PPT:GMI Sensor 巨磁阻抗磁传感的原理及应用介绍
- 格式:pdf
- 大小:1.71 MB
- 文档页数:39
巨磁阻效应及其传感器的原理和应用一、概述对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。
所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。
研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。
所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。
利用这一效应制成的传感器称为GMR传感器。
1、分类GMR材料按其结构可分为具有层间偶合特性的多层膜(例如Fe/Cr)、自旋阀多层膜(例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例如Fe-Co)和钙钛矿氧化物型多层膜(例如AMnO3)等结构;其中自旋阀(spinvalve)多层膜又分为简单型和对称型两类;也有将其分为钉扎(pinning)和非钉扎型两类的。
2、巨磁电阻材料的进展Δr/r在4.2K低温下可达50%以上,由此提出了GMR效应的概念,在学术界引起了很大的反响。
由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au……等具有显着GMR效应的层间偶合多层膜。
自1988年发现GMR效应后仅3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜(如[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。
1992年人们利用两种磁矫顽力差别大的材料(例如Co和Fe20Ni80)制成Co/Cu/Fe20Ni80/Cu多层膜,他们发现,当Cu层厚度大于5nm时,层间偶合较弱,此时利用磁场的强弱可改变磁矩的方向,以自旋取向的不同来控制膜电阻的大小,从而获得GMR效应,故称为自旋阀。
与此同时,1992年A.E.Berkowitz和Chien等人首次发现了Fe、Co与Cu、Ag分别形成二元合金颗粒膜中的磁电阻效应,在低温下其Δr/r可达(40~60)%。
GMR磁场传感器的工作原理巨磁电阻(GMR)效应是1988年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。
1. 巨磁电阻(GMR)原理,见图一。
巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。
这种效应只有在纳米尺度的薄膜结构中才能观测出来。
赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。
2. 巨磁电阻(GMR)传感器原理,见图二。
巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。
工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。
3. 巨磁电阻(GMR)传感器性能,见图三,表一。
图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。
表一所示为国际上各公司生产的巨磁电阻(GMR)传感器的性能对照,表中标注有(库万军)处为本公司产品。
对比表明本公司的产品无论灵敏度或线性范围都有较大的优越性,而且本公司产品性能仍在不停的丰富和完善过程中。
更为重要的是,本公司产品采用特殊的结构,适宜于采用半导体集成化规模生产,因此生产成本低。
图3巨磁电阻(GMR)传感器在外场下的性能曲线表一各公司巨磁电阻(GMR)传感器性能对照灵敏度(mV/V*Oe)线性范围(Oe)结构及材料偏磁技术IBM 0.8 ±25 SPIN-VALVE 设置电流NVE 0.45 ±135 Co/Cu多层膜外置偏磁铁Honeywell 1 ±6 NiFe film(AMR)EPFL-CH 0.024 ±150 聚磁通霍尔元件INESC 0.6 ±30 SPIN-VALVE 设置电流INESC (库万军)0.21 ±135 NiFe/CoFe/Cu多层膜CoFe/CoPt双层膜INESC (库万军)0.17 ±200 NiFe/CoFe/Cu多层膜CoPt膜(两矫顽力)INESC(库万军)1.3 ±20 SPIN-VALVE 两次沉积INESC(库万军)探测磁场X-Y分量的集成元件INESC(库万军)数字、脉冲型3. 产品使用说明a.巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V的直流电源。
