7.1正切
- 格式:ppt
- 大小:369.50 KB
- 文档页数:18
§1.7 正切函数(说课稿)7.1正切函数的定义—7.2正切函数的图像和性质一、教材分析(说教材):1、教材所处的地位和作用本节内容是北师大版《普通高中课程标准实验教科书 数学必修四》第一章三角函数第7节内容。
本节课是研究了正弦、余弦函数的图像与性质后,又一具体的三角函数。
教材首先根据单位圆得到正切函数的定义,给出正切线的概念,并类比画正弦函数图像的方式,利用正切线画正切函数)2,2(,tan ππ-∈=x x y的图像,根据图像,研究正切函数的性质。
体现了类比思想的应用,体现出数形结合思想在研究函数性质中的重要作用。
本节内容分两个课时,本此说课是第一个课时,由于在前面学习任意角的正弦和余弦时已经对任意角的正切作了说明,所以本节正切函数的定义只进行简单复习。
如果在前面没有讲到正切函数的定义,此节课可以按两个课时来上,根据自己的实际情况进行调整。
我认为如果把函数看成一个人的话,图像就好比他的外表,代数就好比他的内心,一个完整的人是内心和外表的综合体。
前面的指数,对数,幂,正弦,余弦函数都是先看外表,而内心的美才是真正的美!这样处理可以给学生提供研究数学更多的视角,在性质的指导下可以更加有效地作图,研究图象,加强理性思考的成分,并使数形结合的思想体现的更加全面,体会到数学的美!2.学情分析:学生已经掌握了正弦函数的画法和利用正弦函数的图像研究函数性质的方法,这为本节课的学习提供了知识的保障,这是有利的因素。
不足之处在于学生不能独立的运用数形结合思想来研究问题和部分学生初中基础知识很差。
存在综合运用知识的能力不强、作图水平不高且层次不一等情况,需要教师加强引导以及学习小组的探讨与交流,不断优化知识结构,并能把知识归纳、转化、迁移。
3、教学目标: 知识与技能(1)能借助单位圆理解任意角的正切函数的定义;(2)能用单位圆中的正切线画出正切函数的图像;(3)掌握正切函数的图像的基本性质; 过程与方法通过正切函数的学习,进一步理解和掌握研究三角函数的一般思路和方法,并比较不同函数之间的相同点和不同点。
第一章 三角函数 7.1正切函数的定义、7.2正切函数的图像与性质、7.3正切函数的诱导公式 训练案知能提升 新人教A 版必修4[A.基础达标]1.函数y =3tan ⎝⎛⎭⎪⎫2x +π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2-3π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2,k ∈Z 解析:选C.由2x +π4≠k π+π2(k ∈Z ),得x ≠k π2+π8(k ∈Z ). 2.若tan θ·sin θ<0,则θ位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限解析:选C.依题意,tan θ·sin θ<0,所以tan θ与sin θ异号.当tan θ>0,sin θ<0时,θ为第三象限角.当tan θ<0,sin θ>0时,θ为第二象限角.3.函数y =|tan x |的周期为( )A.π2B .πC .2πD .3π解析:选B.结合函数y =|tan x |的图像可知周期为π.4.关于x 的函数f (x )=tan(x +φ),下列说法不正确的是( )A .对任意的φ,f (x )都是非奇非偶函数B .不存在φ,使f (x )既是奇函数,又是偶函数C .存在φ,使f (x )为奇函数D .对任意的φ,f (x )都不是偶函数解析:选A.当φ=k π(k ∈Z )时,f (x )=tan(x +k π)=tan x 为奇函数.5.在下列函数中,同时满足以下三个条件的是( )(1)在⎝⎛⎭⎪⎫0,π2上是递减的. (2)最小正周期为2π.(3)是奇函数.A .y =tan xB .y =cos xC .y =sin(x +3π)D .y =sin 2x解析:选C.y =tan x 在⎝⎛⎭⎪⎫0,π2上是递增的,不满足条件(1). B .函数y =cos x 是偶函数,不满足条件(3).C .函数y =sin(x +3π)=-sin x ,满足三个条件.D .函数y =sin 2x 的最小正周期T =π,不满足条件(2).6.直线y =a (a 为常数)与函数y =tan x 2的图像相交,两相邻交点间的距离为________. 解析:结合图像可知(图略),两相邻交点间的距离恰为一个最小正周期.答案:2π7.比较大小:tan 211°________tan 392°.