,如图所示,同理,得,易得,.,,,.②如图,当在左侧时,过点作交于点,由()①知,,.又,,.中,,,.当在右侧时,如图,过作于,由()①知,,,.,.,,在中,,.。
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1.如图,数轴上两点,表示的数互为相反数,则点表示的数是B. C. D. 无法确定2.如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A. B.C. D.3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A. ,B. ,C. ,D. ,4. 下列运算正确的是A. B.C. ()5.关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B. C. D.6.如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7.计算,结果是A. B. C. D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9. 如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A. B.C. D.10.,函数与在同一直角坐标系中的大致图象可能是A. B.C. D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,.15. 如图,圆锥的侧面展开图是一个圆心角为的扇形,若圆锥的底面圆半径是,则圆锥的母线.16. 如图,平面直角坐标系中是原点,平行四边形的顶点,的坐标分别是,,点,把线段三等分,延长,分别交,于点,,连接,则下列结论:①是的中点;②与相似;③四边形的面积是④;其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题;共117分)17. 解方程组:18. 如图,点,在上,,,.求证:.19. 某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.20. 如图,在中,,,.(1)利用尺规作线段的垂直平分线,垂足为,交于点:(保留作图痕迹,不写作法);(2)若的周长为,先化简,再求的值.21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为,求乙队平均每天筑路多少公里.22. 将直线向下平移个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是.(1)求和的值;(2)结合图象求不等式的解集.23. 已知抛物线,直线,的对称轴与交于点,点与的顶点的距离是.(1)求的解析式;(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.24. 如图,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动,当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.25. 如图,是的直径,,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.答案第一部分1. B2. A3. C4. D5. A6. B7. A8. C9. D 10. D第二部分11.12.13. ;14.15.16. ①③第三部分17.得:将代入得方程组的解是18. 因为,所以,,即,在和中,所以,.19. (1) E 类:(人),统计如图所示(2)(3)设人分别为,,,,,画树状图:所以这人做义工时间都在中的概率为.20. (1)如下图所示:(2),,,,,所以.21. (1)乙队筑路的总公里数:(公里).(2)设甲队每天筑路公里,乙队每天筑路公里.根据题意得:解得:经检验是原方程的解且符合题意.乙队每天筑路:(公里),答:乙队平均每天筑路公里.22. (1)由向下平移一个单位长度而得,,点纵坐标为且在上,点坐标为,点在反比例函数上,.(2)与的图象如图所示,由图可知当或.23. (1)的对称轴与的交点为,的对称轴为直线顶点坐标为,,,,,或.(2)①当时,与轴交点为,,随的增大而增大,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得.②当时,令,则,得,与轴交于点,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得,综上,的解析式为:或.24. (1)因为四边形为矩形,所以,因为与交于点,且与关于对称,所以,,,所以,所以四边形是菱形.(2)①连接,使直线分别交于点,交于点,因为关于的对称图形为,所以,因为,,所以,,因为四边形是菱形,所以,.又矩形中,.所以为的中位线,所以,因为,,所以,所以,又,所以,,所以因为,所以,所以②过点作交于点,因为由①可知:,所以点以的速度从到所需时间等同于以的速度从运动到所需时间.即:所以由运动到所需的时间就是的值.因为如图,当运动到,即时,所用时间最短,所以,在中,设,则,,所以,解得:或所以所以当点点沿题述路线运动到点所需时间最短时,的长为,点走完全程所需要的时间为.25. (1)如图,连接,是的直径,.,,.(2)①.如图所示,作于,连接,由()可知为等腰直角三角形.又是的中点,,,为等腰直角三角形,,为的切线,,又,四边形为矩形,,.,,.,.,,,..当为钝角时,如图所示,同理,得,易得,.,,,.②如图,当在左侧时,过点作交于点,由()①知,,.又,,.中,,,.当在右侧时,如图,过作于,由()①知,,,.,.,,在中,,.。
广州市海珠区2017年中考一模数学试卷第一部分选择题〔共30分〕一、选择题〔此题共10 个小题,每题 3 分,总分值30 分.下面每题给出的四个选项中,只有一个是正确的.〕1.如果向东走50m 记为50m,那么向西走30m 记为〔〕A.-30mB. |-30| mC.-〔-30〕mD.m2.以下图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是〔〕A.B.C.D.3.如图,点A.B.C 在⊙D 上,∠ABC=70°,则∠ADC 的度数为〔〕A.110°B.140°C.35°D.130°第3题图4.如下图的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A. B. C. D.5.以下计算正确的选项是〔〕A.3x2 ·4x2 =12x2B.=(y)C. D.6.以下命题中,假命题...是〔 〕 A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线相等的平行四边形是矩形7.以下函数中,y 随 x 的增大而增大的是〔 〕 A. B. x+5 C. D.8.如图,在R t ABC 中,∠B =90°,∠A =30°,DE 垂直平分斜边AC ,交AB 于点D ,点E 是垂足,连接CD . 假设BD =1,则AC 的长是〔 〕A . 2 3B .2C . 4 3D .4 9.已知抛物线y 的图象如下图,顶点为〔4,6〕,则以下说法错误的选项是〔 A . b 2 >4ac B .6C . 假设点〔2,m 〕〔5,n 〕在抛物线上,则m >nD . 8a +b = 0〕10.如图,在平面直角坐标系中,R t OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为( 2, 2),点 C 的坐标为〔1,0〕,点P 为斜边OB 上的一动点,则P A +PC 的最小值为〔 〕第 8 题图 第 9 题图 第 10 题图 A . 2 B . 3 C . 2 D . 3 2第二部分非选择题〔共120分〕二、填空题〔此题共6 个小题,每题 3 分,共18 分.〕11.在不透明口袋内有形状.大小.质地完全一样的5 个小球,其中红球3 个,白球2 个,随机抽取一个小球是红球的概率是________.12.分解因式:3x2 -6xy =_________.13.某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6 天该种饮料的日销售情况,结果如下〔单位:罐〕:33,28,32,25,24,30,这 6 天销售量的中位数是________.14.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4 元,则总收费y与制作纪念册的册数x的函数关系式为___________.15.如图,AB是⊙O的直径,AC.BC是⊙O的弦,直径DE⊥BC于⌒上,AC=8,BC=6,则EM=_______.点M. 假设点E在优弧AB第15题图16.假设一元二次方程0 有两个相同的实数根,则a2 -b2 +5的最小值为__________.三、解答题〔此题共9 个小题,共102 分,解答要求写出文字说明,证明过程或计算步骤.〕17.〔共9 分〕〔1〕解不等式组〔2〕解方程18. 〔共9 分〕如图,AC是菱形ABCD的对角线,点E.F分别在AB、AD上,且AE=AF.求证:△ACE≌△ACF.19.〔共10 分〕已知A= ( )·〔1〕化简A;〔2〕假设x满足x2 -2x -8 =0,求A的值.20.〔共10 分〕中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如下图的两幅统计图.在条形图中,从左向右依次为:A 级〔非常喜欢〕,B 级〔较喜欢〕,C 级〔一般〕,D 级〔不喜欢〕.请结合两幅统计图,答复以下问题:〔1〕本次抽样调查的样本容量是__________,表示“D级〔不喜欢〕”的扇形的圆心角为__________°;〔2〕假设该校九年级有200 名学生.