gmr传感器工作原理GMR传感器工作原理引言:GMR(Giant Magneto Resistance)传感器是一种基于巨磁电阻效应的传感器,具有高灵敏度、快速响应和低功耗等优点。
它在磁传感领域得到了广泛应用,如磁存储器、磁头以及磁传感器等。
本文将介绍GMR传感器的工作原理及其应用。
一、巨磁电阻效应巨磁电阻效应是指在某些特殊材料中,当外加磁场改变时,材料电阻发生明显变化的现象。
这种效应是由于磁场改变引起材料内部磁矩方向发生变化,从而影响电子的运动和散射,导致电阻的改变。
其中最具代表性的材料是由铁、铁氧体和铬等多层薄膜组成的磁多层结构。
二、GMR传感器的结构GMR传感器通常由两个平行排列的磁多层结构组成,中间夹有一层非磁性金属薄层。
其中一个磁多层结构被称为固定层,其磁矩方向固定不变;另一个磁多层结构被称为自由层,其磁矩方向可以受外界磁场影响而改变。
当没有外界磁场作用时,自由层的磁矩方向与固定层垂直,导致电阻最大。
而当外界磁场作用于自由层时,自由层的磁矩方向会发生改变,使得电阻值发生变化。
三、GMR传感器的工作原理当GMR传感器暴露在外界磁场中时,自由层的磁矩方向会发生变化。
这种磁矩方向变化会导致自由层和固定层间电子的散射发生改变,从而影响电阻的大小。
当自由层的磁矩方向与固定层平行时,电阻最小;当自由层的磁矩方向与固定层垂直时,电阻最大。
通过测量电阻的变化,我们可以确定外界磁场的大小和方向。
四、GMR传感器的应用1. 磁存储器:GMR传感器被广泛应用于硬盘驱动器中,用于读取磁盘上的数据。
它可以实现更高的磁道密度和更高的数据存储容量。
2. 磁头:GMR传感器也被用作磁头,用于读取磁带、软盘等磁介质上的数据。
3. 磁传感器:GMR传感器可以用于测量和检测磁场,例如地磁传感器、指南针和磁力计等领域。
4. 生物医学:GMR传感器可以应用于生物医学领域,用于检测生物磁场或监测生物信号。
结论:GMR传感器是一种利用巨磁电阻效应实现磁场检测的传感器,具有高灵敏度和快速响应的特点。
巨磁电阻效应的原理及应用1. 巨磁电阻效应的介绍巨磁电阻效应(Giant Magnetoresistance,GMR)是一种描述材料电阻随外加磁场变化的现象。
GMR的发现被认为是短距离存储技术的突破,对磁敏感材料和磁传感器的发展具有重要意义。
2. 巨磁电阻效应的原理巨磁电阻效应的产生与磁性多层膜结构中存在的顺磁性层和铁磁性层之间的相互作用有关。
当外加磁场改变时,磁性多层膜中的磁性层会发生磁矩的重排和旋转,从而导致电子的自旋定向与电子传输方向的关系发生变化。
这种变化会导致电阻的变化,即巨磁电阻效应的产生。
3. 巨磁电阻效应的应用巨磁电阻效应的应用非常广泛,主要包括以下几个方面:3.1 磁存储器巨磁电阻效应在磁存储领域发挥着重要作用。
由于巨磁电阻效应的出现,磁存储器的读写速度得到了显著提高。
传统磁存储器需要通过读写头的接触来读取数据,而采用巨磁电阻效应材料制成的磁存储器只需通过测量电阻值的变化来完成数据读取,大大提高了读取速度和数据存取密度。
3.2 磁传感器巨磁电阻效应材料常常被用于制作磁传感器。
巨磁电阻效应材料的电阻值随外加磁场的变化而变化,因此可以利用巨磁电阻效应材料制成的传感器来测量磁场的强度和方向。
磁传感器在航空航天、交通运输、医疗设备等领域中得到了广泛应用。
3.3 磁电阻随机存取存储器(MRAM)巨磁电阻效应也被应用于磁电阻随机存取存储器(Magnetoresistive Random Access Memory,MRAM)的制造。
MRAM是一种新型的非易失性存储器,兼具闪存和DRAM的优点。
相比传统存储器技术,MRAM具有读取速度快、功耗低、抗辐射等优势。
3.4 理论研究与材料改进巨磁电阻效应的研究也对材料科学领域有着重要意义。