解析:tan 211°=tan(180°+31°)=tan 31°.tan 392°=tan(360°+32°)=tan 32°,因为tan 31°<tan 32°,所以tan 211°<tan 392°.答案:<8.函数f (x )=tan x -1+1-x 2的定义域为________.解析:要使函数f (x )有意义,需⎩⎪⎨⎪⎧tan x -1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧tan x ≥1,x 2≤1.解得⎩⎪⎨⎪⎧k π+π4≤x <k π+π2,k ∈Z ,-1≤x ≤1,故π4≤x ≤1. 答案:⎣⎢⎡⎦⎥⎤π4,1 9.化简:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎪⎫α+3π2cos ⎝ ⎛⎭⎪⎫α+3π2. 解:原式=tan (-α)·sin(-α)·cos (-α)sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π2-α·cos ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π2-α =(-tan α)·(-sin α)·cos αsin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π2-αcos ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π2-α =sin 2α-sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α =sin 2α-cos α·sin α=-sin αcos α=-tan α. 10.(1)求y =tan 2x +4tan x -1的值域;(2)若x ∈⎣⎢⎡⎦⎥⎤π6,π3时,y =k +tan ⎝ ⎛⎭⎪⎫π3-2x 的值总不大于零,某某数k 的取值X 围. 解:(1)设t =tan x ,则y =t 2+4t -1=(t +2)2-5≥-5,所以y =tan 2x +4tan x -1的值域为[-5,+∞).(2)由y =k +tan ⎝ ⎛⎭⎪⎫π3-2x ≤0, 得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x =tan ⎝⎛⎭⎪⎫2x -π3. 因为x ∈⎣⎢⎡⎦⎥⎤π6,π3, 所以2x -π3∈⎣⎢⎡⎦⎥⎤0,π3. 由正切函数的单调性,得0≤tan ⎝ ⎛⎭⎪⎫2x -π3≤3,所以要使k ≤tan ⎝⎛⎭⎪⎫2x -π3恒成立,只要k ≤0即可. 所以k 的取值X 围为(-∞,0].[B.能力提升]1.已知f (tan x )=cos 3x ,且x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (tan 375°)的值为( ) A.12B .-22 C.22 D .-12解析:选C.因为tan 375°=tan(360°+15°)=tan 15°,所以f (tan 375°)=f (tan 15°)=cos (3×15°)=cos 45°=22. 2.已知a =tan 2,b =tan 3,c =tan 5,不通过求值,判断下列大小关系正确的是()A .a >b >cB .a <b <cC .b >a >cD .b <a <c解析:选C.tan 5=tan[π+(5-π)]=tan(5-π),由正切函数在⎝ ⎛⎭⎪⎫π2,π上为增函数可得tan 3>tan 2>tan(5-π).3.已知f (x )=a sin x +b tan x +1满足f ⎝ ⎛⎭⎪⎫π5=7,则f ⎝ ⎛⎭⎪⎫995π=________. 解析:依题意得f ⎝ ⎛⎭⎪⎫π5=a sin π5+b tan π5+1=7, 所以a sin π5+b tan π5=6, 所以f ⎝ ⎛⎭⎪⎫995π=a sin 995π+b tan 995π+1= a sin ⎝ ⎛⎭⎪⎫995π-20π+b tan ⎝ ⎛⎭⎪⎫995π-20π+1 =-a sin π5-b tan π5+1 =-⎝⎛⎭⎪⎫a sin π5+b tan π5+1 =-6+1=-5.答案:-54.给出下列命题:①函数y =tan x 的图像关于点⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z )对称; ②函数f (x )=sin |x |是最小正周期为π的周期函数; ③函数y =cos 2x +sin x 最小值为-1; ④设θ为第二象限的角,则tan θ2>cos θ2,且sin θ2>cos θ2.