请你估计该年级观看“中国诗词大会”节目B 级〔较喜欢〕的学生人数;〔3〕假设从本次调查中的A 级〔非常喜欢〕的5 名学生中,选出2 名去参加广州市中学生诗词大会比赛,已知A 级学生中男生有3 名,请用“列表”或“画树状图”的方法求出所选出的2 名学生中至少有1 名女生的概率.21.〔共12 分〕某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,假设购买3 个温馨提示牌和4 个垃圾箱共需580 元,且每个温馨提示牌比垃圾箱廉价40 元.〔1〕问购买1 个温馨提示牌和 1 个垃圾箱各需多少元?〔2〕如果需要购买温馨提示牌和垃圾箱共100 个,费用不超过8000 元,问最多购买垃圾箱多少个?22.〔共12 分〕如图,在ABC 中,∠C=90°〔1〕利用尺规作∠B 的角平分线交AC于D,以BD为直径作 O交AB于E〔保留作图痕迹,不写作法〕;〔2〕综合应用:在〔1〕的条件下,连接DE ①求证:CD=DE;②假设si nA=,AC=6,求AD.23.〔共12 分〕如图,在平面直角坐标系中,一次函数y1 =ax+b 〔a ≠ 0〕的图象与y轴相交于点A,与反比例函数y2 〔c ≠0〕的图象相交于点B〔3,2〕、C〔-1,n〕.〔1〕求一次函数和反比例函数的解析式;〔2〕根据图象,直接写出y1> y2时x的取值范围;〔3〕在y轴上是否存在点P,使P AB为直角三角形,如果存在,请求点P的坐标,假设不存在,请说明理由.24.〔共14 分〕抛物线y =ax2 +c与x轴交于A、B两点〔A在B的左边〕,与y轴交于点C,抛物线上有一动点P.〔1〕假设A〔-2,0〕,C〔0,-4〕,①求抛物线的解析式;②在①的情况下,假设点P在第四象限运动,点D〔0,-2〕,以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围;〔2〕假设点P在第一象限运动,且 a 0,连接AP、BP分别交y轴于点E、F,则问是否与a、c有关?假设有关,用a、c表示该比值;假设无关,求出该比值.25.〔共14 分〕如图:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.〔1〕证明:AD2 = AE·AF ;〔2〕延长AD到点B,使DB=AD,直径EF上有一动点C,连接CB 交DF于点G,连接EG,设∠ACB =α,BG= x, EG =y .①当α=900时,探索EG与BD的大小关系?并说明理由;②当α=1200时,求y与x的关系式,并用x的代数式表示y .。
广州市海珠区2017年中考一模数学试卷第一部分选择题(共30分)一、选择题(本题共10 个小题,每小题 3 分,满分30 分.下面每小题给出的四个选项中,只有一个是正确的.)1.如果向东走50m 记为50m,那么向西走30m 记为()A.-30mB. |-30| mC.-(-30)m 1 302.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.3.如图,点在⊙D 上,∠ABC=70°,则∠ADC 的度数为()°°°°第3题图4.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A. B. C. D.5.下列计算正确的是()·4x2 =12x2 B.x2y2=xy(y≠0)C.2√x+3√y=5√xy(x≥0,y≥0)D. xy2÷12y=2xy3(y≠0)6.下列命题中,假命题...是( ) A.对角线互相平分的四边形是平行四边形 B.两组对角分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线相等的平行四边形是矩形7.下列函数中,y 随 x 的增大而增大的是( )A. y =− 3xB. y =−x+5C. y =12x D. y =12x 28.如图,在R t ABC 中,∠B =90°,∠A =30°,DE 垂直平分斜边AC ,交AB 于点D ,点E 是垂足,连接CD . 若BD =1,则AC 的长是( )3 C .4 39.已知抛物线y =ax 2+bx +c 的图象如图所示,顶点为(4,6),则下列说法错误的是( A . b 2 >4acB . ax 2+bx +c ≤6C . 若点(2,m )(5,n )在抛物线上,则m >nD . 8a +b = 0)10.如图,在平面直角坐标系中,R t OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为( 2, 2),点 C 的坐标为(1,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为()第 8 题图第 9 题图 第 10 题图A . 2B . 3C . 2D .32第二部分 非选择题(共120分)二、填空题(本题共 6 个小题,每小题 3 分,共 18 分.)11.在不透明口袋内有形状.大小.质地完全一样的 5 个小球,其中红球 3 个,白球 2 个,随机抽取一个小球是红球的概率是________. 12.分解因式:3x 2 -6xy =_________.13.某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了 6 天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这 6 天销售量的中位数是________.14.某公司制作毕业纪念册的收费如下:设计费与加工费共 1000 元,另外每册收取材料费 4 元,则总收费y 与制作纪念册的册数x 的函数关系式为___________.15.如图,AB 是⊙O 的直径,是⊙O 的弦,直径DE ⊥BC 于点M . 若点E 在优弧上,AC =8,BC =6,则EM =_______.第15题图16.若一元二次方程ax 2+bx +1=0 有两个相同的实数根, 则a 2 -b 2 +5的最小值为__________.三、解答题(本题共 9 个小题,共 102 分,解答要求写出文字说明,证明过程或计算步骤.)17.(共 9 分)(1)解不等式组 {x −1<0 8+3(x −1)≥−4(2)解方程 2x−3=1x+118. (共9 分)如图,AC是菱形ABCD的对角线,点分别在AB、AD上,且AE=AF.求证:△ACE≌△ACF.19.(共10 分)已知A= (x+2x2−2x−x−2x2−4x+4)·x2−4x+2(1)化简A;(2)若x满足x2 -2x -8 =0,求A的值.20.(共10 分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是__________,表示“D级(不喜欢)”的扇形的圆心角为__________°;(2)若该校九年级有200 名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的 A 级(非常喜欢)的5 名学生中,选出2 名去参加广州市中学生诗词大会比赛,已知 A 级学生中男生有 3 名,请用“列表”或“画树状图”的方法求出所选出的 2 名学生中至少有1 名女生的概率.21.(共12 分)某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买 3 个温馨提示牌和 4 个垃圾箱共需580 元,且每个温馨提示牌比垃圾箱便宜40 元.(1)问购买1 个温馨提示牌和 1 个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100 个,费用不超过8000 元,问最多购买垃圾箱多少个?22.(共12 分)如图,在ABC 中,∠C=90°(1)利用尺规作∠B 的角平分线交AC于D,以BD为直径作 O交AB于E(保留作图痕迹,不写作法);(2)综合应用:在(1)的条件下,连接DE ①求证:CD=DE;②若si nA=,AC=6,求AD.23.(共12 分)如图,在平面直角坐标系中,一次函数y1 =ax+b (a ≠ 0)的图象与y轴相交于点A,与反比例函数y2 =kx(c ≠0)的图象相交于点B(3,2)、C(-1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1> y2时x的取值范围;(3)在y轴上是否存在点P,使P AB为直角三角形,如果存在,请求点P的坐标,若不存在,请说明理由.24.(共 14 分)抛物线y =ax 2 +c 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,抛物线上有一动点P .(1)若A (-2,0),C (0,-4), ①求抛物线的解析式;②在①的情况下,若点P 在第四象限运动,点D (0,-2),以BD 、BP 为邻边作平行四边形BDQP ,求平行四边形BDQP 面积的取值范围;(2)若点P 在第一象限运动,且a <0,连接AP 、BP 分别交y 轴于点E 、F ,则问S △AOE + S △BOF S △ABC是否与a 、c 有关?若有关,用a 、c 表示该比值;若无关,求出该比值.25.(共14 分)如图:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.(1)证明:AD2 = AE·AF ;(2)延长AD到点B,使DB=AD,直径EF上有一动点C,连接CB 交DF于点G,连接EG,设∠ACB =α,BG= x, EG =y .①当α=900时,探索EG与BD的大小关系?并说明理由;②当α=1200时,求y与x的关系式,并用x的代数式表示y .。
