math_chap08
- 格式:ppt
- 大小:2.88 MB
- 文档页数:148
Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入 , 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num->a表达式/.{x->a, y->b,…}如何用mathematica进行复数运算a+b*I表示复数a+bIConjugate[z]求复数z的共轭复数Exp[z]复数的指数函数,表示e^zRe[z]求复数z的实部Im[z]求复数z的虚部Abs[z]求复数z的模Arg[z]求复数z的辐角,如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:{a, b, c,…}表示由a, b, c,…组成的集合(注意:必须用大括号)下列命令可以生成特殊的集合:Table[f,{n}]生成包含n个元素f的集合Table[f[n],{n,nmax}]n从1到nmax,间隔为1,生成集合{f[1], f[2], f[3],…, f[nmax]} Table[f[n],{n,nmin, nmax}]n从nmin到nmax,间隔为1,生成集合{f[nmin], f[nmin+1], f[nmin+2],…, f[nmax]}Table[f[n],{n,nmin, nmax, dn}]n从nmin到nmax,间隔为dn,生成集合{f[nmin],f[nmin+dn], f[nmin+2*dn],…, f[nmax]}Range[n]生成集合{1, 2, 3 ,…, n}Range[imin, imax]生成集合{imin,imin+1,imin+2,…,imax}Range[imin, imax, di]生成集合{imin,imin+di,imin+2*di,… } (最大不超过imax)如何用Mathematica求集合的交集、并集、差集和补集Union[A,B,C,…] 求集合A,B,C,…的并集A~Union~B~U nion~C~Union~… 求集合A,B,C,…的并集A∪B∪C∪… 求集合A,B,C,…的并集Intersection[A,B,C,…] 求集合A,B,C,…的交集A~ Intersection ~B~ Intersection ~C~ Intersection ~… 求集合A,B,C,…的交集A∩B∩C∩… 求集合A,B,C,…的交集Complement [A,B,C,…] 求差集A~ Complement ~B~ Complement ~C~ Complement ~… 求差集Complement [全集I,A] 求集合A关于全集I的补集全集I ~ Complement ~A 求集合A关于全集I的补集如何mathematica用排序Sort[v]将数组或向量v的元素从小到大排列(升序排列)Reverse[v]将数组或向量v的元素按照与原来相反的顺序重新排列(续排列)RotateLeft[v]将数组或向量v中的每一个元素向左移一个位置RotateRight[v]将数组或向量v中的每一个元素向右移一个位置RotateLeft[v,n]将数组或向量v中的每一个元素向左移n个位置RotateRight[v,n]将数组或向量v中的每一个元素向右移n个位置如何在Mathematica中解方程Solve[方程,变元]注:方程的等号必须用: = =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用: = =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[不等式,变元]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]如何用mathematica表示分段函数lhs:=rhs/;condition当condition成立时,lhs才会被定义成rhsIf[test,then,else]如果test为True,则执行then,否则执行 elseIf[test,then,else,unknown]如果test为True,则执行then,为False时,则执行else,无法判断test是True或False时则执行unknownWhich[test1,value1,test2,value2,...]如果test1为True,则执行value1,test2为True,则执行value2,依次类推。
第八章 Mathematica编程语句与例题8.1全局变量、局部变量、过程8.1.1全局变量我们知道, 变量是在命令或程序执行中其值可以发生变化的,在任何计算机语言中程序中,变量作用时非常重要的。
一个变量在没有被赋值之前, 对应的变量名只是数学意义中的符号, 一旦被赋值, 对应的变量名就是被赋值的内容。
利用变量可以方便地进行计算和保存中间的计算结果。
例如:在Mathematica的Notebook中键入In[1]:= x*x – x + 1Out[1]=1- x - x2 (*这里x没有被赋值,故它只是一个符号,输入变为一个数学式子In[2]: = x = 2+2 (*变量x存放了计算结果4Out[2]= 4In[3]:= x*x – x + 1 (*这里x已经有值4,计算机自动用4代替x参与计算Out[3]= 13如果要想使变量还原为一个符号,使用清除变量命令即可。
这种在Mathematica中键入的各种命令或在Mathematica的程序语句中, 变量被赋值后, 必须用Mathematica清除变量的命令才能使其还原为符号的变量, 称为全局变量。
上面例子中的变量x就是一个全局变量。
察看某变量是否为全局变量,可以键入命令:?变量名如果显示结果出现Global`变量名…说明该变量是全局变量,否则,就不是全局变量。
例如要知道变量w是否为全局变量,可以键入: ? w键入执行命令后,显示结果Global`ww = 2说明w是全局变量,且有数值2。
如果用户自己定义了函数,Mathematica会把自定义的函数名作为全局变量,此时,如果键入命令:?自定义函数名可以看到全局变量的说明和该自定义的函数的定义信息。
8.1.2 局部变量由于Mathematica中的变量名还可以用作代数中的数学符号,在Mathematica的命令或程序中出现的任何合法的变量名符号,如果该变量名所代表的变量没有被赋值,则它就作为数学算式中的符号参与数学的公式推导和运算;如果该变量被赋值了,则用该变量所赋的值参与对应的数学公式推导和运算。