科学家们通过对巨磁电阻效应的原理和机制的研究,不断改进巨磁电阻材料的性能和稳定性,以实现更高的电阻变化率和更佳的传感特性。
4. 结论巨磁电阻效应作为一种重要的磁电效应,具有广泛的应用前景。
巨磁阻效应的原理及应用1. 引言巨磁阻效应(Giant Magneto Resistance,简称GMR)是一种材料特性,是指在外加磁场下,材料电阻发生大幅度变化的现象。
由于其在信息存储、传感器等领域具有广泛的应用,因此对其原理及应用进行深入研究和了解具有重要意义。
2. 巨磁阻效应的原理巨磁阻效应源于磁性多层结构材料中的自旋阻尼效应和磁性交换效应。
当多层结构材料中的两个磁性层之间被非磁性层隔开时,自旋极化电流通过这些层会引起阻尼之间的传递,导致电阻发生变化。
巨磁阻效应的原理可以用以下几点进行解释:•磁性多层结构:采用多层薄膜结构,其中包含不同磁性层和非磁性层。
•自旋极化电流:施加自旋极化电流时,电子的自旋会对电子传输产生影响。
•自旋阻尼效应:自旋极化电流通过磁性层时,会与该层磁矩发生相互作用,引起自旋的阻尼。
•磁性交换效应:自旋极化电流引起的自旋阻尼会与相邻磁性层之间的磁性交换作用产生耦合,导致电阻变化。
3. 巨磁阻效应的应用3.1 磁存储器巨磁阻效应在磁存储器中有广泛应用。
磁存储器利用外加磁场的变化,改变磁性多层结构材料中的电阻,从而存储和读取信息。
巨磁阻效应的高灵敏度和可控性,使得磁存储器具有更高的容量和更快的速度。
3.2 磁传感器巨磁阻效应也可以应用于磁传感器中。
磁传感器利用材料的电阻变化来感应磁场的变化。
巨磁阻传感器具有高灵敏度、宽工作范围和低功耗的特点,广泛应用于磁测量、地磁导航和磁生物学等领域。
3.3 磁电阻头巨磁阻效应还可以用于磁电阻头的制造。
磁电阻头是读取硬盘驱动器中存储信息的装置,利用材料电阻的变化来感知磁场中的数据。
巨磁阻效应的高灵敏度和稳定性,使得其在磁电阻头中有广泛的应用。
3.4 其他应用领域除了上述应用领域,巨磁阻效应还可应用于磁生物学、磁传导等领域。
例如,巨磁阻效应可以用于生物传感器中,实现对生物磁场的检测和分析。
此外,巨磁阻效应还可以用于磁传导器件中,实现磁传导的控制和调节。
磁阻传感器的原理及应用1. 磁阻传感器的基本原理磁阻传感器是一种测量磁场强度的传感器,利用磁阻效应来实现对磁场的检测和测量。
其基本原理是通过材料的电阻随电流或磁场的变化而发生变化,利用磁阻元件来测量电阻的变化,从而间接地测量磁场的强度。
2. 磁阻传感器的工作原理磁阻传感器通常由磁敏感材料和电桥电路组成。
当外加磁场作用于磁敏感材料时,磁敏感材料的磁导率发生变化,进而改变了电阻的值。
这种磁敏感材料被称为磁阻元件,可以是磁电阻、磁电容或磁电感元件。
磁敏感材料的变化可以通过电桥电路进行检测和测量。
电桥电路由四个电阻组成,其中一个为磁敏感材料的磁阻元件。
当磁阻元件的电阻发生变化时,电桥电路会失去平衡状态,电桥的输出电压也会发生变化。
通过检测电桥的输出电压变化,就可以间接测量磁场的强度。
3. 磁阻传感器的应用领域3.1 汽车行业磁阻传感器在汽车行业的应用非常广泛,常用于车辆的刹车系统、转向系统和油门系统等。
例如,磁阻传感器可以测量刹车踏板的位置,以实现刹车灵敏度的调节;磁阻传感器也可以测量方向盘的转动角度,以实现转向灵敏度的调节。
3.2 工业自动化磁阻传感器在工业自动化领域也有广泛的应用。
例如,磁阻传感器可以测量机械装置的位置,以控制机械装置的运动轨迹;磁阻传感器也可以测量物体的磁场强度,以实现物体的非接触式检测。
3.3 医疗设备磁阻传感器在医疗设备中的应用越来越重要。
例如,磁阻传感器可以用于磁共振成像(MRI)设备中,测量磁场的强度和分布,以实现对人体内部结构的成像;磁阻传感器也可以用于心脏监护设备中,监测心脏的磁场变化,以实现对心脏活动的监测和诊断。
3.4 智能手机和电子设备磁阻传感器还广泛应用于智能手机和其他电子设备中。
例如,磁阻传感器可以用于手机的指南针功能,测量地球磁场的强度和方向;磁阻传感器也可以用于电子罗盘中,实现方向的测量和导航功能。
4. 总结磁阻传感器是一种基于磁阻效应的传感器,可以用于测量磁场的强度。
巨磁电阻(GMR)磁场传感器的工作原理磁电阻(GMR)效应是1988 年发现的一种磁致电阻效应,由于相对于传统的磁电阻效应大一个数量级以上,因此名为巨磁电阻(Giant Magnetoresistanc),简称GMR。