2017一模应用题汇编——参考答案【例题分析】例题1、(白云区一模)(本小题满分12分)解:设轮船的日速为x 千米/日,…………………………………………………1分由题意,得11025249x -×3=1.611025x⨯,…………………………………………7分 解此分式方程,得x =392,……………………………………………………9分 经检验,x =392是原分式方程的解,………………………………………10分 2x -49=735.……………………………………………………………11分 答:列车的速度为735千米/日;轮船的速度为392千米/日.………12分例题2、(从化区一模)(1)解:甲、乙两同学从家到学校的距离之比是 10:7,甲同学的家与学校的距离为 3000 米. ∴乙同学的家与学校的距离: 1073000⨯= 2100 (米);答:乙同学的家与学校的距离为 2100 米. ……………3分(2)设乙骑自行车的速度为 x 米/分钟,则公交车的速度为 2 x 米/分钟。
……………4分依题意得:2230002100=-xx ……………………………………………7分 解得: x = 300 ……………………………………………10分经检验, x = 300 是方程的根 …………………………………………11分 答:乙骑自行车的速度为 300 米/分钟. ………………………………………12分例题3(海珠区一模)解:设购买1个温馨提示牌需要x 元,购买1个垃圾箱需要y 元,依题意得:3458040x y x y +=⎧⎨=-⎩,解得:60100x y =⎧⎨=⎩ 答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元。
(2)6分解:设购买垃圾箱m 个,则购买温馨提示牌(100-m )个,依题意得:60(100)100800050m m m -+≤≤答:最多购买垃圾箱50个。
例题4、(天河区一模)解:延长PQ 交AB 的延长线于H ,则PH ⊥AB,由题意得,∠QBH=30°,∠PBH=60°,∴∠BQH=60°,∠PBQ=30°,∴∠BPQ=∠BQH -∠PBQ=30°,即∠BPQ=∠PBQ∴PQ=BQ,即△BPQ 是等腰三角形…………………4分设PQ=BQ=x ,∵∠QBH=30°∴QH=21BQ=21x ,BH=x 23………………6分 ∵∠A=45° ∴21236+=+x x ………………10分 解得:9632≈+=x答:该电线杆PQ 的高度约为9m………………12分【强化训练】1、(二中一模)解:(1)如图所示,过点C 作CE ⊥AB 于点E ,可得∠CBD=45°,∠CAD=60°,设CE=x ,在Rt △CBE 中,BE=CE=x ,在Rt △CAE 中,AE=x ,∵1)AB =海里,∴x+x=60(13+),解得:x=603,则AC=x=120, BC=x=606,答:A 与C 的距离为120海里,B 与C 的距离为606海里;(2)如图所示,过点D 作DF ⊥AC 于点F ,在△ADF 中,∵AD=100,∠CAD=60°,∴DF=ADsin60°=100×23≈86.6>80, 故海监船沿AC 前往C 处盘查,无触礁的危险.2、(南沙区一模)解:(1)设每张门票原定的票价x 元,由题意得: …………………1分 5036004000-=x x ……………………………4分 解得 500=x .经检验,500=x 是原方程的解. …………………………5分答:每张门票原定的票价600元. ……………………………6分(2)设平均每次降价的百分率为y ,由题意得: ……………………………7分500(1-y )2 =405 ……………………………10分解得y 1=0.1,y 2=1.9(不合题意,舍去) .……………………………11分答:平均每次降价10%. ……………………………12分3、(增城区一模)解:设原来每天改造管道 x 米, ......………………1分依题意得 27)%201(360900360=+-+x ……………………………6分解得: x = 30 ……………………………10分经检验: x = 30 是所列方程的解 ……………………………11分答:引进新设备前工程队每天改造管道 30 米. ……………………………12分4、(花都区一模)解:(1)设一根A 型跳绳的售价是x 元,一根B 型跳绳的售价是y 元,则: ……………………………1分………………………4分 解得: ………………………5分 答:一根A 型跳绳的售价是10元,一根B 型跳绳的售价是36元. ………6分(2)设购进A 型跳绳x 根,总费用为y 元,则: ………………7分 1036(50)261800y x x x =+-=-+ ………………………8分 ∵260-<∴y 随x 的增大而减小. ………………………9分 又∵x≤3(50-x ),解得:x≤37.5,且x 为正整数 ………………………10分 ∴当x=37时,y 最小 ………………………11分 {256282x y x y +=+={1036x y ==此时50-37=13.答:当购进A型跳绳37根,A型跳绳13根时,最省钱.………………12分【课后训练】1、(省实一模)解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.2、(省实一模)解:(1)设该快递公司投递快递总件数的月平均增长率为x,根据题意得:10×(1+x)2=12.1,解得:x1=10%,x2=﹣210%.答:该快递公司投递快递总件数的月平均增长率为10%.(2)12.1×(1+10%)=13.31(万件),26×0.6=15.6(万件).∵15.6>13.31,∴该公司现有的26名快递投递业务员能完成今年6月份的快递投递任务.3、(广雅一模)解:(1)设甲单独完成需x 天,则乙队单独完成需要的时间是1.5x 天,由题意,得 16)5.111=⨯+xx ( 解得:x=10,经检验,x=10是原方程的根,∴乙队单独完成需要的时间是15天.答:甲单独完成需10天,则乙队单独完成需要的时间是15天;(2)设乙每天工程费为y 元,则甲队每天的工程费为(y+4000)元,由题意,得 6(y+y+4000)=385200,解得:y=30100.∴甲队每天的费用为:30100+4000=34100元.乙队的总费用为30100×15=451500(元),甲队的总费用为:(30100+4000)×10=341000(元).∵341000元<451500元,∴应选甲队.4、(广铁一模)解:(1)设A 型学习用品单价x 元,根据题意得:=,解得:x=20,经检验x=20是原方程的根,x+10=20+10=30.答:A 型学习用品20元,B 型学习用品30元;(2)设可以购买B 型学习用品a 件,则A 型学习用品(1000﹣a )件,由题意,得: 20(1000﹣a )+30a ≤28000,解得:a ≤800.答:最多购买B 型学习用品800件.5、(越秀一模)解:设小王骑自行车的速度为x千米/时,则小英的速度为1.2x千米/时,根据题意,得,即,两边同乘以6x去分母,得75+x=90,解得x=15.经检验,x=15是该分式方程的根.答:小王的速度为15千米/时.。
2017年广州市初中毕业生考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每个小题给出的四个选项中,只有一项是符合题目要求的.)1、如图1,数轴上两点A、B表示的数互为相反数,则点B表示的数为()A、-6B、6C、0D、无法确定2、如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A B C D3、某6人活动小组为了了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15.这组数据中的众数、平均数分别为()A、12,14B、12,15C、15,14D、15,134、下列运算正确的是()A、3a+b6=a+b2B、2×a+b2=2a+b3C、2、|a|=a(a≥0)5、关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A、q<16B、q>16C、q≤4D、q≥46、如图3,圆O是△ABC的内切圆,则点O是△ABC的()A、三条边的垂直平分线B、三条角平分线的交点C、三条中线的交点D、三条高的交点7、计算(a2b)3·b2a,结果是()A、a5b5B、a4b5C、a b2D、a5b58、如图4,E、F分别是平行四边形ABCD的边AD,BC边上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到E’F’C’D’, ED’交BC于点G,则△GEF的周长为()A、6B、12C、18D、249、如图5,在圆O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A、AD=2OBB、CE=EOC、∠OCE=40°D、∠BOC=2∠BAD10、a≠0,函数y=ax 与y=-a x2+a在同一直角坐标系中的大致图像可能是B C D( )第二部分 非选择题(共120分) 二、填空题11、如图6,四边形ABCD 中,AD ∥BC ,∠A=110°,则∠B= .12、分解因式:x y 2-9x= .13、当x= 时二次函数y=x 2-2x+6有最小值 . 14、如图7,R t△ABC 中,∠C=90°,BC=15,tanA=158,则AB= .15、如图8,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面半径是5,则圆锥的母线l= .16、如图9,平面直角坐标系中O 是原点,平行四边形OABC 的顶点A ,C 的坐标分别是(8,0),(3,4),点D ,E 把线段OB 三等分,延长OA,AB 于点F ,G ,连接FG ,则下列结论: ①F 是OA 的中点;②△OFD 与△BEG 相似; ③四边形DEGF 的面积是203; ④OD=4√53其中正确的结论是 .