mathematica编程Mathematica是一种功能强大的数学建模和计算机代数系统,它提供了丰富的数学函数、图形绘制和数据分析工具,可以用于各种科学和工程计算领域。
通过编程,我们可以利用Mathematica来解决各种数学问题,从简单的代数运算到复杂的数据分析和机器学习。
Mathematica的编程语言是一种功能强大且易于学习的语言,它类似于传统的编程语言,如C和Python,但具有更高级的数学和符号计算功能。
下面我将介绍一些Mathematica编程的基础知识和常用技巧。
首先,我们需要了解Mathematica的基本语法。
Mathematica的基本单位是表达式,可以是数值、符号、函数或其他表达式。
表达式可以使用中缀、前缀或后缀形式来表示。
Mathematica有丰富的内置函数,可以用于数学计算、图形绘制、数据处理等方面。
在Mathematica中,我们可以使用变量来存储数值、符号或表达式。
变量的命名规则与其他编程语言相似,可以包含字母、数字和下划线,但必须以字母或下划线开头。
我们可以使用赋值运算符“=”将一个表达式赋给一个变量,例如:x = 3;y = x^2 + 2x + 1;在这个例子中,变量x被赋值为3,变量y被赋值为x的平方加2x加1的结果。
我们可以通过输入变量的名称来获取它们的值。
Mathematica提供了各种数学函数,可以用于数值计算和符号计算。
例如,我们可以使用内置的求和函数Sum来计算一个数列的和:Sum[i^2, {i, 1, 10}]这个例子中,我们计算了从1到10的平方和。
Mathematica还提供了诸如求导、积分、解方程等功能,可以帮助我们解决各种数学问题。
除了数学计算,Mathematica还可以用于绘制图形和处理数据。
例如,我们可以使用Plot函数绘制一个函数的图像:Plot[Sin[x], {x, 0, 2Pi}]这个例子中,我们绘制了正弦函数的图像。
Discrete Mathematics and Its Applications, 8th Edition CourseDesignBackgroundDiscrete mathematics is a foundation for many computer science and mathematics-related fields. It deals with objects that can only take distinct values, such as integers, graphs, and propositions. The applications of discrete mathematicsare diverse and important, including cryptography, computer algorithms, and database systems.The book Discrete Mathematics and Its Applications,written by Kenneth H. Rosen, is a widely accepted textbook on the subject. In this course design, we will use the book’s8th edition, which covers a vast range of topics in discrete mathematics.Course DescriptionThe course ms to provide students with a comprehensive understanding of discrete mathematics and its applications. The course will cover major topics in the field, including:1.Propositional logic and predicate logic2.Set theory and relationsbinatorics and discrete probability4.Graph theory5.Trees, spanning trees, and graph traversals6.Boolean algebra and switching circuits7.The theory of computation and formal languages8.Number theory and cryptographySpecial emphasis will be placed on developing problem-solving skills, logical reasoning, and mathematical maturity. Students will learn to apply the tools and techniques learned in this course to real-world problems.Course GoalsUpon completion of this course, students should be able to:1.Understand and apply the fundamental principles ofdiscrete mathematics2.Identify and solve problems involving logic, sets,and relations3.Analyze and solve problems in combinatorics anddiscrete probability4.Understand the properties and applications ofgraphs, trees, and circuits5.Understand the principles and applications of thetheory of computation and formal languages6.Demonstrate knowledge of number theory and itsapplications to cryptographyCourse OutlineThe course will be delivered through