北师大版数学中考复习一 第一章 数与式试卷
- 格式:doc
- 大小:426.50 KB
- 文档页数:10
九年级中考数学数与式知识点+练习题数与代数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数数轴:规定了 、 、 的直线叫数轴, 与数轴上的点一一对应的。
相反数:两个数只有 不同,那么它俩互为相反数。
相反数等于本身的是 。
A 的相反数是 ,如果a 和b 互为相反数⇔a+b=0绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,<>a a a a a a(2)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
倒数:(1)a 和b 互为倒数⇔1=ab ;(2)注意0没有倒数,(3)倒数等于本身有 。
平方根:正数的平方根有2个,它们互为 ,0的平方根是 ,负数没有 。
平方根等于本身有 。
算术平方根:正数的算术平方根是 ,0的算术平方根是 ,算术平方根等于本身有 。
立方根:正数的立方根是 ,0的立方根是 ,负数的立方根是 。
立方根等于本身有 。
比较大小:正数 0,负数 0提示:两个负数相比较,绝对值大的反而小。
aa 2=)()、(﹣0a a1a 0a 1a p p 0≠=≠= 1、31﹣的倒数 ,绝对值是 ,相反数是 。
2、若m、n 互为相反数,则5m+5n-5= .3、2-的相反数是( )A .2 B .-2 C .4 D .4、23-的值是 。
5、计算:20247)π-+-+= 6、据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( )7、若22+-b a 与互为相反数,则a+3b= 。
8、有理数a ,b 在数轴上的表示如图所示,则下列结论中:①ab<0②0ba <③a+b <0④a -b <0⑤b a <⑥﹣a >﹣b 其中正确有 个。
北师大版九年级数学上册第1章测试试卷(附答案解析)(3)第一章特殊平行四边形一、选择题(12小题,每小题3 分,共36 分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形C.菱形D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若A B=5,AC=6,则B D的长是()A.8B.7C.4D.36.如图,边长为6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S、S,则S +S的值为1 2 1 2()A.16B.17C.18D.197.在△R t ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A .45°B .55°C .60°D .75°9.如图, ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为 E 、F ,∠EDF=60°,AE=2cm ,则 AD=( )A .4cmB .5cmC .6cmD .7cm10.如图:长方形纸片 ABCD 中,AD=4cm ,AB=10cm ,按如图的方式折叠,使点 B 与点 D 重合.折痕为 EF ,则 DE 长为( )A .4.8 cmB .5 cmC .5.8 cmD .6 cm11.如图,将一个长为 10cm ,宽为 8cm 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折, 沿所得矩形两邻边中点的连线(虚线)剪下(如图(1),再打开,得到如图(2)所示的小菱形的面积为 ( )A .10cmB .20cmC .40cmD .80cm 12.(2018•威海)矩形 ABCD 与 CEFG 如图放置,点 B ,C ,E 共线,点 C ,D ,G 共线,连接 AF ,取 AF的中点 H ,连接 GH .若 BC =EF =2,CD =CE =1,则 GH =( )A .1B .C .D .二、填空题(每小题 3 分,共 12 分)13.(2018•锦州)如图,菱形 ABCD 的对角线 AC ,BD 相交于点 O ,过点 A 作 AH ⊥BC 于点 H ,连接 OH ,若 OB =4,S =24,则 OH 的长为 . ABCD2 2 2 2菱形14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC 上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.,AE⊥BD于点E,求OE 18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=的长.19.(7分)如图,在△ABC中,AB=BC,BD 平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D 在△ABC 的BC 边上,DE∥AC交AB于E,DF∥AB 交AC于F.(1)求证:AE=DF;(2)若AD 平分∠BAC,试判断四边形AEDF 的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF 与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB 的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.△将DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF 的长.23.(8分)已知,如图1,BD 是边长为1 的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF 的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC 为x 轴,AB 为y 轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3 分,共36 分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H 分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H 分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形C.菱形D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若A B=5,AC=6,则B D的长是()A.8B.7C.4D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在△R t AOB中,∠AOB=90°,==4,根据勾股定理,得:OB=∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S、S,则S +S的值为1 2 1 2()A .16B .17C .18D .19【考点】正方形的性质.【分析】由图可得,S 的边长为 3,由 AC= 2分别算出 S 、S 的面积,即可解答. 1 2【解答】解:如图,设正方形 S 的边长为 x ,1 ∵△ABC 和△CDE 都为等腰直角三角形,∴AB=BC ,DE=DC ,∠ABC=∠D=90°,BC ,BC=CE= CD ,可得 AC=2CD ,CD=2,EC=2 ;然后, ∴sin ∠CAB=sin45°= = ,即 AC=BC ,同理可得:BC=CE= CD ,∴AC= BC=2CD ,又∵AD=AC +CD=6,∴CD= =2,∴EC =2 +2 ,即 EC=2 ; ∴S的面积为 EC =2 ×2 =8;1 ∵∠MAO=∠MOA=45°,∴AM=MO ,∵MO=MN ,∴AM=MN ,∴M 为 AN 的中点,∴S 的边长为 3,2 ∴S 的面积为 3×3=9,2 ∴S +S =8+9=17.1 2故选 B .【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在 △R t ABC 中,∠ACB=90°,∠B=30°,AC= cm ,则 AB 边上的中线为( )A .1cmB .2cmC .1.5cmD . cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾 股定理可求得斜边的长,由此得解【解答】解:∵ △R t ABC 中,AC= cm ,且∠ACB=90°,∠B=30°,∴AB=2 , 2 2 2 2cm.∴AB边上的中线CD=AB=故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出A D=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形△,CDE为等边三角形,∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°,∴∠ADE=150°.∵AD=DE,∴∠DAE=∠DEA=15°,∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,ABCD 中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD 是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD 是平行四边形,∴AB∥CD,∠A=∠C,∴∠CDE=∠AED,∵DE⊥AB,∴∠AED=90°,∴∠CDE=90°,∵∠EDF=60°,∴∠CDF=30°,∵DF ⊥BC ,∴∠DFC=90°,∴∠C=60°,∴∠A=60°,∴∠ADE=30°,∴AD=2DE ,∵AE=2,∴AD=2×2=4(cm );故选 A .【点评】此题考查了平行四边形的性质和含 30°角的直角三角形,用到的知识点是平行四边形的性质和垂 直的定义 30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片 ABCD 中,AD=4cm ,AB=10cm ,按如图的方式折叠,使点 B 与点 D 重合.折痕为 EF ,则 DE 长为( )A .4.8 cmB .5 cmC .5.8 cmD .6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE ,从而设 BE=DE=x ,即可表示 AE ,在直角三角形 ADE 中,根据勾股定理 列方程即可求解.