(填写所有正确结论的序号)三、 解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17、(本小题满分9分) 解方程组{x +y =52x +3y =1118、(本小题满分9分)如图10,点E 、F 在AB 上,AD=BC ,∠A=∠B,AE=BF ,求证: △ADF≌△BCE. 19、(本小题满分10分)某班为了学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类;A 类(0≤t ≤2)B 类(2<t ≤4)C 类(4<t≤6)D 类(6<t ≤8)E 类(t >8),绘制成尚不完整的条形统计图如图根据以上信息,解答下列问题;(1)E 类学生有 人,补全条形统计图; (2)D 类学生人数占被调查人数的 %;(3)从该班做义工时间在0≤t ≤4的学生中任选2人,求这2人做义工时间都在2<t ≤4中的概率. 20、(本小题满分10分)图11如图12,在R t△ABC中,∠B=90°,∠A=30°,AC=2√3.(1)利用迟归作线段AC的垂直平分线DE,垂足为E,交AB于点D;(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2−a(a−1),再求T的值.21、(本小题满分12分)甲乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22(本小题满分12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=kx的图像与直线y=3x+m相交于点A,且点A的纵坐标是3,(1)求m和k的值;(2)结合图像求不等式3x+m>kx的解集.23、(本小题满分12分)已知抛物线y1=-x2+mx+n,直线y2=kx+b, y1的对称轴与y2交于点A(-1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式(2) 若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上一点,求y 2的解析式.24、(本小题14分)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,△COD 关于CD 的对称图形为△CEO.(1) 求证:四边形OCED 是菱形; (2) 连接AE ,若AB=6cm ,BC=√5cm.①求sin∠EAD 的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP.一动点Q 从点O 出发,以1cm/s 的速度沿线段OP 匀速运动到点P ,再以1.5cm/s 的速度沿线段PA 匀速运动到点A ,到达A 点后停止运动,当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需要的时间.25、(本小题满分14分)如图14,AB 是圆O 的直径,弧AC=弧BC ,AB=2,连接AC. (1) 求证:∠CAB =45°;(2) 若直线l 为圆O 的切线,C 是切点,在直线l 上取一点D ,使BD=AB,BD 所在的直线与AC 所在的直线相交于点E ,连接AD.①试探究AE 与AD 之间的数量关系,并证明你的结论;②EB是否为定值?若是,请求出这个定值;若不是,请说明理由.CD解析&唐老师碎碎念:1、选B,不解释;2、选A,注意图2在最右边,我就真的肯定有同学会吧A选项看成原图,不认真审题的悲剧;3、选C,众数就是出现最多次数的那个,为15,平均数就不用教了吧,为14;4、选D,这题我猜选C的同学也不少,这个选项没有说明a>0啊喂!!!;5、选A,用根的判别式△>0就可以求出来啦,不能等于0,人家说的是“两个不相等的实数根”;6、选B,内切圆的圆心就是角平分线的交点啦,再送你一条,外接圆的圆心是垂直平分线的交点!;7、选A,不解释;8、选C,△EFG是个等边三角形,应该不难证吧,∠DEF=60°,翻折说明∠FEG=60°,那∠AEG=60°,根据两直线平行内错角相等,∠EGF=∠EFG不就都为60°了吗?;9、选D,根据垂径定理可得出弧BC=弧BD,∠BAD和∠COB分别为相等的弧长所对的圆周角和圆心角,两倍关系,搞定!;10、选D,二次函数中的二次项系数加了个负号,肯定搞得很多同学晕头转向了吧,注意符号问题,一次函数中的a表示反比例函数中的k值,如果大于0,图像在一、三象限,如果小于0,图像在二、四象限,二次函数中的-a表示二次项系数,大于0,图像开口向上,小于0,图像开口向下,二次函数中的第二个a表示与y轴的交点,大于0,交于y轴正半轴,小于0,交于y轴负半轴;11、70°,两直线平行,同旁内角互补;12、x(y+3)(y-3),不解释;13、第一空填1,第二空填5,把二次函数一般形式化简为顶点式,利用配方法,或直接代入顶点公式求解;14、17,根据tanA=15/8,BC=15,可求出AC=8,再用勾股定理就能求出AB的大小;15、3根号5,扇形的弧长公式和圆锥的底面周长公式联立即可求解,这两者关系式相等的哦;16、①③;过程太麻烦了,懒得写;17、x=4,y=1,不解释;18、用(SAS)证明,AE+EF=BF+EF,所以AF=BE,剩下的不用我说了吧;19、(1)5,用总人数减去A、B、C、D就求出来啦(2)36,18÷50=36%(3)3/10,列树状图,设存在5个人参与A1、A2、B1、B2、B3,剩下的自己体会吧;20、(1)画垂直平分线么毛病吧,如图。
2017年广东省广州市海珠区中考数学一模试卷一、选择题(本题共10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.如果向东走50m记为50m,那么向西走30m记为()A.﹣30m B.|﹣30|m C.﹣(﹣30)m D. m2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.3.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.110°B.140°C.35° D.130°4.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.5.下列计算正确的是()A.3x2•4x2=12x2B.(y≠0)C.2(x≥0,y≥0)D.xy2÷(y≠0)6.下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线相等的平行四边形是矩形7.下列函数中,y随x的增大而增大的是()A.y= B.y=﹣x+5 C.y=x D.y=(x<0)8.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()A.2 B.2 C.4 D.49.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A.b2>4acB.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>nD.8a+b=010.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.二、填空题(本题共6个小题,每小题3分,共18分.)11.在不透明口袋内有形状.大小.质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是.12.分解因式:3x2﹣6xy= .13.某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这6天销售量的中位数是.14.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的函数关系式为.15.如图,AB是⊙O的直径,AC.BC是⊙O的弦,直径DE⊥BC于点M.若点E在优弧上,AC=8,BC=6,则EM= .16.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2﹣b2+5的最小值为.三、解答题(本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.(1)解不等式组(2)解方程.18.如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.求证:△ACE≌△ACF.19.已知A=(﹣)•(1)化简A;(2)若x满足x2﹣2x﹣8=0,求A的值.20.中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是,表示“D级(不喜欢)”的扇形的圆心角为°;(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的A级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.21.某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?22.如图,在△ABC 中,∠C=90°(1)利用尺规作∠B 的角平分线交AC于D,以BD为直径作⊙O交AB于E(保留作图痕迹,不写作法);(2)综合应用:在(1)的条件下,连接DE①求证:CD=DE;②若sinA=,AC=6,求AD.23.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2=(c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.24.抛物线y=ax2+c与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P(1)若A(﹣2,0),C(0,﹣4)①求抛物线的解析式;②在①的情况下,若点P在第四象限运动,点D(0,﹣2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围.