lectures, problem-solving sessions, and assignments. The course outline is as follows:Week 1: Propositional Logic and Predicate Logic•Introduction to logic•Propositional logic–Logical connectives and truth tables–Tautologies, contradictions, and logical equivalence–Logical inference and proof techniques •Predicate logic–Predicates and quantifiers–Universal and existential quantifiers–Translating English statements into predicate logicWeek 2: Set Theory and Relations•Introduction to sets and set operations•Relations–Binary relations and their properties–Equivalence relations and partitions–Partial orders and Hasse diagramsWeek 3: Combinatorics and Discrete Probability•Counting principles–The multiplication rule–The addition rule–Permutations and combinations•Discrete probability–Probability spaces and events–Conditional probability and independence–Random variables and their distributions Week 4: Graph Theory•Introduction to graphs and their representations •Basic terminology•Walks, paths, and cycles•Connectivity and components•Directed graphsWeek 5: Trees, Spanning Trees, and Graph Traversals •Trees and their properties•Spanning trees and their properties•Minimum spanning trees and algorithms•Graph traversals–Breadth-first search–Depth-first searchWeek 6: Boolean Algebra and Switching Circuits •Boolean algebra and its operations•Boolean functions and their representations•Canonical forms and minimization•Switching circuits and their designWeek 7: The Theory of Computation and Formal Languages •Introduction to automata theory•Finite automata and regular languages•Regular expressions•Pushdown automata and context-free languages Week 8: Number Theory and Cryptography•Principles of number theory–Divisibility and prime numbers–Modular arithmetic and congruences •Cryptography–Cryptographic algorithms and protocols–Public-key cryptography and RSAAssessmentAssessment will be based on a combination of quizzes, assignments, and exams. The final grade will be determined based on the following:•Quizzes: 20%•Assignments: 40%•Midterm exam: 20%•Final exam: 20%ConclusionThis course design provides a comprehensive overview of the topics covered in the book Discrete Mathematics and Its Applications, 8th edition. The course ms to develop problem-solving skills, logical reasoning, and mathematical maturity. Students will learn to apply discrete mathematics to real-world problems, with a focus on computer science and mathematics-related fields.。
mathematica进行巴特沃斯滤波-回复标题:用Mathematica进行巴特沃斯滤波简介:Mathematica是一款强大的数学软件,可以进行各种数学计算和数据处理。
其中之一的功能是进行滤波操作,其中巴特沃斯滤波是一种常用的滤波方法。
本文将以巴特沃斯滤波为主题,详细介绍如何使用Mathematica 进行这种滤波操作,并逐步解释每个步骤。
第一步:导入数据首先,我们需要导入待滤波的数据。
可以使用Mathematica内置的Import 函数来导入各种文件格式的数据,如图像、音频、文本等。
以图像为例,可以使用以下代码导入:img = Import["path_to_image.jpg"]其中,"path_to_image.jpg"是待滤波图像的路径,可以根据实际情况修改。