1. 巨磁电阻(GMR)原理,见图一。
巨磁电阻(GMR)效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。
这种效应只有在纳米尺度的薄膜结构中才能观测出来。
赋以特殊的结构设计这种效应还可以调整以适应各种不同的性能需要。
反铁磁耦合时(外加磁场为0)处于高阻态的导电输出特性,电阻:R1/2外加磁场使该磁性多层薄膜处于饱和状态时(相邻磁性层磁矩平行分布),而电阻处于低阻态的导电输出特性,电阻:R2*R3/(R2+R3),R2R1R3 图1、利用两流模型来解释GMR 的机制2. 巨磁电阻(GMR)传感器原理,见图二。
巨磁电阻(GMR)传感器将四个巨磁电阻(GMR)构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。
工作时图中“电流输入端”接5V~20V的稳压电压,“输出端”在外磁场作用下即输出电压信号。
图2(1):惠斯凳电桥在磁场传感器应用中的原理图2(2):惠斯凳电桥中R1 和R2 在外加磁场作用下的变化情况3. 巨磁电阻(GMR)传感器性能,见图三,表一。
图三所示为巨磁电阻(GMR)传感器在外场中的性能曲线,表明该传感器在±200Oe的磁场范围类有较好的线性。
图3:巨磁电阻(GMR)在外加磁场下的性能曲线表一各公司巨磁电阻(GMR)传感器性能对照4.产品使用说明 a . 巨磁电阻(GMR)传感器作为一种有源器件,其工作必须提供5~20V 的直流电源。
而且该电源的稳定性直接影响传感器的测试精度,因此要求以稳压电源提供;使用中也应避免过电压供电; b .巨磁电阻(GMR)传感器作为一种高精度的磁敏传感器,对使用磁环境也有一定的要求,其型号选用应根据使用环境的磁场大小来决定; c. 巨磁电阻(GMR)传感器对磁场的灵敏度与方向有关。
GMI Sensor Principle & Application 巨磁阻抗传感器的原理及应用介绍新.磁.(上.海).电.子.有.限.公.司2013.12 By Tonysensors-ic at qq com邮.件. sensors ic at GMI Sensor 巨磁阻抗传感器简介巨磁阻抗效应(GiantMagneto ‐Impedance effects, GMI )是指软磁材料的交流阻抗随外加磁场的改变而发生显著变化的现象,产生GMI 效应的主要原因是高频电流的趋肤效应。
GMI 磁传感器采用交流驱动,具有灵敏度高、饱和磁场低、响应快和稳定性好等优点。
利用GMI 非晶丝材料可设计成高灵敏度的磁场传感器,用于微弱磁场、电流、位置、生物在地磁场测量地磁匹配导航及分子浓度等物理量的检测,在地磁场测量、地磁匹配导航及多种弱磁传感器中有着广泛的应用,具有很大的应用前景和研究价值。
传感器基础材料—非晶丝The MI Sensor makes use of the Giant Magneto‐amorphous metal wire. Impedance effect of magneticGMI传感器材料——GMI效应材料的GMI效应可以用样品阻抗Z随外加磁场Hex变化的Z‐Hex曲线来表征,但这样的曲线不能明确反映出磁阻抗效曲线来表征但样的曲线不能明确反映出磁阻抗效应的强弱程度。
特别是由于样品的测量长度无法严格控制不同样品的无法相较因可选用阻抗的制,不同样品的Z‐Hex无法相互比较,因此可选用相对变化值随外加磁场的变化曲线来表征,用没有外加磁场时的样品阻抗Z0作为“阻抗的相对变化量”的变化场时的样阻抗作为阻抗的相对变化的变化基准,即DZ/Z0=(Z‐Z0)/Z0,其变化率与样品本身的长度无关因为测量电流的频率不高,测量导线的发射并不严关。
因为测量电流的频率不高,测量导线的发射并不严重,因此采用四点法进行测量。
GMI GMI 传感器材料——GMI 效应图所为点法测量意图其中为亥姆霍兹线圈图所示为四点法测量示意图。
其中1为亥姆霍兹线圈,提供匀强磁场;2是本设计使用的非晶丝样品;3是霍尔传感器,用于测量磁场强度。
用示波器分别接入电阻和非晶丝两端以显示电压变化。
GMI 某实验利用国内研制的合金非晶丝作为敏感元件在室GMI 传感器材料——GMI 效应CoFeNbSiB 合金非晶丝作为敏感元件。
在室温下材料对温度的变化不敏感,利用图示的测量方法,在室温下进行测量。