(2)若点P在第一象限运动,且a<0,连接AP、BP分别交y轴于点E、F,则问是否与a,c有关?若有关,用a,c表示该比值;若无关,求出该比值.25.如图:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.(1)证明:AD2=AE•AF;(2)延长AD到点B,使DB=AD,直径EF上有一动点C,连接CB交DF于点G,连接EG,设∠ACB=α,BG=x,EG=y.①当α=900时,探索EG与BD的大小关系?并说明理由;②当α=1200时,求y与x的关系式,并用x的代数式表示y.2017年广东省广州市海珠区中考数学一模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.如果向东走50m记为50m,那么向西走30m记为()A.﹣30m B.|﹣30|m C.﹣(﹣30)m D. m【考点】11:正数和负数;14:相反数;15:绝对值.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:向东走50m记为50m,那么向西走30m记为﹣30m,故选:A.2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B 是中心对称图形.故选:B.3.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.110°B.140°C.35° D.130°【考点】M5:圆周角定理.【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠ADC=2∠ABC=140°,故选:B.4.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】俯视图是从物体上面看所得到的图形.从几何体上面看,是左边2个,右边1个正方形.【解答】解:从几何体上面看,是左边2个,右边1个正方形.故选:D.5.下列计算正确的是()A.3x2•4x2=12x2B.(y≠0)C.2(x≥0,y≥0)D.xy2÷(y≠0)【考点】78:二次根式的加减法;49:单项式乘单项式;66:约分;6A:分式的乘除法.【分析】分别利用二次根式加减运算法则以及结合分式除法运算法则分别化简求出答案.【解答】解:A、3x2•4x2=12x4,故此选项错误;B、无法化简,故此选项错误;C、2+3无法计算,故此选项错误;D、xy2÷(y≠0),正确,符合题意.故选:D.6.下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线相等的平行四边形是矩形【考点】O1:命题与定理.【分析】利用平行四边形及矩形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形,正确,是真命题;B、两组对角分别相等的四边形是平行四边形,正确,是真命题;C、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故错误,是假命题;D、对角线相等的平行四边形是矩形,正确,是真命题,故选C.7.下列函数中,y随x的增大而增大的是()A.y= B.y=﹣x+5 C.y=x D.y=(x<0)【考点】G4:反比例函数的性质;F5:一次函数的性质;H3:二次函数的性质.【分析】根据一次函数、反比例函数及二次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵函数y=中,k=3>0,∴在每一象限内y随x增大而减小,故本选项错误;B、∵函数y=﹣x+5中,k=﹣1<0,∴y随x增大而减小,故本选项错误;C、∵函数y=x中,k=>0,∴y随x增大而增大,故本选项正确;D、∵函数y=x2(x<0)中,a=>0,∴函数的开口向上,在对称轴的左侧y随x增大而减小,故本选项错误.故选C.8.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()A.2 B.2 C.4 D.4【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质;KQ:勾股定理.【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∴∠DCB=60°﹣30°=30°,在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,∴CD=2BD=2,由勾股定理得:BC==,在Rt△ABC中,∠B=90°,∠A=30°,BC=,∴AC=2BC=2,故选A.9.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A.b2>4acB.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>nD.8a+b=0【考点】H4:二次函数图象与系数的关系.【分析】分别根据抛物线与x轴的交点个数、函数的最大值、函数的增减性和对称轴逐一判断可得.【解答】解:A、由抛物线与x轴有2个交点可知b2﹣4ac>0,即b2>4ac,故此选项正确;B、由抛物线的顶点坐标为(4,6)知函数的最大值为6,则ax2+bx+c≤6,故此选项正确;C、由抛物线对称轴为x=4且开口向下知离对称轴水平距离越大函数值越小,则m<n,故此选项错误;D、由对称轴x=﹣=4知,b=﹣8a,即8a+b=0,故此选项正确;故选:C.10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质.【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,则此时PA+PC的值最小,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B,∴AB=,OA=,∵∠OAB=90°,∴∠B=∠AOB=45°,由勾股定理得:OB=AD=2,∵C(1,0),∴CD=,即PA+PC的最小值是故选B.二、填空题(本题共6个小题,每小题3分,共18分.)11.在不透明口袋内有形状.大小.质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是.【考点】X4:概率公式.【分析】用红球的个数除以总球的个数,即可得出答案.【解答】解:∵共有5个小球,其中红球3个,白球2个,∴随机抽取一个小球是红球的概率是;故答案为:.12.分解因式:3x2﹣6xy= 3x(x﹣2y).【考点】53:因式分解﹣提公因式法.【分析】直接找出公因式提取进而得出答案.【解答】解:3x2﹣6xy=3x(x﹣2y).故答案为:3x(x﹣2y).13.某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这6天销售量的中位数是29 .【考点】W4:中位数.【分析】根据中位数的定义解答即可.【解答】解:6个数从小到大分别是24,25,28,30,32,33,最中间的数为第3个数和第4个数,它们是28和30,所以这6天销售量的中位数是(28+30)÷2=29.故答案为:29.14.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的函数关系式为y=4x+1000 .【考点】E3:函数关系式.【分析】根据题意可知:总收费=册数×单价+其余费用,列出函数关系是即可.【解答】解:由题意可知:y=4x+1000故答案为:y=4x+100015.如图,AB是⊙O的直径,AC.BC是⊙O的弦,直径DE⊥BC于点M.若点E在优弧上,AC=8,BC=6,则EM= 9 .【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CM=BM,根据相似三角形的性质得到OM=4,根据勾股定理得到AB=10,于是得到结论.【解答】解:∵直径DE⊥BC于点M.∴CM=BM,∵AO=OB,∴OM∥AC,∴△BOM∽△BAC,∴,∴OM=4,∵AB是⊙O的直径,∴∠C=90°,∴AB=10,∴OE=5,∴EM=9,故答案为:9.16.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2﹣b2+5的最小值为 1 .【考点】AA:根的判别式;AE:配方法的应用.【分析】由方程有两个相等的实数根结合根的判别式,即可得出△=b2﹣4a=0,即b2=4a,将其代入a2﹣b2+5中,利用配方法即可得出a2﹣b2+5的最小值.【解答】解:∵一元二次方程ax2+bx+1=0有两个相同的实数根,∴△=b2﹣4a=0,∴b2=4a,∴a2﹣b2+5=a2﹣4a+5=(a﹣2)2+1≥1.故答案为:1.三、解答题(本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.(1)解不等式组(2)解方程.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x<1,由②得:x≥﹣3,则此不等式组的解集为﹣3≤x<1;(2)去分母得:2(x+1)=x﹣3,去括号得:2x+2=x﹣3,解得:x=﹣5,检验:当x=﹣5时,(x+1)(x﹣3)≠0,则x=﹣5为原方程的解.18.如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.求证:△ACE≌△ACF.【考点】L8:菱形的性质;KB:全等三角形的判定.【分析】根据菱形对角线的性质,可知一条对角线平分一组对角,即∠FAC=∠EAC,再根据边角边即可证明△ACE≌△ACF.