导入后的数据将存储在变量img中。
第二步:转换为频域巴特沃斯滤波是一种基于频域的滤波方法,因此需要将图像转换到频域。
在Mathematica中,可以使用Fourier函数来进行傅里叶变换,将图像从空间域转换到频域。
以下是代码示例:imgFourier = Fourier[img]以上代码将对图像进行傅里叶变换,并将结果存储在变量imgFourier中。
第三步:设计滤波器接下来,我们需要设计巴特沃斯滤波器。
在Mathematica中,可以使用ButterworthFilterModel函数来设计滤波器模型。
该函数有几个参数,包括滤波器的阶数、截止频率等。
以下是代码示例:order = 2; (* 滤波器的阶数*)cutoffFreq = 0.1; (* 滤波器的截止频率*)filterModel = ButterworthFilterModel[{"Lowpass", order, cutoffFreq}]以上代码将设计一个低通滤波器,阶数为2,截止频率为0.1。
滤波器模型将存储在变量filterModel中。
Mathematica 8 简明教程【Mathematica 简介】Mathematica 软件是由沃尔夫勒姆研究公司(Wolfram Research Inc.)研发的。
Mathematica 1.0 版发布于1988年6月23日。
发布之后,在科学、技术、媒体等领域引起了一片轰动,被认为是一个革命性的进步。
几个月后,Mathematica 就在世界各地拥有了成千上万的用户。
今天,Mathematica 已经在世界各地拥有了数以百万计的忠实用户。
Mathematica 已经被工业和教育领域被广泛地采用。
实际上,Mathematica 负责将高级的数学和计算引入了传统上非技术的领域,极大的增加了科技软件的市场。
一个包含应用、咨询、书籍、和课程软件的行业支持着国际化的Mathematica 用户群,这个行业还在不断地膨胀。
随着沃尔夫勒姆研究公司不断地扩大和Mathematica 的使用被不断地扩展到不同的领域,将会看到Mathematica 在全世界范围内对未来产品、重要研究发现、和教学的巨大影响。
数学软件是现在科研工作者的必备的工具,个人比较喜欢用Mathematica,因为它是最接近数学语言的。
Mathematica 在15日发布,其最显著的变化是允许自由形式的英文输入,而不再需要严格按照Mathematica语法,这类似于Wolfram|Alpha搜索引擎。
Mathematica 8允许用户按照自己习惯的思考过程输入方程式或问题,最令人激动的部分是软件不是逐行执行命令,而是能理解上下文背景。
1. Enter your queries in plain English using new free-form linguistic input2. Access more than 10 trillion sets of curated, up-to-date, and ready-to-use data3. Import all your data using a wider array of import/export formats4. Use the broadest statistics and data visualization capabilities on the market5. Choose from a full suite of engineering tools, such as wavelets and control systems6. Use more powerful image processing and analysis capabilities7. Create interactive tools for rapid exploration of your ideas8. Develop faster and more powerful applicationsWolfram Research 的CEO 和创立者斯蒂芬·沃尔夫勒姆表示:“传统上,让计算机执行任务必须使用计算机语言或者使用点击式界面:前者要求用户掌握它的语法;而后者则限制了可访问函数的范围。
Mathematica入门教程第1篇第1章MATHEMATICA概述 (3)1.1 M ATHEMATICA的启动与运行 (3)1.2 表达式的输入 (4)1.3 M ATHEMATICA的联机帮助系统 (6)第2章MATHEMATICA的基本量 (8)2.1 数据类型和常数 (8)2.2 变量 (10)2.3 函数 (11)2.4 表 (14)2.5 表达式 (17)2.6 常用的符号 (19)2.7 练习题 (19)第2篇第3章微积分的基本操作 (20)3.1 极限 (20)3.2 微分 (20)3.3 计算积分 (22)3.4 无穷级数 (24)3.5 练习题 (24)第4章微分方程的求解 (26)4.1 微分方程解 (26)4.2 微分方程的数值解 (26)4.3 练习题 (27)第3篇第5章MATHEMATICA的基本运算 (28)5.1 多项式的表示形式 (28)5.2 方程及其根的表示 (29)5.3 求和与求积 (32)5.4 练习题 (33)第6章函数作图 (35)6.1 基本的二维图形 (35)6.2 二维图形元素 (40)6.3 基本三维图形 (42)6.4 练习题 (46)第4篇第7章MATHEMATICA函数大全 (48)7.1 运算符和一些特殊符号,系统常数 (48)7.2 代数计算 (49)7.3 解方程 (50)7.4 微积分 (50)7.5 多项式函数 (51)7.6 随机函数 (52)7.7 数值函数 (52)7.8 表相关函数 (53)7.9 绘图函数 (54)7.10 流程控制 (57)第8章MATHEMATICA程序设计 (59)8.1 模块和块中的变量 (59)8.2 条件结构 (61)8.3 循环结构 (63)8.4 流程控制 (65)8.5 练习题 (67)--------------习题与答案在68页-------------------第1章Mathematica概述1.1 Mathematica的启动与运行Mathematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。