其中正确的命题序号是________.解析:①函数y =tan x 的图像关于点⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z )对称,正确;②函数f (x )=sin|x |是最小正周期为π的周期函数,错误,函数f (x )=sin|x |不是周期函数;③因为函数y =cos 2x +sin x =-sin 2x +sin x +1,所以其最小值为-1,正确;④设θ为第二象限的角,即π2+2k π<θ<π+2k π,k ∈Z ,所以π4+k π<θ2<π2+k π,k ∈Z ,即θ2为第一象限或第三象限的角,所以④不对. 答案:①③ 5.已知函数f (x )=sin x |cos x |. (1)求函数的定义域;(2)用定义判断f (x )的奇偶性;(3)在[-π,π]上作出f (x )的图像;(4)写出f (x )的最小正周期及单调性.解:(1)因为由cos x ≠0,得x ≠k π+π2(k ∈Z ), 所以函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z . (2)由(1)知函数的定义域关于原点对称.又因为f (-x )=sin (-x )|cos (-x )|=-sin x |cos x |=-f (x ),所以f (x )是奇函数.(3)f (x )=⎩⎪⎨⎪⎧tan x ,-π2<x <π2,-tan x ,-π≤x <-π2或π2<x ≤π, 则f (x )在其定义域上的图像如图所示.(4)f (x )的最小正周期为2π,递增区间是⎝ ⎛⎭⎪⎫-π2+2k π,π2+2k π(k ∈Z ), 递减区间是⎝ ⎛⎭⎪⎫-π+2k π,-π2+2k π,⎝ ⎛⎭⎪⎫π2+2k π,3π2+2k π(k ∈Z ). 6.(选做题)已知f (x )=x 2+2x ·tan θ-1,x ∈[-1,3],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当θ=-π6时,求函数f (x )的最大值与最小值; (2)求θ的取值X 围,使y =f (x )在区间[-1,3]上是单调函数.解:(1)当θ=-π6时,f (x )=x 2-233x -1=⎝⎛⎭⎪⎫x -332-43,x ∈[-1,3], 所以当x =33时,f (x )的最小值为-43, 当x =-1时,f (x )的最大值为233. (2)因为f (x )=x 2+2x ·tan θ-1=(x +tan θ)2-1-tan 2θ,所以原函数的图像的对称轴方程为x =-tan θ.因为y =f (x )在[-1,3]上是单调函数,所以-tan θ≤-1或-tan θ≥3,即tan θ≥1或tan θ≤-3,所以π4+k π≤θ<π2+k π或-π2+k π<θ≤-π3+k π, k ∈Z .又θ∈⎝ ⎛⎭⎪⎫-π2,π2, 所以θ的取值X 围是⎝ ⎛⎦⎥⎤-π2,-π3∪⎣⎢⎡⎭⎪⎫π4,π2.。
7.1正切班级________姓名____________一.学习目标:1.理解并掌握正切的定义,会在直角三角形中求出某个锐角的正切值;2. 了解计算一个锐角的正切值的方法.二.学习重点:重点:正切的定义;学习难点:求一个锐角的正切值的方法.三.教学过程导入:1.下列图中的两个台阶哪个更陡?你是怎么判断的?2.思考与探索:除了用∠A的大小来描述倾斜程度,我们还可以(1)可通过测量BC与AC的长度,再算出它们的比,来说明台阶的倾斜程度.(2)可通过测量B1C1与A1C1的长度,再算出它们的比,来说明台阶的倾斜程度.总结:一般地,如果锐角A的大小确定,我们可以作出无数个以A为一个顶点的直角三形(如图),那么图中:成立吗?为什么?结论:.3.正切的定义:.思考:当∠A越来越大时,∠A的正切值如何变化?【典型例题】1.根据下列图中所给条件分别求出下列图中∠A、∠B的正切值.通过上述计算,你有什么发现?2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,AB=5,求∠ACD、∠BCD的正切值.结论:.变式:如图,在Rt△ABC中,∠ACB=90°,CD是斜边A B上的高.①tan A=____=____;②tan B=____=____;③tan∠ACD=____;④tan∠BCD=____;课堂练习:1.如图,在Rt△ABC中,∠C=90°,AB=5,BC=,求tan A与tan B的值.2.如图,在Rt△ABC中,∠C=90°,BC=12,tan A=,求AB的值.3.(11四川乐山)如图,在4×4的正方形网格中,tanα=__________. 4.