【解答】解:设 DE=xcm ,则 BE=DE=x ,AE=AB ﹣BE=10﹣x ,在 △R t ADE 中,DE =AE +AD ,即 x =(10﹣x ) +16. 解得:x=5.8.故选 C .【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运 用勾股定理解直角三角形.11.如图,将一个长为 10cm ,宽为 8cm 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折, 沿所得矩形两邻边中点的连线(虚线)剪下(如图(1),再打开,得到如图(2)所示的小菱形的面积为 ( ) 2 2 2 2 2A .10cmB .20cmC .40cmD .80cm 【考点】菱形的性质. 【分析】利用折叠的方式得出 AC ,BD 的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图 1 中矩形的长为 5cm ,宽为 4cm ,∵虚线的端点为矩形两邻边中点,∴AC=4cm ,BD=5cm ,∴如图(2)所示的小菱形的面积为: ×4×5=10(cm ).故选:A .【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问 题)实质上就是轴对称变换.12.(2018•威海)矩形 ABCD 与 CEFG 如图放置,点 B ,C ,E 共线,点 C ,D ,G 共线,连接 AF ,取 AF的中点 H ,连接 GH .若 BC =EF =2,CD =CE =1,则 GH =( )A .1B .C .D .【考点】KQ :勾股定理;LB :矩形的性质.【分析】延长 GH 交 AD 于点 P ,先证△APH ≌△FGH 得 AP =GF =1,GH =PH = PG ,再利用勾股定理求得 PG = ,从而得出答案.【解答】解:如图,延长 GH 交 AD 于点 P ,∵四边形 ABCD 和四边形 CEFG 都是矩形,∴∠ADC =∠ADG =∠CGF =90°,AD =BC =2、GF =CE =1,∴AD ∥GF ,∴∠GFH =∠PAH ,又∵H 是 AF 的中点,2 22 22∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S=24,则OH的长为3.菱形ABCD【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S==24,菱形ABCD∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形 OABC 是矩形,B (8,7),∴OA =BC =8,OC =AB =7,∵D (5,0),∴OD =5,∵点 P 是边 AB 或边 BC 上的一点,∴当点 P 在 AB 边时,OD =DP =5,∵AD =3,∴PA ==4,∴P (8,4).当点 P 在边 BC 上时,只有 PO =PD ,此时 P ( ,7).综上所述,满足条件的点 P 坐标为(8,4)或( ,7).故答案为(8,4)或( ,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形 ABCD 的边长为 1,以对角线 AC 为边作第二个正方形,再以对角线 AE 为边作第三个正 方形 AEGH ,如此下去,第 n 个正方形的边长为 ( ) n ﹣1 .【分析】首先求出 AC 、AE 、HE 的长度,然后猜测命题中隐含的数学规律,即可解决问题. 【解答】解:∵四边形 ABCD 为正方形,∴AB=BC=1,∠B=90°,∴AC =1 +1 ,AC= ;同理可求:AE=( ) ,HE=( ) …, ∴第 n 个正方形的边长 a =( ) . n 故答案为( ) n ﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运 用.16.如图,正方形 ABCD 的边长为 4,E 为 BC 上的一点,BE=1,F 为 AB 上的一点,AF=2,P 为 AC 上一个 动点,则 PF +PE 的最小值为 .【考点】正方形的性质.【分析】作 E 关于直线 AC 的对称点 E ′,连接 E ′F ,则 E ′F 即为所求,过 F 作 FG ⊥CD 于 G ,在 △R t E ′FG 中,2 2 2 23 n 1 ﹣利用勾股定理即可求出E′F的长.【解答】解:作E 关于直线AC 的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在△R t E′FG中,GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4,所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD 是菱形,∴AB=AD,∠B=∠D.又∵EB=DF,∴△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可△得AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1,答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD 平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD 是平行四边形.结合等△腰ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD 是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D 在△ABC 的BC 边上,DE∥AC交AB于E,DF∥AB 交AC于F.(1)求证:AE=DF;(2)若AD 平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;(2)若AD 平分∠BAC,四边形AEDF是菱形,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF 与对角线AC 交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB 的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在△R t BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB= = =6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.△将DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF 的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF 为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF 全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB 的长,再由BC+CM求出BM 的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x 的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF;(2)设 EF=MF=x ,∵AE=CM=1,且 BC=3,∴BM=BC +CM=3+1=4,∴BF=BM ﹣MF=BM ﹣EF=4﹣x ,∵EB=AB ﹣AE=3﹣1=2,在 △R t EBF 中,由勾股定理得 EB +BF =EF ,即 2 +(4﹣x ) =x ,解得:x= ,则 EF= .【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化 及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8 分)已知,如图 1,BD 是边长为 1 的正方形 ABCD 的对角线,BE 平分∠DBC 交 DC 于点 E ,延长 BC 到点 F ,使 CF=CE ,连接 DF ,交 BE 的延长线于点 G .(1)求证:△BCE ≌△DCF ;(2)求 CF 的长;(3)如图 2,在 AB 上取一点 H ,且 BH=CF ,若以 BC 为 x 轴,AB 为 y 轴建立直角坐标系,问在直线 BD 上 是否存在点 P ,使得以 B 、H 、P 为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P 点坐 标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理 S AS 即可证 △得BCE ≌△DCF ;(2)通过△DBG ≌△FBG 的对应边相等知 BD=BF= ;然后由 CF=BF ﹣BC=即可求得; (3)分三种情况分别讨论即可求得.【解答】(1)证明:如图 1,在△BCE 和△DCF 中,,∴△BCE ≌△DCF (SAS );(2)证明:如图 1,2 2 2 2 2 2∵BE平分∠DBC,OD是正方形ABCD 的对角线,∴∠EBC=∠DBC=22.5°,由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;在△DBG 和△FBG中,,∴△DBG≌△FBG(ASA),∴BD=BF,DG=FG(全等三角形的对应边相等),∵BD= =,∴BF=,∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH= ﹣1,①当BH=BP时,则BP=﹣1,∵∠PBC=45°,设P(x,x),∴2x=(﹣1),解得x=1﹣∴P(1﹣或﹣1+,1﹣,)或(﹣1+ ,﹣1+ );②当BH=HP时,则HP=PB=﹣1,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°,∴△PBH是等腰直角三角形,∴P(,),综上,在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+ )、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.22。
第一单元复习题一、选择题1、已知等腰三角形的一个角为75°,则其顶角为( )A.36° B 。
45° C 。