图2行测量图所示为在不同频率的激励信号下样品的阻抗随磁场变化的曲线,在0.25mT 的磁场作用下,其阻抗都将达到最大值,当激发电流频率为10MHz 时,其阻抗值为最大GMI传感器材料——GMI效应GMICHARACTERIZATION OF MAGNETO‐IMPEDANCE THIN FILM MICROSTRUCTURESCHARACTERIZATION OF MAGNETO ‐IMPEDANCE THIN FILM MICROSTRUCTURES GMI 传感器材料——GMI 效应GMI传感器材料——GMI效应GMICHARACTERIZATION OF MAGNETO‐IMPEDANCE THIN FILM MICROSTRUCTURESGMI效应测试—非晶材料GMI特性测量仪非晶材料磁阻抗特性测量仪简介一、主要技术参数1.系统控制主机:内含可1路可调恒流源(0.3mA~50mA)、2路4 1/2数字电压表和1块USB接口24bit数据采集卡;功耗:<50W。
2.自动扫描电源:0~±5A,扫描周期8~80秒。
3.亥姆霍兹线圈:0~±160Gs。
亥姆霍兹线圈4.测量专用检波与放大电路技术参数:输入信号动态范围:±30 dB;输出电平灵敏度:30mV / dB;,输出电流:8mA;,转换速率:25 V /μs;相位测量范围:0~180°;相位输出时转换速率:30MHz;响应时间:40 ns~500 ns;测量夹头间隔10mm。
5.计算机:PC兼容机,Windows XP、Windows 7操作系统。
6.数据采集软件:运行环境Windows XP、Windows 7操作系统。
三轴赫姆霍兹线圈磁场h l h l l h d ll f ld h l 发生装置・Within its Helmholtz coils, this device will generate a magnetic field with optional settings or a space with zero magnetic field.・It uses ultra ‐high sensitivity MI sensors to measure the magnetic field.Th i H l h lt il t ll d b t d t t th ti fi ld・Three ‐axis Helmholtz coils controlled by computer are used to generate the magnetic field.脉冲电流驱动When pulse electric current is passed to amorphous metal wire, the wire impedance changes significan response to the strength of the imposed magnetic field.This phenomenon is called "Giant Magnetoimpedance Effect”微型MI元件设计of a micro‐pickup coil wrapped around the Consists amorphous meta wire.The pickup coil detects the imaginary part of the MI effect.GMI传感器的性能优势(1) Extremely High Sensitivity,up to 10‐6Gauss can ()l i h S i i i0Gbe detected.GMI传感器的性能优势GMI传感器的性能优势器件种类探头长度分辨率响应速度功耗霍尔件/霍尔器件10‐1000.5Oe/1kOe1MHz10mW MR器件10‐1000.1Oe/100Oe1MHz10mW GMR器件10‐1000.01Oe/20Oe1MHz10mW001Oe/20Oe磁通门10‐20mm1μOe/3Oe5kHz1WGMI器件1‐2mm1μOe/3Oe1MHz10mGMI传感器的性能优势p gSuperior Sensing Performance (2) Fast Response,Frequencies up to 1MHz are possible.GMI传感器的性能优势Superior Sensing