【解答】证明:∵AC是菱形ABCD的对角线,∴∠FAC=∠EAC,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS).19.已知A=(﹣)•(1)化简A;(2)若x满足x2﹣2x﹣8=0,求A的值.【考点】6D:分式的化简求值.【分析】(1)根据分式的运算法则化简;(2)将x的值求出后,然后代入求值即可求出答案.【解答】解:(1)(2)要使A有意义,x≠0,x+2≠0,x﹣2≠0∴x≠0,x≠﹣2,x≠2当x=4时,20.中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是50 ,表示“D级(不喜欢)”的扇形的圆心角为21.6 °;(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的A级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.【考点】X6:列表法与树状图法;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用C等级人数除以其百分比可得总人数,用D等级人数占总人数的比例乘以360度可得;(2)用样本中B等级所占比例乘以总人数可得答案;(3)画树状图列出所有等可能结果,利用概率公式求解可得.【解答】解:(1)本次抽样调查的样本容量是17÷34%=50,表示“D级(不喜欢)”的扇形的圆心角为×360°=21.6°,故答案为:50,21.6;(2),答:估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数为100.(3)画树状图如下:由树状图可以,抽取2名学生,共有20种等可能的结果,其中至少有1名女生的结果有14种,∴P(2名学生中至少有1名女生)==.21.某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据题意可得方程组,根据解方程组,可得答案;(2)根据费用不超过8000元,可得不等式,根据解不等式,可得答案.【解答】(1)解:设购买1个温馨提示牌需要x元,购买1个垃圾箱需要y元,依题意得,解得:答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元.(2)解:设购买垃圾箱m个,则购买温馨提示牌个,依题意得60+100m≤8000,解得m≤50,答:最多购买垃圾箱50个.22.如图,在△ABC 中,∠C=90°(1)利用尺规作∠B 的角平分线交AC于D,以BD为直径作⊙O交AB于E(保留作图痕迹,不写作法);(2)综合应用:在(1)的条件下,连接DE①求证:CD=DE;②若sinA=,AC=6,求AD.【考点】N3:作图—复杂作图;M5:圆周角定理;T7:解直角三角形.【分析】(1)根据题意作出图形即可;(2)有BD为⊙O的直径;得到∠BED=90°,根据角平分线的性质即可得到结论;(3)解直角三角形即可得到结论.【解答】解:(1)如图所示,(2)∵BD为⊙O的直径;∴∠BED=90°,又∵∠C=90°;∴DE⊥AB,DC⊥BC;又∵BD平分∠ABC;∴DE=DC;(3)在Rt△ADE中,sinA=∵sinA=∴=设DC=DE=3x,AD=5x∵AC=AD+DC∴3x+5x=6x=AD=5x=5×=23.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2=(c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.【解答】解:(1)把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).24.抛物线y=ax2+c与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P(1)若A(﹣2,0),C(0,﹣4)①求抛物线的解析式;②在①的情况下,若点P在第四象限运动,点D(0,﹣2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围.(2)若点P在第一象限运动,且a<0,连接AP、BP分别交y轴于点E、F,则问是否与a,c有关?若有关,用a,c表示该比值;若无关,求出该比值.【考点】HF:二次函数综合题.【分析】(1)①由A、C两点的坐标,利用待定系数法可求得抛物线解析式;②连接BD、OP,设出P点坐标,利用S△BDP=S△ODP+S△OBP﹣S△BOD可用x表示出四边形BDQP的面积,借助x的取值范围,可求得四边形BDQP面积的取值范围;(2)过点P作PG⊥AB,设A(x1,0),B(x2,0),P(x,y),由△AOE∽△AGP、△BGP∽△BOF,利用相似三角形的性质和一元二次方程根与系数的关系可整理得到=2,再利用三角形的面积可得的值.【解答】解:(1)①∵A(﹣2,0),C(0,﹣4)在抛物线上,∴,解得,∴抛物线解析式为y=x2﹣4;②如图1,连接DB、OP,设P(x,x2﹣4),∵A(﹣2,0),对称轴为y轴,∴B(2,0),∴S△BDP=S△ODP+S△OBP﹣S△BOD=OD•|x|+OB•|x2﹣4|﹣OD•OB=x+4﹣x2﹣2=﹣x2+x+2=﹣(x﹣)2+,∵点P在第四象限运动,∴0<x<2,∴当x=时,S△BDP有最大值,当x=2时,S△BDP有最小值0,∴0<S△BDP≤,∵四边形BDQC为平行四边形,∴S四边形BDQP=2S△BDP,∴0<S四边形BDQP≤;(2)如图2,过点P作PG⊥AB,设A(x1,0),B(x2,0),P(x,y),∵PG∥y轴,∴△AOE∽△AGP,△BGP∽△BOF,∴=, =,∴=, =,∴+=+==,当y=0时,可得ax2+c=0,∴x1+x2=0,x1x2=,∴+===,∴OE+OF=2c,∴==2,∴====1,∴的值与a,c无关,比值为1.25.如图:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.(1)证明:AD2=AE•AF;(2)延长AD到点B,使DB=AD,直径EF上有一动点C,连接CB交DF于点G,连接EG,设∠ACB=α,BG=x,EG=y.①当α=900时,探索EG与BD的大小关系?并说明理由;②当α=1200时,求y与x的关系式,并用x的代数式表示y.【考点】MR:圆的综合题.【分析】(1)直接利用切线的性质得出∠ADE+∠EDO=90°,再利用圆周角定理得出∠ADE=∠ODF,结合相似三角形的判定与性质得出答案;(2)①利用直角三角形的性质得出点C、E、D、G在以点H为圆心,EG为直径的圆上,进而得出EG与BD的大小关系;②首先得出BQ=1,PQ=,GQ=BG﹣BQ=x﹣1,进而利用勾股定理求出答案.【解答】(1)证明:连接OD∵AD是⊙O的切线,∴OD⊥AD,即∠ADE+∠EDO=90°,∵EF是直径,∴∠EDF=90°,即∠EDO+∠ODF=90°,∴∠ADE=∠ODF,∵OD=OF,∴∠ODF=∠OFD,∴∠ADE=∠OFD,∴△ADE∽△AFD,∴,即AD2=AE•AF;(2)解:①当α=90°时,EG>BD理由如下:如图2,取EG的中点H,连接CH、DH、CD,∵Rt△EDG、Rt△ECG,点H为EG的中点,∴CH=EH=GH=DH=EG,∴点C、E、D、G在以点H为圆心,EG为直径的圆上,∴EG>CD,∵Rt△ABC,DB=AD,∴CD=DB=AD=AB,∴EG>BD;②当α=120°时,如图3,将△ADE绕着点D旋转180°,得到△BDP,连接GP,过点P作PQ⊥BG,由(1)AD2=AE•AF得:16=AE•(AE+6),解得:AE=2或AE=﹣8(舍去),∵△ADE≌△BDP∴ED=DP,AE=BP=2,∠A=∠DBP,∵∠EDF=90°,∴DG垂直平分EP,∴GE=GP=y,∵∠A+∠ABC=180°﹣120°=60°,∴∠DBP+∠ABC=60°,即∠GBP=60°,在Rt△BPQ中,∠GBP=60°,BP=2,∴BQ=1,PQ=,∴GQ=BG﹣BQ=x﹣1,在Rt△GPQ中,PQ=,GQ=x﹣1,GP=y,∴PG2=GQ2+PQ2即y2=(x﹣1)2+()2,故y=.。
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1. 如图,数轴上两点,表示的数互为相反数,则点表示的数是B. C. D. 无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A. B.C. D.3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A. ,B. ,C. ,D. ,4. 下列运算正确的是A. B.C. ()5. 关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B. C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7. 计算,结果是A. B. C. D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9. 如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A. B.C. D.10. ,函数与在同一直角坐标系中的大致图象可能是A. B.C. D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,.15. 如图,圆锥的侧面展开图是一个圆心角为的扇形,若圆锥的底面圆半径是,则圆锥的母线.16. 如图,平面直角坐标系中是原点,平行四边形的顶点,的坐标分别是,,点,把线段三等分,延长,分别交,于点,,连接,则下列结论:①是的中点;②与相似;③四边形的面积是④;其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题;共117分)17. 