在直角坐标系中,△ABC的三个顶点的坐标分别为A(-4,1),B(-1,3),C(-4,3),则tan B=___________.(先画图再填空)归纳与小结:课时作业:1. 根据下列图中所给条件分别求出下列图中∠A、∠B的正切值.BCA23BAC512B2C3A变式:如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,求tan A的值.2.如图,在直角△ABC中,∠ACB=90°,CD⊥AB于D,CD=3,AD=4,tan A=_______,tan B=______.3.如图,在正方形ABCD中,点E为AD的中点,连结EB,设∠EBA=α,则tanα=__________.第2题第3题第6题第8题4.在直角△ABC中,∠C=90°,BC=5,tan A= ,求AB=_____.5.若锐角A,B满足tan A<tan B,则∠A,∠B的大小关系为__________________.6.如图,长为5m的梯子靠在一堵墙上,梯子的底端距离墙角3m,则梯子的倾斜角的正切值为__________.7.某楼梯每一级台阶的长度为30㎝,高度为15㎝,楼梯的倾斜角的正切值是_______.8.三角形在方格纸中的位置如图所示,则tanα的值是_______.9.如图,在Rt△ABC中,∠C=90°,AB=12,tan A=2,求AB的值.11.等腰三角形ABC的腰长AB,AC为5,底边长为6,求tan C.中考链接:Ⅰ.正切与生活实际相关.①(10 浙江省温州)如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于__ _.第①题第②题第③题②(10 山东东营)如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=α,那么AB等于__ _.③(10 广西钦州市)如图,为测量一幢大楼的高度,在地面上距离楼底O点20 m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为__ _.(结果保留3个有效数字).Ⅱ.正切与网格相关.①(10 湖北孝感)如图,△ABC的三个顶点分别在正方形网格的格点上,则tan A=_______.CAB第①题第②题第③题②(10 福建晋江)如图,∠BAC位于6×6的方格纸中,则tan∠BAC = .③(11甘肃兰州)如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC’B’,则tan B’的值为 .Ⅲ.正切与几何图形相关.①如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于 .第①题第②题第③题②(10四川凉山)如第14题图,∠1的正切值等于③(11贵州安顺)如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦,则tan∠OBE= .第④题第⑤题第⑥题第⑦题④(10山东日照)如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为 .⑤(10江苏南通)如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .(10山东潍坊)直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE沿CE翻折,使得B点与D点重合,则∠BCE的正切值为.⑦(11江苏苏州)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tan C等于.。
第一章三角函数---- 1.7正切函数------------ 学 案一、学习目标通过对正切函数的图像与性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知 识的能力.学会通过对图像的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力. 二、自主学习预习课本P36~38,思考并完成以下问题 1.正切函数的定义是什么?2.正切函数与正弦、余弦函数有怎样的关系?3.正切值在各象限的符号是什么?4.正切函数的定义域、值域、周期性、奇偶性、单调性分别是什么?1.正切函数的定义 (1)任意角的正切函数如果角α满足α∈R ,α≠π2+k π(k ∈Z),那么,角α的终边与单位圆交于点P (a ,b ),唯一确定比值ba ,我们把它叫作角α的正切函数,记作y =tan α,其中α∈R ,α≠π2+k π,k ∈Z(2)正切函数与正弦、余弦函数的关系 根据定义知tan α=sin αcos α⎝⎛⎭⎫α∈R ,α≠k π+π2, k ∈Z .