空间直角坐标系第一课时
- 格式:ppt
- 大小:1.63 MB
- 文档页数:19
《空间向量的坐标与空间直角坐标系》教学设计第一课时◆教学目标1、在理解空间向量基本定理的基础上掌握空间向量正交分解的原理及坐标表示..提升学生的数学抽象素养.2、能正确地运用空间向量的坐标,进行向量的线性运算与数量积运算.提高逻辑推理、数学运算的数学素养.◆教学重难点◆教学重点:掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.教学难点:掌握空间向量的坐标运算◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本第17-19页,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结本节的内容.预设的答案:(1)本节课主要学习空间向量的坐标与空间直角坐标系第一课时空间中向量的坐标及坐标运算的知识内容.(2)通过类比平面向量及其运算的坐标表示,从而引入空间向量及其运算的坐标表示,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间,在学生学习了空间向量的几何形式和运算,以及在空间向量基本定理的基础上进一步学习空间向量的坐标运算及其规律,是平面向量的坐标运算在空间推广和拓展,为运用向量坐标运算解决几何问题奠定了知识和方法基础.设计意图:通过对本节知识内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架. 平面向量中,我们借助平面向量基本定理以及两个互相垂直的单位向量,引进了平面向量的坐标.空间向量是否可以引进类似的坐标?这就是本小节我们要研究的内容(板书:空间向量的坐标系与空间直角坐标系第一课时)二、探索新知 第一部分 空间中向量的坐标问题2:如图所示,已知123,,===OA e OB e OC e ,且OADB-CEGF 是棱长为1的正方体,111111-OF E A A DC B 是一个长方体,1A 为OC 的中点,1FO=2,. (1)设1,,==OG a OC b 将向量,a b 都用123,,e e e 表示;(2)如果p 是空间中任意一个向量,怎样才能写出p 在基底{123,,e e e }下的分解式?师生活动:学生在教师的指导下写出答案.预设的答案:123,=++a e e e 12312,2=-+b e e e 设计意图:问题既是对上一小节空间向量基本定理的检测与巩固,又为引出本小节的空间向量的坐标做了铺垫.追问:根据空间向量基本定理,任意向量p 都可以在基底{123,,e e e }下进行分解;如果123=++p xe ye ze ,那么它的坐标如何表示?师生活动:学生在教师的指导下写出答案.预设的答案:如果123=++p xe ye ze ,那么它的坐标为(x ,y ,z ).设计意图:把问题分解,分层次、设梯度来进行研究,培养学生的数学抽象核心素养.2、形成定义一般地,如果空间向量的基底{123,,e e e }中,123,,e e e 都是单位向量,而且这三个向量两两垂直,就称这组基底为单位正交基底;在单位正交基底下向量的分解称为向量的单位正交分解,而且,如果123=++p xe ye ze ,则称有序实数组(x ,y ,z )为向量p 的坐标,记作p =(x ,y ,z ),其中x ,y ,z 都称为p 的坐标分量.三、初步应用例1已知{123,,e e e }是单位正交基底,分别求出下列空间向量的坐标;(1)12323=++p e e e ;(2)1232=-+-q e e e ;(3)232=--r e e ;(4)0师生活动:学生根据所学知识做出解答,由老师指定学生给出答案.预设的答案:(1)(2,3,1)=p ;(2)(1,1,2)=--q ;(3)(0,2,1)=--r ;(4)(0,0,0)设计意图:通过例题的训练,强化学生对概念的理解和简单应用.练习:已知{123,,e e e }是单位正交基底,分别求出下列空间向量的坐标;(1)13-2=+p e e ;(2)2132=-+-q e e e ;(3)3=-r e ;师生活动:学生根据例1的讲解做出解答,并由教师给出答案.预设的答案:(1)(-2,0,1)=p ;(2)(1,1,2)=--q ;(3)(0,0,1)=-r设计意图:通过练习题的训练,强化学生对概念的理解和简单应用.