解方程组:18. 如图,点,在上,,,.求证:.19. 某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的;(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.20. 如图,在中,,,.(1)利用尺规作线段的垂直平分线,垂足为,交于点:(保留作图痕迹,不写作法);(2)若的周长为,先化简,再求的值.21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为,求乙队平均每天筑路多少公里.22. 将直线向下平移个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是.(1)求和的值;(2)结合图象求不等式的解集.23. 已知抛物线,直线,的对称轴与交于点,点与的顶点的距离是.(1)求的解析式;(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.24. 如图,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动,当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.25. 如图,是的直径,,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广州市中考数学试卷答案第一部分1. B2. A3. C4. D5. A6. B7. A8. C9. D 10. D第二部分11.12.13. ;14.15.16. ①③第三部分17.得:将代入得方程组的解是18. 因为,所以,,即,在和中,所以,.19. (1) E 类:(人),统计如图所示(2)(3)设人分别为,,,,,画树状图:所以这人做义工时间都在中的概率为.20. (1)如下图所示:(2),,,,,所以.21. (1)乙队筑路的总公里数:(公里).(2)设甲队每天筑路公里,乙队每天筑路公里.根据题意得:解得:经检验是原方程的解且符合题意.乙队每天筑路:(公里),答:乙队平均每天筑路公里.22. (1)由向下平移一个单位长度而得,,点纵坐标为且在上,点坐标为,点在反比例函数上,.(2)与的图象如图所示,由图可知当或.23. (1)的对称轴与的交点为,的对称轴为直线顶点坐标为,,,,,或.(2)①当时,与轴交点为,,随的增大而增大,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得.②当时,令,则,得,与轴交于点,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得,综上,的解析式为:或.24. (1)因为四边形为矩形,所以,因为与交于点,且与关于对称,所以,,,所以,所以四边形是菱形.(2)①连接,使直线分别交于点,交于点,因为关于的对称图形为,所以,因为,,所以,,因为四边形是菱形,所以,.又矩形中,.所以为的中位线,所以,因为,,所以,所以,又,所以,所以,因为,所以,所以.②过点作交于点,因为由①可知:,所以点以的速度从到所需时间等同于以的速度从运动到所需时间.即:所以由运动到所需的时间就是的值.因为如图,当运动到,即时,所用时间最短,所以,在中,设,则,,所以,解得:或所以所以当点点沿题述路线运动到点所需时间最短时,的长为,点走完全程所需要的时间为25. (1)如图,连接,是的直径,.,,.(2)①.如图所示,作于,连接,由()可知为等腰直角三角形.又是的中点,,,为等腰直角三角形,,为的切线,,又,四边形为矩形,,.,,.,.,,,..当为钝角时,如图所示,同理,得,易得,.,,,由()①知,,.又,,.中,,,.当在右侧时,如图,过作于,由()①知,,,.,.,,在中,,.。
广州市2017年中考数学真题试卷及答案一、选择题(共10小题;共50分)1.如图,数轴上两点 且,片表示的数互为相反数,则点 B 表示的数是(.ft-6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12, 13, 14, 15, 15, 15.这组数据的众数,平均数分别为 (.)A.】4B.】2, 1 三C. 15, uD. 15, 13C. x 的一元二次方程必 f 卜目=。
有两个不相等的实数根,贝U #的取值范围是B.A. -6C.D.无法确定2.如图, 将正方形 A 心 中的阴影三角形绕点A 顺时针旋转对后,得到图形为3.4. 卜列运算正确的是(■ > 3森十& a 十bA. 5.6.如图,"是^AUC 的内切圆,则点。
是AAXC 的()A.三条边的垂直平■分线的交点 C.三条中线的交点 7.计算3时二结果是(.) aA. .B...8. 如图,E, F 分别是平行四边形 A BCD 的边AD^C 上的点,EF = 6 ,/必。
=6。
\将四边形 EFCD 沿EF 翻折,得到 EFC1T , EJT 交 M 丁点G ,则△"F 的周长为(.)9. 如图,在中,相 是直径,3 是弦,垂足为E,连接C 。
,点。
,刀=V,则下列说法中正确的是10. 1丈。
,函数》=;与}= 一。
亍+ &在同一直角坐标系中的大致图象可能是()B.三条角平■分线的交点D.三条高的交点C. D. C.、D.二、填空题(共6小题;共30分)11. 如图,四边形曲3中,』。
|| EC, 4 = 1筋,U 3 =12. 分解因式:万并_9工=.13. 当工= 时,二次函数y = " - 2x十6有最小值.]S14. 如图,斑△应十匚中,/C =卯二5仁=15, 0也4 = §,贝[J AB =A15. 如图,圆锥的侧面展开图是一个圆心角DO”的扇形,若圆锥的底面圆半径是75,为则圆锥的母线r=.16. 如图,平面直角坐标系中O是原点,平行四边形OABC的顶点A, C的坐标分别是(氏0),(3,4),点D, E把线段OR三等分,延长s, CE分别交CM, " 丁点F,G,连接FG,则下列结论:① F是Q4的中点;② AOF。
2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C. D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,134.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥46.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点D.三条高的交点7.(3分)计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b68.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.249.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= .12.(3分)分解因式:xy2﹣9x= .13.(3分)当x= 时,二次函数y=x2﹣2x+6有最小值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= .15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= .16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B. C. D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B.C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y 轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= 70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)分解因式:xy2﹣9x= x(y+3)(y﹣3).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)当x= 1 时,二次函数y=x2﹣2x+6有最小值 5 .【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17 .【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= 3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是①③(填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③如图3,利用面积差求得:S△CFG=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=12,根据相似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,∴S四边形DEGF=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有 5 人,补全条形统计图;(2)D类学生人数占被调查总人数的36 %;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a ﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.。
广州市海珠区2017年中考一模数学试卷
第一部分选择题(共30分)
一、选择题(本题共10 个小题,每小题 3 分,满分30 分.下面每小题给出的四个
选项中,只有一个是正确的.)