(3)正切值在各象限的符号根据定义知,当角在第一和第三象限时,其正切函数值为正;当角在第二和第四象限时,其值为负. (4)正切线在单位圆中令A (1,0),过A 作x 轴的垂线与角α的终边或终边的延长线相交于T , 称线段AT 为角α的正切线.[点睛] (1)若α=π2+k π(k ∈Z),则角α的终边落在y 轴上,此时P (0,b ),比值ba无意义,因此正切函数的定义域为⎩⎨⎧⎭⎬⎫α⎪⎪α∈R ,且α≠π2+k π,k ∈Z .(2)正切函数tan α=ba 是一个比值,这个比值的大小与在角α终边上所取的点的位置无关.2.正切函数的图像及特征(1)y =tan x ,x ∈R 且x ≠π2+k π,k ∈Z 的图像(正切曲线).(2)正切曲线的特征正切曲线是被相互平行的直线x =k π+π2(k ∈Z)所隔开的无穷多支曲线组成的.这些直线叫作正切曲线各支的渐近线.[点睛] 正切曲线是被相互平行的直线x =k π+π2(k ∈Z)所隔开的无穷多支曲线组成的,每支曲线都是上、下无限伸展的,故正切函数不同于正弦、余弦函数的有界性.3.正切函数的性质函数y =tan x定义域⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠π2+k π,k ∈Z值域 R周期性 周期为k π(k ∈Z ,k ≠0),最小正周期为π奇偶性 奇函数单调性在⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z)上是增加的[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)y =-tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z ( ) (2)正切函数在其定义域内为增函数( ) (3)若角α的终边在y =x 上则tan α=1( ) 答案:(1)√ (2)× (3)√2.直线y =a 与y =tan x 的图像的相邻两个交点的距离是( )A.π2 B .πC .2πD .与a 的值的大小有关解析:选B 由条件知相邻两个交点间的距离即为一个周期的长度,故为π. 3.函数y =tan x ,x ∈⎣⎡⎦⎤0,π4的值域是________. 答案:[0,1]4.函数f (x )=1-2cos x +|tan x |是________函数(填“奇”或“偶”).解析:f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∈Z , 且f (-x )=1-2cos(-x )+|tan(-x )|=1-2cos x +|tan x |=f (x ),∴f (x )是偶函数. 答案:偶 三、合作探究:探究1: 利用定义求正切值[典例1] 如图,设A 是单位圆和x 轴正半轴的交点,P ,Q 是单位圆上 的两点,O 是坐标原点,∠AOP =π6,∠AO Q =α,α∈[0,π).(1)若已知角θ的终边与OP 所在的射线关于x 轴对称,求tan θ; (2)若已知Q ⎝⎛⎭⎫35,45,试求tan α.[解] (1)∵角θ的终边与OP 所在的射线关于x 轴对称,且P ⎝⎛⎭⎫32,12,故θ的终边与单位圆交于P ′⎝⎛⎭⎫32,-12,则tan θ=-1232=-33.(2)∵∠AO Q =α且Q ⎝⎛⎭⎫35,45,∴tan α=4535=43.利用定义求任意角的正切函数值的方法由正切函数的定义知:若点P 为角的终边(终边不与y 轴重合)与单位圆的交点,则该角的正切值为点P 的纵坐标与横坐标的比值;若点P 为角的终边(终边不与y 轴重合)上的任意一点(除坐标原点),由相似三角形的性质知,其正切值仍为点P 的纵坐标与横坐标的比值.探究2:正切函数的定义域、值域[典例2] (1)求函数f (x )=3tan ⎝⎛⎭⎫2x -π3的定义域. (2)求下列函数的值域. ①y =tan ⎝⎛⎭⎫x -π4,x ∈⎣⎡⎭⎫0,3π4; ②y =tan 2x +4tan x -1.[解] (1)由题意知,2x -π3≠k π+π2(k ∈Z),∴x ≠k π2+5π12(k ∈Z),(2)①∵x ∈⎣⎡⎭⎫0,3π4,∴-π4≤x -π4<π2, y =tan ⎝⎛⎭⎫x -π4在⎣⎡⎭⎫0,34π上为增函数,且y ≥-1, ∴函数y =tan ⎝⎛⎭⎫x -π4,x ∈⎣⎡⎭⎫0,34π的值域为[)-1,+∞. ②令t =tan x ,则t ∈R ,y =t 2+4t -1=(t +2)2-5≥-5, ∴函数y =tan 2x +4tan x -1的值域为[)-5,+∞.