60° D.72°2、等腰直角三角形的斜边长为a ,则其斜边上的高为( ) A.a 23 B.a 2 C.2a D.a 42 3、如图,△ABC 中,AB=BD=AC,AD=CD,则∠ADB 的度数是( )A 。
36° B.45° C 。
60° D.72°(第3题图) (第4题图)4、如图,△ABC 中,AB=AC,∠A=36°,CD 、BE 是△ABC 的角平分线,CD 、BE 相交于点O,则图中等腰三角形有( )A 。
6个 B.7个 C.8个 D.9个5.逆命题“两直线平行,同旁内角互补”的原命题是( )A.两直线平行,同位角相等B.两直线平行,内错角相等C 。
同旁内角互补,两直线平行D 。
同位角相等,两直线平行二、填空题6、已知等腰三角形的两边长分别为3cm 、6cm ,则该等腰三角形的周长为 cm.7、如果等腰三角形的有一个角是80°,那么顶角是 度;8、若等腰三角形的腰长为4,腰上的高为2,则此等腰三角形的顶角为 。
9、在△ABC 中,AB=AC ,∠A=50°,AB 的垂直平分线DE 交AC 于点D ,垂足为E,则∠DBC 的度数是 。
10、△ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D 。
若DC=7,则D 到AB 的距离是 .11、如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 交于D 点,则∠BCD 的度数为 .12、如图,∠AOP=∠BOP=15°,PC ∥OA,PD ⊥OA ,若PC=4,则PD 的长为13、已知,如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10 cm,则△ODE 的周长14、在△ABC 和△ADC 中,下列论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:15、在△ABC 中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .三、解答题16、如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求AD、CD的长。
初中数学总复习基础知识梳理第一专题数与式本专题包括:有理数(七上第二章)用字母表示数(七上第三章)整式(七下第一章)实数(八上第二章)因式分解(八下第二章)分式(八下第三章)有理数与实数:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.1001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
算术根的性质:2a =a ;⎩⎨⎧<-≥==)0()0(2a a a aa a(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
AB C D北师大版数学九年级上册第一章中考练习题1、如图1,□ABCD中,下列说法一定准确的是()A、AC=BDB、AC⊥BDC、AB=CDD、AB=BC2.如图2,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°3.如图3,在Rt△ABC中,∠ACB=90˚,D,E,F分别是AB,AC,AD的中点,若AB=8,则EF的长是()A.1 B.2 C.3 D.2图1 图2 图3 4.已知,如图4,点E是长方形ABCD的边CD上一点,将△ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD=10,AB=8,那么AE=.5.分解因式:mx2﹣2mx+m= .6.如图5,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和是.图4 图57.如图所示,已知四边形ABCD 、ADEF 都是菱形,为锐角.(1)求证:;(2)若BF=BC,求的度数。
8.如图,BD 是菱形ABCD 的对角线,∠CBD=75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.BAD FAD BAD ∠=∠∠、AD BF ⊥ADC ∠9.已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.10.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B 落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.九年级上册第一章中考练习题答案1.C2.【分析】由等边三角形的性质可得∠DAE=60°,进而可得∠BAE=150°,又因为AB=AE,结合等腰三角形的性质,易得∠AEB的大小,进而可求出∠BED 的度数.【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.3.【分析】根据直角三角形的性质求出CD,根据三角形中位线定理计算即可.【解答】解:∵∠ACB=90˚,D是AB的中点,∴CD=AB=×8=4,∵E,F分别是AC,AD的中点,∴EF=CD=2,故选:B.4.【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴BC=AD=10,CD=AB=8,∠B=C=∠D=90°,∵将△ADE沿着AE对折,点D恰好折叠到边BC上的F点,∴AF=AD=10,∠AFE=∠D=90°,∴BF===6,∴CF=4,∵EF=DE=8﹣CE,∴(8﹣CE)2=42+CE2,∴CE=3,∴EF=5,∴AE===5,故答案为:5.5.分解因式:mx2﹣2mx+m= m(x﹣1)2.【解答】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2.故答案为:m(x﹣1)2.6.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和是.【解答】解:∵矩形纸片ABCD折叠,点D与点B重合,点C落在C'处,∴BE=ED,BC′=CD,C′F=CF,∴△ABE的周长=AB+AE+BE=AB+AE+ED=AB+AD,△BC′F的周长=BF+C′F+BC′=BE+CF+CD=BC+CD,∴△ABE和△BC′F的周长之和=AB+AD+BC+CD=矩形ABCD的周长,∵AB=1,BC=2,∴△ABE和△BC′F的周长之和=2×(1+2)=2×3=6.故答案为:6.7.(1)如图,∵ABCD、ADEF是菱形∴AB=AD=AF又∵∠BAD=∠FAD由等腰三角形的三线合一性质可得AD⊥BF(2)∵BF=BC∴BF=AB=AF∵△ABF是等比三角形∴∠BAF=60°又∵∠BAD=∠FAD∴∠BAD=30°∴∠ADC=180°-30°=150°8.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(3)根据∠DBF=∠ABD﹣∠ABF计算即可;9.【分析】根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC=AB,所以AF=AB.【解答】证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,本题的关键是灵活运用所学知识解决问题,属于常考题型.10.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.。
宝城镇第二中心学校九年级月考测试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.考试时间120分钟,满分120分.第Ⅰ卷(选择题 共24分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目按要求填涂在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑,不能将答案答在试题卷上.3.考试结束,将本试卷和答题卡一并交回.一、选择题:(本题8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.有理数2的相反数的倒数是( )A.2B.-2C.12D.-122.2012年我市参加中考的学生人数约为41001.6⨯人.对于这个 近似数,下列说法正确的是( ) A 、精确到百分位,有3个有效数字 B 、精确到百位,有3个有效数字 C 、精确到十位,有4个有效数字 D 、精确到个位,有5个有效数字3.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B .a =3 C.a >3 D.a <34.下列说法错误的是( )A2 BCD5.8.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠06.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A .1-B .1m -C .0D .17.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A.()2222a b a ab b-=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+8.若解分式方程2xx -1 -m +1x 2+x=x +1x 产生增根,则m 的值是( )。