1.如果向东走50m 记为50m,那么向西走30m 记为()
A.-30m
B. |-30| m
C.-(-30)m
D.m
2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是
()
A.B.C.D.
3.如图,点A.B.C 在⊙D 上,∠ABC=70°,则∠ADC 的度数为()
A.110°
B.140°
C.35°
D.130°第3题图
4.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是
A. B. C. D.
5.下列计算正确的是()
A.3x2 ·4x2 =12x2
B.=(y)
C. D.
6.下列命题中,假命题
...是()
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.一组对边平行,另一组对边相等的四边形是平行四边形
D.对角线相等的平行四边形是矩形
7.下列函数中,y 随x 的增大而增大的是()
A. B.x+5 C. D.
8.如图,在R t ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于点D,点E是垂足,连接CD. 若BD=1,则AC的长是()
A.2 3
B.2
C. 4 3
D.4
)9.已知抛物线y的图象如图所示,顶点为(4,6),则下列说法错误的是(
A. b2 >4ac
B.
6
C. 若点(2,m)(5,n)在抛物线上,则m>n
D. 8a+b = 0
10.如图,在平面直角坐标系中,R t OAB的顶点A在x轴的正半轴上,顶点B的坐标为( 2, 2),点C的坐标为(1,0),点P为斜边OB上的一动点,则P A+PC的最小值为()
第 8 题图
第 9 题图 第 10 题图
第二部分 非选择题(共120分)
二、填空题(本题共 6 个小题,每小题 3 分,共 18 分.)
11.在不透明口袋内有形状.大小.质地完全一样的 5 个小球,其中红球 3 个,白球 2 个,随机抽取一个小球是红球的概率是________.
12.分解因式:3x 2 -6xy =_________.
13.某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了 6 天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这 6 天
销售量的中位数是________.
14.某公司制作毕业纪念册的收费如下:设计费与加工费共 1000
元,另外每册收取材料费 4 元,则总收费y 与制作纪念册的册数x
的函数关系式为___________.
15.如图,AB 是⊙O 的直径,AC .BC 是⊙O 的弦,直径DE ⊥BC 于点M . 若点E 在优弧AB
⌒ 上,AC =8,BC =6,则EM =_______. 第15题图
16.若一元二次方程0 有两个相同的实数根, 则a 2 -b 2 +5的最小值为__________.
三、解答题(本题共 9 个小题,共 102 分,解答要求写出文字说明,证明过程或计算步骤.)
A . 2
B . 3
C . 2
D . 3
2
17.(共9 分)(1)解不等式组(2)解方程
18. (共9 分)如图,AC是菱形ABCD的对角线,点E.F分别
在AB、AD上,且AE=AF.求证:△ACE≌△ACF.
19.(共10 分)已知A= ( )·
(1)化简A;
(2)若x满足x2 -2x -8 =0,求A的值.
20.(共10 分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解
该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:
(1)本次抽样调查的样本容量是__________,表示“D级(不喜欢)”的扇形的圆心角为__________°;(2)若该校九年级有200 名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;
(3)若从本次调查中的 A 级(非常喜欢)的5 名学生中,选出2 名去参加广州市中学生诗词大会比赛,已知 A 级学生中男生有 3 名,请用“列表”或“画树状图”的方法求出所选出的 2 名学生中至少有1 名女生的概率.
21.(共12 分)某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾
分类的温馨提示牌和垃圾箱,若购买 3 个温馨提示牌和 4 个垃圾箱共需580 元,且每个温馨提示牌比垃圾箱便宜40 元.
(1)问购买1 个温馨提示牌和 1 个垃圾箱各需多少元?
(2)如果需要购买温馨提示牌和垃圾箱共100 个,费用不超过8000 元,问最多购买垃圾箱多少个?
22.(共12 分)如图,在ABC 中,∠C=90°
(1)利用尺规作∠B 的角平分线交AC于D,以BD为直径作 O交AB于E (保留作图痕迹,不写作法);
(2)综合应用:在(1)的条件下,连接DE ①求证:CD=DE;
②若si nA=,AC=6,求AD.
23.(共12 分)如图,在平面直角坐标系中,一次函数y1 =ax+b (a ≠ 0)的图象与y轴相交于点A,
与反比例函数y2 (c ≠0)的图象相交于点B(3,2)、C(-1,n).(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出y1> y2时x的取值范围;
(3)在y轴上是否存在点P,使P AB为直角三角形,如果存在,请求点P的坐标,若不存在,请说明理由.
24.(共14 分)抛物线y =ax2 +c与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线
上有一动点P.
(1)若A(-2,0),C(0,-4),
①求抛物线的解析式;
②在①的情况下,若点P在第四象限运动,点D(0,-2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围;
(2)若点P在第一象限运动,且 a 0,连接AP、BP分别交y轴于点E、F,则问
是否与a、c有关?若有关,用a、c表示该比值;若无关,求
出该比值.
25.(共14 分)如图:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.
(1)证明:AD2 = AE·AF ;
(2)延长AD到点B,使DB=AD,直径EF上有一动点C,连接CB 交DF于点G,连接EG,设∠ACB =α,BG= x, EG =y .
①当α=900时,探索EG与BD的大小关系?并说明理由;
②当α=1200时,求y与x的关系式,并用x的代数式表示y .。