Performance (3) Excellent TemperatureStabilityDue to high Curie temperature of the wire, temperature characteristic shows excellent stability. is one of the strengh of MI sensor compared stability This when to the semiconductor magnetic sensors such as hall effect sensors.GMI传感器电路设计电路基本原理是利用非晶丝在几兆赫兹固定频率、几毫安的交变电流激励下,其阻抗值Z=R+Xi随沿丝轴方向施加的外磁场而发生变化的现象。
根据图2的阻抗变化特征,选取其中阻抗值最大也最敏感的10MHz交变电流激励,激发电流的大小对材料特性的影响不大,根据经验选取其值为10mA。
非晶丝在0.25mT以下的磁场激励下阻抗变化近似线性且曲线的斜率较大,利用此段特性作为传感器的感应区域。
GMI传感器电路设计然后通过信号处理电路检测非晶丝两端的输出电压随外加磁场的变化,利用单片机进行电压与磁场的转换,从而形成微型磁传感器整个传感器由传感单元信号检测单元数据采集单元实器。
整个传感器由传感单元、信号检测单元、数据采集单元、实时显示单元和数据传输单元构成,主要包括激励源电路、磁感应探头、模拟信号处理电路、单片机数据处理电路以及数码管显示电路。
基本工作过程为:磁敏感元件非晶丝感应与其轴向重合的外加磁场变化,经过激励电流的作用产生交变信号,模拟信号处理电路将其变换成对应于磁场变化的电压信号。
单片机控制数据采集并进行计算,输出磁场强度送数码管显示。
进行计算输出磁场强度送数码管显示GMI传感器电路设计图所示为传感器在直流磁场下的测试结果,直流磁场由霍姆赫兹线圈提供,方向沿非晶丝的长度方向,并与地磁场垂直.用MATLAB对曲线进行5次多项式拟合得:y=22.5x5‐276.3x4+1349.5x3‐3279.5x2+3964x‐1906.3其中x为传感器输出电压值,单位为V,y为转换后的磁场强度,单位为mT。
将此多项式输入单片机做实时电压与磁场转换,即可实时显示出磁场值。
经测算,传感器输出灵敏度达5.76mV/μT,不需要霍尔传感器的预热时间,适用于弱磁场的检测。
GMI传感器芯片设计GMI传感器芯片设计GMI传感器芯片设计GMI传感器芯片设计GMI传感器芯片设计GMI传感器芯片设计GMI传感器芯片设计GMI传感器芯片设计Hi h D i R GMI C t S GMI 传感器检测电流A High Dynamic Range Current SensorGMI传感器检测电流A High Dynamic Range GMI Current SensorHigh Dynamic Range GMI Current Sensor GMI 传感器检测电流AA High Dynamic Range GMI Current SensorGMI 传感器检测电流g y g . Block diagram of the closed ‐loop.High Dynamic Range GMI Current SensorGMI 传感器检测电流A Sensor output versus measured current in closedloop for two values of the feedback resistor.SAW GMI sensors SAW-GMI sensorsFIGURE 7.a)Layout of the commercialized GMI sensor from Aichi Steel Co. (b) Noise output sensor of the GMI sensor.b)Fig. 7showsa GMI sensor developed by Aichi Steel Co., which has a very high sensitivity of 1V/μT and a noise level of 1 nT[51].GMI传感器选型说明XM-1DH型GMI传感器主要检测弱磁场变化,可检测出1nT的磁场噪声变化,该传感器包含一个高灵敏度磁敏单元以及与之搭配的信号处理单元。