北师大版九年级数学中考复习试题及答案全套(共9套)《数与式》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题2分,共24分)1.下列各数:π3,sin 30°,-3,4,其中无理数的个数有( B )A .1个B .2个C .3个D .4个2.某种药品说明书上标明保存温度是(20±3) ℃,则该药品最合适保存的温度范围是 ( C )A .17℃~20℃B .20℃~23℃C .17℃~23℃D .17℃~24℃3.下列运算中,正确的是( D ) A .a 2+a 2=2a 4 B .(a -b )2=a 2-b 2 C .(-x 6)·(-x )2=x 8D .(-2a 2b )3÷4a 5=-2ab 3 4.中国的“天眼”绝对是我们中国人的骄傲,它可以一眼看穿130亿光年以外,换句话来说就是它可以接收到130亿光年之外的电磁信号,几乎已经可以达到我们人类现在所了解到的宇宙的极限边缘.数据130亿(精确到亿位)正确的表示是( B )A .1.3×1010B .1.30×1010C .0.13×1011D .130×1085.设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7D .86.如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab ÷ab=-b ,其中正确的是( B )A .①②B .②③C .①③D .①②③7.若最简二次根式3a -12a +5b 与a -2b +8是同类二次根式,则a 、b 的值为( A )A .a =1,b =1B .a =2,b =-1C .a =-2,b =1D .a =-1,b =18.整数n 满足n <26<n +1,则n 的值为( A ) A .4 B .5 C .6D .79.实数a 、b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( C )A .2a +bB .-2a +bC .bD .2a -b10.如图1,把一个长为2m ,宽为2n (m >n )的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图2那样拼成一个正方形,则中间空的部分的面积是( C )A .2mB .(m +n )2C .(m -n )2D .m 2-n 211.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24;第四组:26,28,30,32,34,36,38,40……则现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 10=(2,3),则A 2020=( B )A .(31,63)B .(32,18)C .(33,16)D .(34,2)12.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3、…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 2020B 2020C 2020D 2020的边长是( D )A .⎝⎛⎭⎫122019B .⎝⎛⎭⎫122020C .⎝⎛⎭⎫332020D .⎝⎛⎭⎫332019二、填空题(每小题2分,共16分) 13.若分式x +1x -1有意义,则x 的取值范围为__x ≥-1且x ≠1__. 14.计算:2(2-3)+6=__2__.15.将多项式m 2n -2mn +n 分解因式的结果是__n (m -1)2__. 16.若y =x -4+4-x 2-2,则(x +y )y =__14__.17.中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若实数a 用代数式表示为13+12n ,实数b 用代数式表示为12n -13,则a -b 的值为__23__.18.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…,则第2020次输出的结果为__3__.19.若x 2-3x +1=0,则x 2x 4+x 2+1的值为__18__.20.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n +….图1 图2图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n -2C n -1C n 、….假设AC =2,这些三角形的面积和可以得到一个等式是=2⎣⎡⎦⎤1+34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -1+⎝⎛⎭⎫34n +…__.三、解答题(共60分) 21.(8分)计算: (1)⎝⎛⎭⎫46-412+38÷22; 解:(1)原式=(46-22+62)÷22=(46+42)÷22=23+2. (2)⎝⎛⎭⎫-12-2-|3-2|+(2-1.414)0-3tan 30°-(-2)2.解:原式=4-(2-3)+1-3×33-2=4-2+3+1-3-2=1. 22.(5分)已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.23.(5分)已知实数a 、b 、c 满足|a +6|+b -2+(c -3)2=0,求-abc 的值. 解:∵|a +6|+b -2+(c -3)2=0,∴a +6=0,b -2=0,c -3=0,∴a =-6,b =2,c =3,∴-abc =-(-6)×2×3=36=6.24.(5 分)化简:⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷⎝⎛⎭⎫1-4x . 解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2÷x -4x =x 2-4-(x 2-x )x (x -2)2·x x -4=x -4x (x -2)2·x x -4=1x 2-4x +4. 25.(5分)先化简,再求值:a 4-b 4a 2-2ab +b 2×b -aa 2+b 2,其中a =2019,b =2020.[:学科网] 解:原式=(a 2+b 2)(a +b )(a -b )(a -b )2·-(a -b )a 2+b 2=-(a +b )=-a -b .当a =2019,b =2020时,原式=-2019-2020=-4039.26.(5分)先化简,再求值:a -2a 2-1÷⎝⎛⎭⎪⎫a -1-2a -1a +1,其中a 是方程x 2-x =6的根. 解:原式=a -2a 2-1÷(a +1)(a -1)-(2a -1)a +1=a -2a 2-1÷a 2-2a a +1=1a 2-a .∵a 是方程x 2-x =6的根,∴a 2-a =6,∴原式=16.27.(6分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝⎛⎭⎫5b 2a -2b -a -2b -1a ,其中a 、b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2. 解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a -2b )(a +2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a =(a -3b )2a (a -2b )·a -2b(3b -a )(3b +a )-1a =-(a -3b )a ()3b +a -1a =-(a -3b )a (3b +a )-3b +a a (3b +a )=-2a a (3b +a )=-2a +3b .解⎩⎪⎨⎪⎧ a +b =4,a -b =2,得⎩⎪⎨⎪⎧a =3,b =1.∴当a =3,b =1时,原式=-23+3×1=-13.28.(6分)先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中整数x 满足-2<x ≤2. 解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2×x (x -1)x +1=x 2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,x (x -1)≠0,x +1≠0,即x ≠-1、0、1.又∵-2<x ≤2,且x 为整数,∴x =2.将x =2代入x 2x -1中,得原式=222-1=4. 29.(7分)如果一个正整数能表示为两个连续奇数的平方差,那么我们称这个正整数为“和谐数”,如8=32-12,16=52-32,24=72-52,因此,8,16,24这三个数都是“和谐数”.(1)在32,75,80这三个数中,是和谐数的是__32,80__;(2)若200为和谐数,即200可以写成两个连续奇数的平方差,则这两个连续奇数的和为__100__;(3)小鑫通过观察发现以上求出的“和谐数”均为8的倍数,设两个连续奇数为2n -1和2n +1(其中n 取正整数),请你通过运算验证“和谐数是8的倍数”这个结论是否正确.证明:∵(2n +1)2-(2n -1)2=4n 2+4n +1-(4n 2-4n +1)=4n 2+4n +1-4n 2+4n -1=8n ,∴“和谐数是8的倍数”这个结论是正确的.30.(8分)观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1; 第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1; 第三个等式:a 3=231+3×23+2×(23)2=123+1-124+1; 第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1.按上述规律,回答下列问题:(1)请写出第六个等式:a 6=__261+3×26+2×(26)2__=__126+1-127+1__; (2)用含n 的代数式表示第n 个等式:a n =__2n1+3×2+2×(2)__=__12+1-12++1;(3)a 1+a 2+a 3+a 4+a 5+a 6=__1443__(得出最简结果);(4)计算:a 1+a 2+…+a n . 解:原式=12+1-122+1+122+1-123+1+…+12n+1-12n +1+1=12+1-12n +1+1=2n +1-23(2n +1+1).《函数的图象与性质》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分) 1.函数y =x +2x -3的自变量的取值范围是( C ) A .x ≠3B .x ≥-2C .x ≥-2且x ≠3D .x ≥32.一辆复兴号高铁从青州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,复兴号到达下一个高铁站停下,乘客上、下车后,复兴号又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出这辆复兴号高铁在这段时间内的速度变化情况的是( D )3.已知二次函数y =-(x -h)2+4(h 为常数),在自变量x 的值满足1≤x ≤4的情况下,与其对应的函数值y 的最大值为0,则h 的值为( A )A .-1和6B .2和6C .-1和3D .2和34.若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( C ) A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2)5.