(1)求由正切函数构成的函数的定义域时,要特别注意使三角函数有意义.例如,若函数含有tan x ,需x ≠k π+π2,k ∈Z.(2)求正切函数的值域常用的方法有:直接法、配方法、反解函数法、单调性法、分离常数法、换元法.探究3:正切函数的图像及其单调性题点一:正切函数图像的识别1.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎫π2,3π2内的图像大致是( )解析:选D 法一:由题意,得y =⎩⎨⎧2tan x ,x ∈⎝⎛⎭⎫π2,π,2sin x ,x ∈⎣⎡⎭⎫π,3π2,作出该函数的大致图像,故选D.法二:当x 从右边无限接近π2时,tan x 趋向于-∞,故|tan x -sin x |趋向于+∞,∴y 趋向于-∞.故选D.题点二:利用正切函数图像求解不等式2.解不等式:tan x ≥-1.解:作出函数y =tan x 在区间⎝⎛⎭⎫-π2,π2内的大致图像,如图.∵tan ⎝⎛⎭⎫-π4=-1, ∴在⎝⎛⎭⎫-π2,π2内满足tan x ≥-1的x 的取值范围为⎣⎡⎭⎫-π4,π2. 由正切函数的周期性可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-π4+k π≤x <π2+k π,k ∈Z . 题点三:求单调区间3.写出下列函数的单调区间.(1)y =tan ⎝⎛⎭⎫x 2-π6; (2)y =|tan x |.解:(1)当k π-π2<x 2-π6<k π+π2(k ∈Z),即2k π-2π3<x <2k π+4π3(k ∈Z)时,函数y =tan ⎝⎛⎭⎫x 2-π6单调递增.∴函数的单调递增区间是⎝⎛⎭⎫2k π-2π3,2k π+4π3(k ∈Z). (2)y =|tan x |=⎩⎨⎧tan x ,x ∈⎣⎡⎭⎫k π,k π+π2,k ∈Z ,-tan x ,x ∈⎝⎛⎭⎫k π-π2,k π,k ∈Z.可作出其图像(如下图),由图像知函数y =|tan x |的单调递减区间为⎝⎛⎭⎫k π-π2,k π(k ∈Z),单调递增区间为⎣⎡⎭⎫k π,k π+π2(k ∈Z).解含有正切函数的简单三角不等式时,可先画出正切函数的一个周期的图像,由图像得到在一个周期内满足条件的x 的取值范围,然后加上周期的整数倍,即可得到满足不等式的解.探究4:正切函数的奇偶性与周期性[典例4] 已知f (x )=-a tan x (a ≠0). (1)判断f (x )在x ∈⎣⎡⎦⎤-π3,π3上的奇偶性; (2)求f (x )的最小正周期; (3)求f (x )的单调区间.[解] (1)∵f (x )=-a tan x (a ≠0),x ∈⎣⎡⎦⎤-π3,π3,∴f (-x )=-a tan(-x )=a tan x =-f (x ). 又定义域⎣⎡⎦⎤-π3,π3关于原点对称,∴f (x )为奇函数. (2)f (x )的最小正周期为π.(3)∵y =tan x 在⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z)上单调递增, ∴当a >0时,f (x )在⎝⎛⎭⎫k π-π2,k π+π2上单调递减, 当a <0时,f (x )在⎝⎛⎭⎫k π-π2,k π+π2上单调递增.(1)判断与正切函数有关的奇偶性问题时要注意其定义域是否关于原点对称. (2)注意正切函数的最小正周期为π. 四、自主小测1.函数y =tan xa的最小正周期是( )A .πaB .π|a | C.π aD.π |a |解析:选B T =π⎪⎪⎪⎪1a =π|a |. 2.下列函数中,同时满足条件①在⎝⎛⎭⎫0,π2上是增加的,②是奇函数,③是以π为最小正周期的函数的是( ) A .y =tan x B .y =cos x C .y =tan x2D .y =|sin x |解析:选A 验证知A 符合①②③. 3.函数y =3x -x 2tan x的定义域是A .(0,3]B .(0,π) C.⎝⎛⎭⎫0,π2∪⎝⎛⎦⎤π2,3 D.⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,3解析:选C 根据函数有意义的条件,得⎩⎪⎨⎪⎧3x -x 2≥0,tan x ≠0,x ≠k π+π2,即⎩⎪⎨⎪⎧0≤x ≤3,x ≠k π,x ≠k π+π2,故0<x <π2或π2<x ≤3,即函数y =3x -x 2tan x的定义域是⎝⎛⎭⎫0,π2∪⎝⎛⎦⎤π2,3,故选C. 4.已知P ⎝⎛⎭⎫x ,-32是角α终边上一点,且tan α=-3,求x 的值. 解:由题意得tan α=-32x =-3,解得x =12,故x 的值是12.5.已知π4≤x ≤π3,函数f (x )=-tan 2x +10tan x -1,求函数f (x )的最大值和最小值,并求出相应的x 的值.解:设tan x =t ,∵x ∈⎣⎡⎦⎤π4,π3,∴t ∈[1,3],∴f (x )=-tan 2x +10tan x -1=-t 2+10t -1=-(t -5)2+24. ∴当t =1,即x =π4时,f (x )min =8;当t =3,即x =π3时,f (x )max =103-4.。