第二部分.空间向量的运算与坐标的关系问题3:与平面向量的坐标类似,空间向量有了坐标之后,向量的相等以及加法运算与它们对应的坐标之间有什么关系?师生活动:学生先由平面向量的坐标运算猜测空间向量的坐标运算,教师给出答案. 预设的答案:假设空间中两个向量,a b 满足111222(,,),(,,)==a x y z b x y z ,则121212,,=⇔===a b x x y y z z 121212(,,)+=+++a b x x y y z z ;121212(,,)+=+++ua vb ux vx uy vy uz vz设计意图:利用向量的加法、减法、数乘等运算来证明结论这种类比的探究对于建立新的数学概念、提出新的数学猜想、发现新的规律起着十分重要的作用,也有利于培养学生的数学抽象、逻辑推理等数学学科核心素养.追问:能否证明上述结论?师生活动:学生先尝试自己证明,教师给出证明过程.预设的答案:假设空间中两个向量,a b 满足111222(,,),(,,)==a x y z b x y z ,则111213212223,=++=++a x e y e z e b x e y e z e ,则当=a b 时,111213212223++=++x e y e z e x e y e z e 由{123,,e e e }是单位正交基底和空间向量基本定理可知,121212,,===x x y y z z ,反之,结论也成立,这就是说,空间两个向量相等的充要条件是他们的坐标分量相等.111213212223+=+++++a b x e y e z e x e y e z e =112112221323+++++x e x e y e y e z e z e =121122123)()()+++++(x x e y y e z z e ,所以,121212(,,)+=+++a b x x y y z z .问题4:通过上面的学习,你是否可以得出,||,cos ,⋅〈〉a b a a b 的坐标运算公式?并给出证明?师生活动:学生先尝试自己得出结论并证明,教师给出证明过程.预设的答案:121212⋅=++a b x x y y z z ;21||=⋅=+a a a x211122cos ,||||⋅〈〉==+++a b a b a b x y z x y 证明:又因为{123,,e e e }是单位正交基底,所以1122331223311,0⋅=⋅=⋅=⋅=⋅=⋅=e e e e e e e e e e e e ,因此,⋅=a b 111213212223)()++⋅++(x e y e z e x e y e z e=121112221233122112)⋅+⋅+⋅++⋅(x x e e y y e e z z e e x y x y e e122123122131))++⋅++⋅((y z y z e e x z x z e e 121212=++x x y y z z设计意图:利用向量的数量积等运算来证明结论这种类比的探究对于建立新的数学概念,有利于培养学生的数学抽象、逻辑推理等数学学科核心素养.初步应用例2:已知(2,3,5),(3,3,2)=-=-a b ,求下列向量的坐标;(1)-a b ;(2)2+a b ;(3)5-b师生活动:学生先自行解答,教师给出规范解答过程.预设的答案:(1)-a b =(2,3,5)-(3,3,2)-5,6,3--=() (2)2+a b =2(2,3,5)(3,3,2)-1,3,12-+-=();(3)5-53,3,2(15,15,10)-=-=--()b设计意图:空间向量坐标运算的简单应用,培养学生的数学运算数学学科核心素养.例3:已知(1,0,1),(2,2,0)==-a b ,求,〈〉a b ;师生活动:学生先自行解答,教师给出规范解答过程.预设的答案:120(2)102⋅=⨯+⨯-+⨯=a b ,2||10=+=a2||2(=+=b ,所以,21cos ,2||||2⋅〈〉===⨯a b a b a b ,因此,,〈〉a b =60. 设计意图:空间向量坐标运算的简单应用,也为后面学习直线与平面的夹角、二面角等做准备.培养学生的数学运算数学学科核心素养.练习:在例3的条件下,求:(1)⋅a b ;(2)在a b 上正射影的数量;师生活动:学生根据例题思路尝试自己解答,教师给出规范解答过程.预设的答案:(1)⋅a b =2;(2)2设计意图:空间向量坐标运算的简单应用,培养学生的数学运算数学学科核心素养.