math库中的数学函数Math库是Python中内置的数学函数库,提供了一系列用于执行数学运算的函数和常量。
以下是Math库中的一些常用的数学函数:1.数值函数:- ceil(x): 返回大于或等于x的最小整数。
- floor(x): 返回小于或等于x的最大整数。
- round(x, n): 返回x的四舍五入值,n是可选的小数位数,如果省略则默认为0。
- trunc(x): 返回x的整数部分。
- fabs(x): 返回x的绝对值。
- sqrt(x): 返回x的平方根。
- pow(x, y): 返回x的y次方。
- exp(x): 返回e的x次方。
- log(x): 返回x的自然对数。
- log10(x): 返回x的以10为底的对数。
2.三角函数:- sin(x): 返回x的正弦值,x的单位是弧度。
- cos(x): 返回x的余弦值,x的单位是弧度。
- tan(x): 返回x的正切值,x的单位是弧度。
- asin(x): 返回x的反正弦值,返回值在 -pi/2 到 pi/2 之间。
- acos(x): 返回x的反余弦值,返回值在 0 到 pi 之间。
- atan(x): 返回x的反正切值,返回值在 -pi/2 到 pi/2 之间。
- atan2(y, x): 返回y / x的反正切值,返回值在 -pi 到 pi 之间。
3.超越函数:- sinh(x): 返回x的双曲正弦值。
- cosh(x): 返回x的双曲余弦值。
- tanh(x): 返回x的双曲正切值。
- asinh(x): 返回x的反双曲正弦值。
- acosh(x): 返回x的反双曲余弦值。
- atanh(x): 返回x的反双曲正切值。
4.统计函数:- sum(iterable): 返回可迭代对象中的所有元素之和。
- max(iterable): 返回可迭代对象中的最大值。
- min(iterable): 返回可迭代对象中的最小值。
- mean(iterable): 返回可迭代对象中所有元素的算术平均值。
Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果?name 关于系统变量name的信息??name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容<Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aiO[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独立变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...} FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排排? Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产生伪随机数如果采用了<在2.0版本为<<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m" Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲? Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color}color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)>选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度十四、绘图函数(续)图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpi小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blocki Switch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒的提示。
Mathematica来源:百科名片Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。
很多功能在相应领域内处于世界领先地位,截至2009年,它也是为止使用最广泛的数学软件之一。
Mathematica的发布标志着现代科技计算的开始。
自从20世纪60年代以来,在数值、代数、图形、和其它方面应用广泛,Mathematica是世界上通用计算系统中最强大的系统。
自从1988发布以来,它已经对如何在科技和其它领域运用计算机产生了深刻的影响。
目录Mathematica的历史Mathematica的影响Mathematica的用户群Mathematica的开发工作Mathematica运算Mathematica 基本运算常用数学函数数之设定四个常用处理代数的指令多项式/分式转换的函数分母/分子的运算多项式的另二种转换函数三角函数、双曲函数和指数的运算复数、次方乘积之展开多项式项次、系数与最高次方之取得代换运算子解方程式的根Mathematica 的四种括号缩短Mathematica输出的指令查询Mathematica的物件函数的定义、查询与清除If指令极限微分全微分不定积分定积分列之和与积函数之泰勒展开式逻辑运算子基本二维绘图指令Plot[]几种常用选项的指令串列绘图绘图颜色的指定彩色绘图图形处理指令图形之排列等高线图ContourPlot[]的选项版本Mathematica的历史Mathematica的影响Mathematica的用户群Mathematica的开发工作Mathematica运算Mathematica 基本运算常用数学函数数之设定四个常用处理代数的指令多项式/分式转换的函数分母/分子的运算多项式的另二种转换函数三角函数、双曲函数和指数的运算复数、次方乘积之展开多项式项次、系数与最高次方之取得代换运算子解方程式的根Mathematica 的四种括号缩短Mathematica输出的指令查询Mathematica的物件函数的定义、查询与清除If指令极限微分全微分不定积分定积分列之和与积函数之泰勒展开式逻辑运算子基本二维绘图指令Plot[]几种常用选项的指令串列绘图绘图颜色的指定彩色绘图图形处理指令图形之排列等高线图ContourPlot[]的选项版本展开Mathematica的历史人们常说,Mathematica的发布标志着现代科技计算的开始。