一次函数y =kx -k 与反比例函数y =kx在同一直角坐标系内的图象大致是( C )6.如图,A 、B 两点在双曲线y =4x上,分别经过A 、B 两点向坐标轴作垂线段,已知S阴影=1,则S 1+S 2=( D )A .3B .4C .5D .67.抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新抛物线的顶点坐标为( A )A .(4,-1)B .(0,-3)C .(-2,-3)D .(-2,-1)8.设A (-2,y 1)、B (1,y 2)、C (2,y 3)是抛物线y =-(x +1)2+m 上的三点,则y 1、y 2、y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 39.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0.其中所有正确结论的序号是( C )A .③④B .②③C .①④D .①②③10.如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =kx(k ≠0)中k 的值的变化情况是( C )A .一直增大B .一直减小C .先增大后减小D .先减小后增大二、填空题(每小题3分,共18分)11.一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则k ·b 的值是__2或-7__.12.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A (m ,n ),B (m +6,n ),则n =__9__.13.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是__m >1__.14.如图,直线x =2与反比例函数y =2x 和y =-1x 的图象分别交于A 、B 两点,若点P是y 轴上任意一点,则△P AB 的面积是__1.5__15.如图,点A 在双曲线y =6x 上,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 周长为16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8 m ,两侧距地面4 m 高处各有一盏灯,两灯间的水平距离为6 m ,则这个门洞的高度为__9.1__m.(精确到0.1 m)三、解答题(共52分)17.(6分)已知一次函数的图象与x 轴、y 轴分别交于点A (-2,0)、B (0,3).(1)求这个一次函数的解析式;(2)过点B 的另外一条直线l 与x 轴交于点C (c,0),若点A 、B 、C 构成面积不大于6的三角形,求c 的取值范围.解:(1)设一次函数解析式为y =kx +b ,把A (-2,0)、B (0,3)代入,得⎩⎪⎨⎪⎧-2k +b =0,b =3,解得⎩⎪⎨⎪⎧k =32,b =3,所以一次函数解析式为y =32x +3.(2)根据题意得12·3·|c +2|≤6,即|c +2|≤4,所以-6≤c ≤2且c ≠-2.18.(6分)在平面直角坐标系中,已知点A (4,0),点B (0,3),点P 从点A 出发,以每秒1个单位的速度在x 轴上向右平移,点Q 从B 点出发,以每秒2个单位的速度沿直线y =3向右平移,又P 、Q 两点同时出发,设运动时间为t 秒.(1)当t 为何值时,四边形OBPQ 的面积为8; (2)连接AQ ,当△APQ 是直角三角形时,求Q 的坐标.解:(1)设运动时间为t 秒,BQ =2t ,OP =4+t ,则S =12(3t +4)×3=8,解得t =49.(2)当∠QAP =90°时,Q (4,3);当∠QP A =90°时,Q (8,3);当∠AQP =90°时,不存在Q 点的坐标,故Q 点坐标为(4,3)、(8,3).19.(6分)如图1所示,在A 、B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1、y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A 、B 两地相距__420__千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (3)客、货两车何时相遇?解:(2)由图可知货车的速度为60÷2=30(千米/时),货车到达A 地一共需要2+360÷30=14(小时).设y 2=kx +b ,代入点(2,0)、(14,360),得⎩⎪⎨⎪⎧ 2k +b =0,14k +b =360,解得⎩⎪⎨⎪⎧k =30,b =-60,所以y 2=30x -60.(3)设y 1=mx +n ,代入点(6,0)、(0,360),得⎩⎪⎨⎪⎧ 6m +n =0,n =360,解得⎩⎪⎨⎪⎧m =-60,n =360,所以y 1=-60x +360.由y 1=y 2,得-60x +360=30x -60,解得x =143.故客、货两车经过143小时相遇.20.(6分)已知某市2017年企业用水量x (吨)与该月应缴的水费y (元)之间的函数关系如图.(1)当x ≥50时,求y 关于x 的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量; (3)为贯彻省委发展战略,鼓励企业节约用水,该市自2019年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2018年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2019年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y 关于x 的函数关系式y =kx +b .∵直线y =kx +b 经过点(50,200),(60,260),∴⎩⎪⎨⎪⎧ 50k +b =200,60k +b =260,解得⎩⎪⎨⎪⎧k =6,b =-100,∴y 关于x 的函数关系式是y =6x -100.(2)由图可知,当y =620时,x >50,∴6x -100=620,解得x =120.故该企业2018年10月份的用水量为120吨.(3)由题意得6x -100+x20(x -80)=600,化简,得x 2+40x -14 000=0,解得x 1=100,x 2=-140(不合题意,舍去).故这个企业2019年3月份的用水量是100吨.21.(6分)如图,已知抛物线y =ax 2+32x +c (a ≠0)与y 轴交于A (0,4),与x 轴交于B 、C两点,点C 坐标为(8,0),连接AB 、AC .(1)求抛物线的解析式;(2)判断△ABC 的形状,并说明理由.解:(1)∵抛物线y =ax 2+32x +c 与y 轴交于A (0,4),与x 轴交于B 、C 两点,点C 坐标为(8,0),∴⎩⎪⎨⎪⎧c =4,64a +12+c =0,解得⎩⎪⎨⎪⎧a =-14,c =4,∴抛物线的解析式为y =-14x 2+32x +4.(2)△ABC 为直角三角形,理由如下:当y =0时,即-14x 2+32x +4=0,解得x 1=8,x 2=-2,∴点B 的坐标为(-2,0).在Rt △ABO 中,AB 2=BO 2+AO 2=22+42=20.在Rt △ACO 中,AC 2=CO 2+AO 2=82+42=80.∵BC =OB +OC =2+8=10,∴在△ABC 中,AB 2+AC 2=20+80=102=BC 2,∴△ABC 是直角三角形.22.(7分)如图,已知A ⎝⎛⎭⎫-4,12,B (-1,2)是一次函数y =kx +b 与反比例函数y =mx (m ≠0,m <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC 、PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.解:(1)当-4<x <-1时,一次函数图象在反比例函数图象上方,故一次函数的值大于反比例函数的值.(2)设一次函数的解析式为y =kx +b .∵y =kx +b 的图象过点⎝⎛⎭⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎨⎧k =12,b =52,故一次函数的解析式为y =12x +52.反比例函数y =mx图象过点(-1,2),则m =-1×2=-2.(3)连接PC 、PD ,设P ⎝⎛⎭⎫x ,12x +52.由△PCA 和△PDB 面积相等,得12×12×(x +4)=12×|-1|×⎝⎛⎭⎫2-12x -52,解得x =-52,则y =12x +52=54,∴点P 的坐标是⎝⎛⎭⎫-52,54. 23.(7分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x +500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?解:(1)当x =20时,y =-10x +500=-10×20+500=300,300×(12-10)=600,即政府这个月为他承担的总差价为600元.(2)依题意,得w =(x -10)(-10x +500)=-10x 2+600x -5000=-10×(x -30)2+4000.∵a =-10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意,得-10x 2+600x -5000=3000,解得x 1=20,x 2=40.∵a =-10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.又∵x ≤25,∴当20≤x ≤25时,w ≥3000.设政府每个月为他承担的总差价为p 元,则p =(12-10)×(-10x +500)=-20x +1000.∵k =-20<0.∴p 随x 的增大而减小,∴当x =25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.24.(8分)如图,已知抛物线y =-14x 2-12x +2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A 、B 、E 、F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)令y =0,得-14x 2-12x +2=0,∴x 2+2x -8=0,解得x =-4或2,∴点A 坐标为(2,0),点B 坐标为(-4,0).