苏科版数学九年级下册7.1《正切》教学设计一. 教材分析苏科版数学九年级下册7.1《正切》是学生在学习了锐角三角函数的基础上进一步学习的知识。
本节内容主要介绍了正切的定义、性质和计算方法。
通过学习正切,学生能够更好地理解三角函数的概念,并为后续学习三角恒等式、解三角形等知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了锐角三角函数的基本概念和计算方法,具备了一定的函数思维。
但正切函数的概念和性质相对于其他三角函数较为抽象,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.理解正切的定义,掌握正切的性质。
2.学会计算正切值,并能运用正切解决实际问题。
3.培养学生的函数思维,提高学生的数学素养。
四. 教学重难点1.正切的概念和性质。
2.正切的计算方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究正切的知识。
2.利用多媒体展示实例,直观地引导学生理解正切的概念和性质。
3.运用合作学习法,让学生在小组讨论中共同解决问题,提高学生的团队协作能力。
4.通过练习和实例,巩固学生对正切知识的掌握。
六. 教学准备1.多媒体教学设备。
2.正切相关教学PPT。
3.练习题和实际问题案例。
七. 教学过程1.导入(5分钟)利用多媒体展示一个直角三角形,引导学生回顾锐角三角函数的知识。
然后提出问题:“如果我们要表示∠A的正切值,应该如何表示?”2.呈现(10分钟)讲解正切的定义,引导学生通过观察直角三角形来理解正切的概念。
给出正切的性质,并进行简要解释。
3.操练(10分钟)让学生独立完成一些正切的计算题,并及时给予反馈和讲解。
通过练习,让学生加深对正切计算方法的理解。
4.巩固(10分钟)让学生分组讨论,找出生活中的实际问题,并尝试运用正切知识解决。
例如,一个直角三角形,其中一个锐角为30°,斜边长为10cm,求另一条直角边的长度。
5.拓展(10分钟)引导学生思考:正切函数在实际生活中有哪些应用?让学生举例说明,进一步拓宽学生的知识视野。
苏科版数学九年级下册7.1《正切》讲说课稿一. 教材分析苏科版数学九年级下册7.1《正切》是本节课的主要内容。
在这一节中,学生将学习正切的定义、性质和应用。
教材通过引入直角三角形和锐角三角函数的概念,引导学生探究正切函数的图象和性质,从而培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了直角三角形、锐角三角函数等基础知识,具备了一定的数学思维能力。
但部分学生可能对正切函数的图象和性质理解不够深入,需要通过本节课的学习来进一步巩固。
三. 说教学目标1.知识与技能:学生能理解正切的定义,掌握正切函数的图象和性质,能运用正切解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方法,培养学生探究问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:正切的定义,正切函数的图象和性质。
2.教学难点:正切函数的应用,对正切函数图象和性质的深入理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、教具等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过复习直角三角形和锐角三角函数的知识,引出正切的概念。
2.探究:学生分组讨论,探究正切函数的图象和性质,教师给予引导和指导。
3.讲解:教师讲解正切函数的图象和性质,引导学生理解并掌握。
4.应用:学生运用正切函数解决实际问题,巩固所学知识。
5.总结:教师引导学生总结本节课的主要内容和收获。
七. 说板书设计板书设计要简洁明了,突出重点。
主要包括正切的定义、正切函数的图象和性质等内容。
八. 说教学评价教学评价主要包括学生的课堂表现、作业完成情况、课堂提问等方面。