四、归纳小结,布置作业问题5:(1)什么是单位正交基底,单位正交分解,坐标,坐标分量?(2)空间向量的坐标运算有哪些? 师生活动:学生尝试总结,老师适当补充.预设的答案:(1)一般地,如果空间向量的基底{123,,e e e }中,123,,e e e 都是单位向量,而且这三个向量两两垂直,就称这组基底为单位正交基底;在单位正交基底下向量的分解称为向量的单位正交分解,而且,如果123=++p xe ye ze ,则称有序实数组(x ,y ,z )为向量p 的坐标,记作p =(x ,y ,z ),其中x ,y ,z 都称为p 的坐标分量.(2)121212,,=⇔===a b x x y y z z 121212(,,)+=+++a b x x y y z z ;121212(,,)+=+++ua vb ux vx uy vy uz vz121212⋅=++a b x x y y z z ;21||=⋅=+a a a x21cos ,||||⋅〈〉==+a b a b a b x设计意图:通过梳理本节课的内容,能让学生更加明确空间向量坐标运算的有关知识. 布置作业:教科书第25页练习A1,2题.五、目标检测设计1.已知向量a =(1,1,0),b =(-1,0,2),则3a +b 为( )A .(-2,-3,-2)B .(2,3,2)C .(-2,3,2)D .(4,3,2)设计意图:考查学生对空间向量坐标运算的应用.2.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.设计意图:考查学生对空间向量夹角简单应用.3.已知{e1,e2,e3}是单位正交基底,则p=-e1+2e2+3e3的坐标为________.设计意图:考查学生对空间向量坐标概念的应用.参考答案:1.B[3a+b=3(1,1,0)+(-1,0,2)=(3,3,0)+(-1,0,2)=(2,3,2).]2.120°[由于AB→=(-2,-1,3),CA→=(-1,3,-2),所以AB→·CA→=(-2)×(-1)+(-1)×3+3×(-2)=-7,|AB→|=14,|CA→|=14,所以cos θ=cos〈AB→,CA→〉=-714×14=-12,则θ=120°.]3.(-1,2,3)[p=(-1,2,3).。
一、教学目标1. 理解空间直角坐标系的定义和基本概念。
2. 学会在空间直角坐标系中确定点的位置。
3. 掌握空间直角坐标系中线段、距离和角度的计算方法。
4. 能够应用空间直角坐标系解决实际问题。
二、教学内容1. 空间直角坐标系的定义和基本概念。
2. 如何在空间直角坐标系中确定点的位置。
3. 空间直角坐标系中线段、距离和角度的计算方法。
4. 实际问题中的应用案例。
三、教学重点与难点1. 教学重点:空间直角坐标系的定义和基本概念,确定点的位置方法,线段、距离和角度的计算方法。
2. 教学难点:空间直角坐标系中线段、距离和角度的计算方法。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究和讨论来理解空间直角坐标系的概念和方法。
2. 使用多媒体课件和实物模型辅助教学,帮助学生直观地理解空间直角坐标系。
3. 结合实例和练习题,培养学生的实际应用能力。
五、教学过程1. 导入:通过简单的实例引入空间直角坐标系的概念,激发学生的兴趣。
2. 讲解:讲解空间直角坐标系的定义和基本概念,引导学生理解并掌握相关知识。
3. 实践:让学生通过实际操作,学会在空间直角坐标系中确定点的位置。
4. 讲解:讲解空间直角坐标系中线段、距离和角度的计算方法,引导学生理解和掌握相关知识。
5. 练习:布置练习题,让学生巩固所学知识,培养实际应用能力。
6. 总结:对本节课的主要内容进行总结,强调重点和难点。
7. 作业:布置作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对空间直角坐标系概念的理解程度。
2. 练习题:布置练习题,评估学生对基本知识和计算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和问题解决能力。
七、教学资源1. 多媒体课件:使用课件展示空间直角坐标系的图像和动画,帮助学生直观理解。
2. 实物模型:使用模型展示空间直角坐标系,让学生更直观感受。
3. 练习题库:准备不同难度的练习题,适应不同学生的学习需求。