令x =0,得y =2,∴点C 坐标为(0,2).(2)①AB 为平行四边形的边时,∵AB =EF =6,对称轴x =-1,∴点E 的横坐标为-7或5,∴点E 坐标为⎝⎛⎭⎫-7,-274或⎝⎛⎭⎫5,-274,此时点F ⎝⎛⎭⎫-1,-274,∴以A 、B 、E 、F 为顶点的平行四边形的面积为6×274=812;②当点E 在抛物线顶点时,点E ⎝⎛⎭⎫-1,94,设对称轴与x 轴交点为M ,令EM 与FM 相等,则四边形AEBF 是菱形,此时以A 、B 、E 、F 为顶点的平行四边形的面积为12×6×92=272.(3)如图所示,①当C 为顶点时,CM 1=CA ,CM 2=CA ,作M 1N ⊥OC 于点N .在Rt △CM 1N 中,CN =CM 21-M 1N 2=7,∴点M 1坐标为(-1,2+7),点M 2坐标为(-1,2-7);②当M 3为顶点时,∵直线AC 解析式为y =-x +2,线段AC 的垂直平分线为y =x ,∴点M 3坐标为(-1,-1);③以点A 为顶点的等腰三角形不存在.综上所述,点M 坐标为(-1,-1)或(-1,2+7)或(-1,2-7).《方程(组)与不等式(组)》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知实数a 、b ,若a >b ,则下列结论错误的是( D ) A .a -7>b -7 B .6+a >b +6 C .a 5>b 5D .-3a >-3b2.已知x =2是方程2x +m -4=0的解,则m 的值为( C ) A .8 B .-8 C .0D .23.不等式组⎩⎪⎨⎪⎧x +1>0,1-13x >0的解集在数轴上表示正确的是( A )4.已知⎩⎪⎨⎪⎧ x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D )A .1B .2C .3D .45.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( C )A .4B .5C .6D .76.关于x 的方程m 2x 2-8mx +12=0至少有一个正整数解,且m 是整数,则满足条件的m 的值的个数是( B )A .5个B .4个C .3个D .2个7.为加快环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x 棵,则列出的方程为( A )A .400x =300x -30B .400x -30=300xC .400x +30=300xD .400x =300x +308.大学生嘉嘉假期去图书馆做志愿者服务,并与图书馆达成如下协议:做满30天,图书馆将支付给他一套名著和生活费600元,但他在做到20天时,由于学校有临时任务,只能终止服务,图书馆只付出一套名著和300元,设这套名著的价格为x 元,则下面所列方程正确的是( B )A .x +60020=x +30030B .x +60030=x +30020C .x -60030=x -30020D .x -60020=x -300309.若解分式方程x -1x +4=mx +4时产生增根,则m =( D )A .1B .0C .-4D .-510.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( B )A .29人B .30人C .31人D .32人二、填空题(每小题3分,共18分)11.如果不等式(a -3)x <b 的解集是x <ba -3,那么a 的取值范围是__a >3__.12.方程x x -2 = 12-x的根x =__-1__.13.对于实数a 、b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4]__3或-3__. 14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为__78__cm.15.若方程x 2+2x -13=0的两根分别为m 、n ,则mn (m +n )=__26__.16.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为__80__元.三、解答题(共52分) 17.(6分)解方程(组):(1)⎩⎪⎨⎪⎧x -y =4, ①3x +y =16; ②解:(1)①+②,得4x =20,即x =5.将x =5代入①,得y =1,故⎩⎪⎨⎪⎧x =5,y =1.(2)(x -5)(x +4)=10;解:去括号、移项、整理,得x 2-x -30=0,解得x 1=-5,x 2=6. (3)1x -2-3=x -12-x. 解:去分母,得1-3(x -2)=-(x -1),整理,得-2x +6=0,解得x =3.经检验,x =3是原分式方程的根.18.(4分)解不等式组:⎩⎪⎨⎪⎧3x >x -6,x -12≤x +16,并把它的解集在数轴(如图)上表示出来.解:⎩⎨⎧3x >x -6,①x -12≤x +16,②由①,得x >-3.由②,得x ≤2.∴原不等式组的解集为-3<x ≤2.19.(6分)已知关于x 的方程2x 2+kx -1=0 (1)求证:方程有两个不相等的实数根;(2)若方程的一根是-1,求另外一个根及k 的值.(1)证明:b 2-4ac =k 2+8>0,即方程2x 2+kx -1=0有两个不相等的实数根.(2)解:把x =-1代入原方程,得2-k -1=0,所以k =1,即原方程为2x 2+x -1=0,解得x 1=-1,x 2=12,即另外一根为12.20.(6分)百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接五一劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?解:设每件童装应降价x 元.由题意,得(100-60-x )(20+2x )=1200,解得x 1=10,x 2=20.∵尽量减少库存,∴x =20,∴100-20=80(元),故每件童装应定价为80元.21.(7分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元;(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问:每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x 元.根据题意,得600x -60054x =30,解得x =4.经检验,x =4是原分式方程的解,故第一次每支铅笔的进价是4元.(2)设售价为y 元.根据题意,列不等式为6004×(y -4)+6004×54×(y -5)≥420,解得y ≥6.故每支售价至少是6元.22.(7分)阅读材料:我们知道:若几个非负数相加得零,则这些数必同时为零. 例如:①若(a -1)2+(b +5)2=0,则(a -1)2=0,(b +5)2=0,∴a =1,b =-5. ②若m 2-4m +n 2+6n +13=0,求m 、n 的值.解:∵m 2-4m +n 2+6n +13=(m 2-4m +4)+(n 2+6n +9)=0(将13拆成4和9,等式左边就出现了两个完全平方式),∴(m -2)2+(n +3)2=0, ∴(m -2)2=0,(n +3)2=0, ∴m =2,n =-3.根据你的观察,探究下面的问题:(1)已知x 2+2xy +2y 2-6y +9=0,求x y 的值;(2)已知a 、b (a ≠b )是等腰三角形的边长,且满足2a 2+b 2-8a -6b +17=0,求三角形的周长.解:(1)∵x 2+2xy +2y 2-6y +9=x 2+2xy +y 2+y 2-6y +9=(x +y )2+(y -3)2=0,∴x +y =0,y -3=0,∴y =3,x =-y =-3,∴x y =(-3)3=-27.(2)∵2a 2+b 2-8a -6b +17=2a 2-8a +8+b 2-6b +9=2(a 2-4a +4)+(b 2-6b +9)=2(a -2)2+(b -3)2=0,∴a -2=0,b -3=0,∴a =2,b =3.∴当a 为腰时,周长为7;当b 为腰时,周长为8.∴三角形的周长为7或8.23.(8分)如果方程x 2+px +q =0的两个根是x 1、x 2,那么x 1+x 2=-p ,x 1·x 2=q .请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0 (n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a b +ba的值;(3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.解:(1)设x 2+mx +n =0 (n ≠0)的两根为x 1、x 2.∴x 1+x 2=-m ,x 1·x 2=n .∴1x 1+1x 2=x 1+x 2x 1x 2=-m n ,1x 1·1x 2=1n .∴所求一元二次方程为x 2+m n x +1n=0,即nx 2+mx +1=0. (2)①当a ≠b 时,由题意知a 、b 是一元二次方程x 2-15x -5=0的两根,∴a +b =15,ab =-5.∴a b +b a =a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47.②当a =b 时,a b +ba =1+1=2.综上,a b +ba=-47或2.(3)∵a +b +c =0,abc =16,∴a +b =-c ,ab =16c .∴a 、b 是方程x 2+cx +16c =0的两根,∴Δ=c 2-4×16c≥0.∵c >0,∴c 3≥64,∴c ≥4,∴c 的最小值为4.24.(8分)某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元;新建4个地上停车位和2个地下停车位共需1.4万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案,哪一种方案的投资最少?并求出最少投资金额.解:(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元.由题意,得⎩⎪⎨⎪⎧ 2x +3y =1.7,4x +2y =1.4,解得⎩⎪⎨⎪⎧x =0.1,y =0.5.故新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元.