通过评价,了解学生对正切知识的掌握程度,为下一步教学提供依据。
九. 说教学反思在课后,教师要对自己的教学进行反思,分析教学过程中的优点和不足,不断调整教学方法和手段,提高教学质量。
7.1 正切教材分析:教学过程:一、情境引入:1、2007年10月11日,世界特奥会胜利闭幕,上海一片欢腾!特奥会运动员都是什么样的人?他们需要全社会的关心!2、这是某个体育馆的入口,有很多台阶,但总觉得少了点什么?如图:3、设计残疾人通道——斜坡。
两个方案中你认为哪一个更方便?为什么?如图:4、第二个坡比较缓,更方便。
5、你通过什么看出来DE比较缓的呢?具体是什么关系?6、除了角以外,还可以用什么方法来描述斜坡的倾斜程度呢?二、新知探索:1、角可以,那你还可以研究什么?2、边的长度本身是否决定斜坡的倾斜程度?一边、两边、三边?3、边的比值呢?4、角的大小,比值的大小都可以描述斜坡的倾斜程度,那么他们之间有没有关联?学生的可能想法:斜坡长,斜坡纵向长,斜坡横向长,角度(倾斜角)。
教师可以进一步引导学生思考:与一个量有关还是和两个量有关呢?师生共同得到:坡的倾斜程度可以a、由角度决定b、不能由某一边的长度决定,而是由两边的比值决定c、角度相等时,两边的比值也相等教师组织下面几组图形让学生观察比较,探索归纳。
第一组图:5、一般地,如果锐角A 的大小确定,我们可以作出无数个以A 为一个锐角直角 三角形(如图),那么图中:===222111AC C B AC C B AC BC 学生解决6、当∠A 变化时,上面等式仍然成立吗?7、当两个三角形不靠时,上面等式还成立吗? 8、小结:如果直角三角形的一个锐角的大小确定,那么这个锐角的对边与这个角的邻边的比值也确定。
CC 1 C 2A三、新知板书: 1、∠A 的正切:直角三角形中,我们把∠A 的对边与邻边的比叫做∠A 的正切(tangent )。
记作:tanA.如图:b aA A A =∠∠=的邻边的对边tan 注:对边、邻边的确定。
例1:如图,△ABC 中, ∠C=90°,AC=4,BC=3, 求:tanA 与 tanB 的值。
教师板书略四、巩固练习1、求下列直角三角形中锐角的正切值.2、已知∠C =90o ,BC=2, tanA=0.5 ,你能求出AC ,AB 吗?学生板练五、动手实践:1、在直角三角形中你能求出一个角的正切值,如果只给你一个孤角,你能求出这个角的正切值吗?2、在黑板上画一个30o 角,如何求tan30o ?学生可能的想法:利用直角三角形中30度角的性质 3、在黑板上画一个31o 角,如何求tan31o ?提出一个挑战性问题给学生思考,引导学生构造直角三角形,设法量取31o 角的对边和邻边长,再求tan31o 值。
苏科版数学九年级下册7.1《正切》讲教学设计一. 教材分析苏科版数学九年级下册7.1《正切》是学生在学习了锐角三角函数的基础上,进一步研究正切函数的性质和图象。
本节课的主要内容有:正切的定义、正切的性质、正切的图象。
教材通过生活中的实例引入正切的概念,让学生感受数学与生活的联系,培养学生的数学应用能力。
二. 学情分析九年级的学生已经掌握了锐角三角函数的基本概念和性质,具备了一定的函数观念。
但是,对于正切函数的理解和应用还有一定的困难。
因此,在教学过程中,教师要注重引导学生通过观察、思考、交流等方式,逐步理解正切的概念,掌握正切的性质,并能运用正切解决实际问题。
三. 教学目标1.知识与技能:理解正切的定义,掌握正切的性质,会画正切的图象。
2.过程与方法:通过观察、思考、交流,培养学生的数学思维能力。
3.情感态度与价值观:感受数学与生活的联系,提高学生学习数学的兴趣。
四. 教学重难点1.重点:正切的定义,正切的性质,正切的图象。
2.难点:正切函数的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生感受数学与生活的联系。
2.启发式教学法:引导学生观察、思考、交流,自主探索正切的性质。
3.实践教学法:让学生动手画正切的图象,加深对正切函数的理解。
六. 教学准备1.课件:制作正切的教学课件,包括生活中的实例、正切的定义、性质和图象等。
2.学具:准备三角板、直尺等学具,方便学生画图。
七. 教学过程1.导入(5分钟)利用课件展示生活中的实例,如建筑工人测量高度,引导学生观察并提出问题:建筑工人是如何测量高度的?引导学生思考数学与生活的联系,激发学生的学习兴趣。
2.呈现(10分钟)教师引导学生观察实例,提出问题:什么是正切?引导学生通过讨论、交流,得出正切的定义。
同时,教师给出正切的符号表示,并解释正切的意义。
3.操练(10分钟)教师给出几个具体的锐角,让学生用三角板和直尺画出相应的正切线,并标出正切的符号。