(2)设新建m 个地上停车位,由题意,得14<0.1m+0.5(60-m )≤15,解得37.5≤m <40,因为m 为整数,所以m =38或39,对应的60-m =22或21,故一共有2种建造方案.(3)当m =38时,投资0.1×38+0.5×22=14.8(万元),当m =39时,投资0.1×39+0.5×21=14.4(万元),故当地上建39个车位,地下建21个车位时,投资最少,金额为14.4万元.《图形及其变化》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的有(C)A.1个B.2个C.3个D.4个2.如图是某几何体的三视图,该几何体是(B)A.圆锥B.圆柱C.棱柱D.正方体3.一个正方体的每个面上都写有一个汉字,如图,在该正方体中,和“超”相对的字是(C)A.沉B.信C.自D.着4.如图是由4个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是(C)5.如图,将△ABC沿BC方向平移2 cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为(C)A.16 cm B.18 cmC.20 cm D.22 cm6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( C )A .(2,10)B .(-2,0)C .(2,10)或(-2,0)D .(10,2)或(-2,0)7.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为( C )A .(3,1)B .(3,3)C .(4,4)D .(4,1)8.如图,在△ABC 中,AB =AC ,∠ABC =70°,以B 为圆心,任意长为半径画弧分别交AB 、BC 于点E 、F ,再分别以点E 、F 为圆心、以大于12EF 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( B )A .65°B .75°C .80°D .85°9.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( B )A .35B .45C .23D .3210.如图,△AOB 为等腰三角形,AO =AB ,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ,点A 的对应点A ′在x 轴上,则点O ′的坐标为( C )A .⎝⎛⎭⎫203,103B .⎝⎛⎭⎫163,435 C .⎝⎛⎭⎫203,435D .⎝⎛⎭⎫163,43二、填空题(每小题3分,共18分)11.在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是__(-2,3)__.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为__12__.13.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为__245__.14.如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF =__5__.15.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E的对应点为F,则∠EAF的度数是__60°__.16.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2020的直角顶点的坐标为__(8076,0)__.三、解答题(共52分)17.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为__(2,7)__,点C的坐标为__(6,5)__;(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),则平移后点M1的坐标为__(a-7,b)__;(3)以原点O为位似中心,将△ABC缩小,使变换后的△A2B2C2与△ABC对应边的比为1∶2,请在网格内画出一个△A2B2C2,则点A2的坐标为__(1,3.5)__.18.(6分)如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出对角线AC的垂直平分线,分别交AD、BC于E、F;(保留作图痕迹,不写作法)(2)在(1)作出的图形中,连接CE、AF,若AB=4,BC=8,且AB⊥AC,求四边形AECF 的周长.解:(1)如图所示:(2)根据作图,易知四边形AECF 是菱形,∴AF =FC ,∴∠F AC =∠FCA .∵AB ⊥AC ,∴∠BAC =90°,∴∠BAF +∠F AC =90°,∠B +∠FCA =90°,∴∠B =∠BAF ,∴AF =BF ,∴BF =FC .∴四边形AECF 的周长=4FC =2BC =16.19.(6分)如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =0.8 m ,窗高CD =1.2 m ,并测得OE =0.8 m ,OF =3 m ,求围墙AB 的高度.解:延长OD .∵DO ⊥BF ,∴∠DOE =90°.∵OD =0.8 m ,OE =0.8 m ,∴∠DEB =45°.∵AB ⊥BF ,∴∠BAE =45°,∴AB =BE ,设AB =EB =x m .∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,∴△ABF ∽△COF ,∴AB BF =CO OF ,即x x +(3-0.8)=1.2+0.83,解得x =4.4.经检验,x =4.4是原方程的解.故围墙AB 的高度是4.4 m.20.(6分)如图,菱形OABC 的顶点A 的坐标为(2,0),∠COA =60°,将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF .(1)直接写出点F 的坐标;(2)求线段OB 的长及图中阴影部分的面积.解:(1)(-2,0).(2)连接OE 、OB 、AC ,OB 与AC 相交于点H .∵菱形OABC 中,OA =2,∠COA =60°,∴∠BOC =∠BOA =30°,OB ⊥AC ,∴OB =2OH =2OA ·cos ∠BOA =2×2×32=23,CH =AH =OA ·sin ∠BOA =2×12=1.∵将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF ,∴∠BOE=120°.S 阴影=S 扇形OBE -2S △OBC =120π×(23)2360-2×12×23×1=4π-2 3.21.(7分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求A 与A 1,B 与B 1,C 与C 1相对应)(2)作出△ABC 绕点C 顺时针方向旋转90°后得到的△A 2B 2C ;(3)在(2)的条件下直接写出点B 旋转到B 2所经过的路径的长.(结果保留π)解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 如图所示. (3)根据勾股定理,BC =12+42=17,所以点B 旋转到B 2所经过的路径的长=π217.22.(7分)如图,点O 为平面直角坐标系的原点,点A 在x 轴的正半轴上,正方形OABC 的边长是3,点D 在AB 上,且AD =1.将△OAD 绕着点O 逆时针旋转得到△OCE .(1)求证:OE ⊥OD ;(2)在x 轴上找一点P ,使得PD +PE 的值最小,求出点P 的坐标.(1)证明:∵将△OAD 绕着点O 逆时针旋转得到△OCE ,∴∠AOD =∠COE .∵四边形OABC 是正方形,∴∠AOC =90°,∴∠AOD +∠COD =∠COE +∠COD =90°,即∠DOE =90°,∴OE ⊥OD .(2)解:∵OA =3,AD =1,∴D (3,1).作点D 关于x 轴对称的点F ,连接EF 交x 轴于点P ,此时,PD +PE 的值最小.∵D (3,1),∴F (3,-1).∵将△OAD 绕着点O 逆时针旋转90°得到△OCE ,∴E (-1,3).设直线EF 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧ 3=-k +b ,-1=3k +b ,∴⎩⎪⎨⎪⎧k =-1,b =2,∴直线EF 的解析式为y =-x +2.当y =0时,x =2,∴P (2,0).23.(7分)如图,一伞状图形,已知∠AOB =120°,点P 是∠AOB 平分线上一点,且OP =2,∠MPN =60°,PM 与OB 交与点F ,PN 与OA 交于点E .(1)如图1,当PN 与PO 重合时,探索PE 、PF 的数量关系;(2)如图2,将∠MPN 在(1)的情形下绕点P 逆时针旋转α(0<α<60°),继续探索PE 、PF 的数量关系,并求四边形OEPF 的面积.解:(1)∵∠AOB =120°,OP 平分∠AOB ,∴∠POF =60°.∵∠MPN =60°,∴△PEF 是等边三角形,∴PE =PF .(2)过点P 作PQ ⊥OA ,PH ⊥OB .∵OP 平分∠AOB ,∴PQ =PH ,∠PQO =∠PHO =90°.∵∠AOB =120°,∴∠QPH =60°=∠MPN ,∴∠QPE +∠EPH =∠FPH +∠EPH ,∴∠QPE =∠HPF .在△QPE 和△HPF 中,⎩⎪⎨⎪⎧∠EQP =∠FHP ,PQ =PH ,∠QPE =∠HPF ,∴△QPE ≌△HPF ,∴PE =PF ,S 四边形OEPF =S 四边形OQPH .∵PQ⊥O A ,PH ⊥OB ,OP 平分∠AOB ,∴∠QPO =30°,∴OQ =1,QP =3,∴S △OPQ =32,∴S 四边形OEPF =2S △OPQ =3.24.(7分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为22的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AG 在同一直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由;(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长;(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,使线段DG 与线段BE 相交,交点为H ,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.解:(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB.延长EB交DG于点H.在△ADG中,∵∠AGD+∠ADG =90°,∴∠AEB+∠ADG=90°,∴∠DHE=90°,∴DG⊥BE.(2)∵AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG =∠BAE,∴△ADG≌△ABE(SAS),∴DG=BE.过点A作AM⊥DG交DG于点M,则∠AMD=∠AMG =90°.∵BD为正方形ABCD的对角线,∴∠MDA=45°.在Rt△AMD中,∵∠MDA=45°,AD=2,∴DM=AM= 2.在Rt△AMG中,根据勾股定理,得GM=AG2-AM2=6,∴DG=DM+GM=2+6,∴BE=DG=2+ 6.(3)△GHE和△BHD面积之和的最大值为6.理由如下:∵对于△GHE,点H在以EG为直径的圆上,∴当点H与点A重合时,△GHE的面积最大.∵对于△BHD,点H在以BD为直径的圆上,∴当点H与点A重合时,△BHD的面积最大,∴△GHE和△BHD面积之和的最大值为2+4=6.《三角形》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列长度的三条线段,可以组成三角形的是(B)A.10、5、4B.3、4、2C.1、11、8D.5、3、82.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是(C)A.10B.9C.8D.63.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是(D)A.∠C=∠D B.∠BAC=∠ABDC.BC=AD D.AC=BD。
中考总复习:数与式综合复习—巩固练习(提高)【巩固练习】一、选择题1. 把多项式 1-x 2+2xy-y 2分解因式的结果是()A. (1+ x - y )(1- x + y )B. (1- x - y )(1+ x - y )C. (1- x - y )(1- x + y )D. (1+ x - y )(1+ x + y )1 1 1 1 1 12. 按一定的规律排列的一列数依次为:个数是( ), , , , , 2 3 10 15 26 35 ┅┅,按此规律排列下去,这列数中的第 7 1 111A.B .C .D .454046503. 根据下表中的规律,从左到右的空格中应依次填写的数字是( )000110010111 001 111A .100,011B .011,100C .011,101D .101,1104. 在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大 1 米,需增加 m 米长的铁丝.假设地球赤道上也有一个铁箍, 同样半径增大 1 米, 需增加 n 米长的铁丝, 则 m 与 n 的大小关系是 ( )A. m >nB .m <nC .m =nD .不能确定5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么 对折 n 次后折痕的条数是 ( ) A .2n -1 B .2n +1 C .2n -1 D .2n +1 6.(2015 秋•重庆校级月考)如图图案都是同样大小的小正方形按一定的规律组成的,其中第 1 个图形中有 5 个小正方形,第 2 个图形有 13 个小正方形,第 3 个图形有 25 个小正方形,…,按此规律,则第 8 个图形中小正方形的个数为( )A .181B .145C .100D .88二、填空题7. 若非零实数 a ,b 满足4a 2 + b 2 = 4ab ,则 b=.a2 3 1 18.已知分式 x 2 - 1(x - 2)(x - 1),当 x =时,分式的值为 0.9. 在实数范围内分解因式x+y ( 2 - 4(x + y - 1) =.10. (2015 秋•平ft 区校级月考)化简:(1)当 x≥0 时,= ; (2)当 a≤0 时,=; (3)当 a≥0,b <0 时,=.11. 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为 1,分母为正整数的分数):1第一行 第二行第三行第四行111 221 1 1 3 631 1 1 1第五行4 12 1 1 1 520 30 12 41 1 20 5… …… …根据前五行的规律,可以知道第六行的数依次是:.12. 让我们轻松一下,做一个数字游戏:第一步:取一个自然数 n 1=5 ,计算 n 2+1 得 a ; 第二步:算出 a 1 的各位数字之和得 n 2,计算 n 2+1 得 a 2;第三步:算出 a 2 的各位数字之和得 n 3,再计算 n 2 +1 得 a 3; …………依此类推,则 a 2012= .三、解答题13.(2015 春•碑林区期中)图①是一个长为 2m ,宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.S 1 S 2 S n(1) 图②中的阴影部分的面积为;(2) 观察图②,三个代数式(m+n )2,(m ﹣n )2,mn 之间的等量关系是 ;(3) 观察图③,你能得到怎样的代数等式呢?(4) 试画出一个几何图形,使它的面积能表示(m+n )(m+3n );(5)若 x+y=﹣6,xy=2.75,求 x ﹣y 的值.14. 阅读下列题目的计算过程:x - 3 x 2 - 1 - 2 1 + xx - 3= (x + 1)(x - 1) -2(x - 1)(x + 1)(x - 1)(A )=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D ) (1) 上述计算过程中,从哪一步开始出现错误?请写出该步的代号 .(2) 错误的原因 . (3) 本题目正确的结论为 .xx 215.已知x 2 - x +1 = 7 ,求x 4 + x 2 +1的值.1 1 1 1 1 1 1 116. 设 S 1 =1+ 12 + 22 , S 2 =1+ 22 + 32 , S 3 =1+ 32 + 42 ,…, S n =1+ n 2 +(n +1)2设 S = + +... + ,求 S 的值 (用含n 的代数式表示,其中 n 为正整数).【答案与解析】一、选择题 1. 【答案】A ;【解析】1-x2+ 2xy -y2= 1- (x2- 2xy +y2 ) = 1- (x -y)2= (1+x -y)(1-x +y) .2.【答案】D;【解析】每个分数的分子均为 1,分母为n2+1或n2-1(当n为奇数时加 1,当n为偶数时减 1),7 为奇数,因而其分母为72+1 = 50 .3.【答案】B;【解析】通过观察,不难发现两个并排的短横表示 0,而一条长横表示 1,所表示的数是从上往下看,因而表格中的两个空格中所填的数这 011 和100 .4.【答案】C;【解析】设地球仪赤道半径为r,则m =2(r +1) -2r =2;设地球赤道半径为R,则n = 2(R +1) - 2R = 2,所以相等.5.【答案】C;【解析】除了第一次对折得到 1 条折痕,其后,每次对折所得折痕都是上次多出来的折痕的两倍. 6.【答案】B;【解析】∵第 1 个图案中小正方形的个数为 3+1+1=5;第2 个图案中小正方形的个数为 5+3+1+3+1=13;第 3 个图案中小正方形的个数为 7+5+3+1+5+3+1=25;…∴第 n 个图形的小正方体的个数(n+1)2+n2;∴第 8 个图形中小正方形的个数为 92+(9﹣1)2=81+64=145 个.故选:B.二、填空题7.【答案】2;【解析】将原式改写为4a2- 4ab +b2= 0 ,所以(2a -b)2= 0 ,可求出b=2a.8.【答案】-1;【解析】由题意x2-1 = 0 且(x - 2)(x -1) ≠ 0 ,所以x=-1.9.【答案】x+y- 2(2;【解析】此题如果按一般方法去分解,须将(x + y)2 展开,结果将问题复杂化了,其实原式可化为(x + y)2 - 4(x + y) + 4 ,将x + y 看成一个整体,再用公式法分解因式.(x + y)2- 4(x + y -1).= (x + y)2- 4(x + y) + 4= (x + y - 2)210. 【答案】3x ;﹣a ;﹣3ab【解析】解:(1)∵x≥0, ∴=|3x|=﹣3x ,故答案为:3x . (2)∵a≤0, ∴=|a|=﹣a ,故答案为:﹣a . (3)∵a≥0,b <0, ∴=|3ab|=﹣3ab,故答案为:﹣3ab.1. 【答案】1 1、 6 301111 、、、、;6060306【解析】每行中相邻两个数相加等于上一行中间的数值.12. 【答案】65;【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.由题目得,a 1=26;n 2=8,a 2=65;n 3=11,a 3=122;看不出什么规律,那就继续:n 4=5,a 4=26;…; 这样就发现规律:每三个为一个循环,2012÷3=670……2;即 a 2012= a 2=65.答案为 65.三、解答题13. 【答案与解析】 解:(1)阴影部分的边长为(m ﹣n ),所以阴影部分的面积为(m ﹣n )2;故答案为:(m ﹣n )2;(2)(m+n )2﹣(m ﹣n )2=4mn ;故答案为:(m+n )2﹣(m ﹣n )2=4mn ; (3)(m+n )(2m+n )=2m 2+3mn+n 2; (4) 答案不唯一:(5)(x ﹣y )2=(x+y )2﹣4xy=(﹣6)2﹣2.75×4=25, ∴x﹣y=±5.14. 【答案与解析】 (1)B ;1 21 (2)去分母;x - 3 2 (3) x 2 - -1 1+ x=x - 3 - 2(x -1) = x - 3 - 2x + 2 =-x -1 = 1. (x +1)(x -1) (x +1)(x -1) (x +1)(x -1) (x +1)(x -1) 1- x15. 【答案与解析】xx 2 - x +1 1 1 8因为= 7 ,所以, 所以 = ,即 x + = ,x 2 - x +1x 7 x 7x 4 + x 2 +11⎛ 1 ⎫215 所以= x 2+ +1 = x + ⎪ -1 =x 2x 2 ⎝ x ⎭49 所以x = 49.x 4 + x 2 +1 1516. 【答案与解析】S n = 1+ n 2=[1++ 1 (n +1)21 ]2=1+[ - n 1 (n +1) ]2 + 2 ⨯ 1 n (n +1) =1+[ 1 n (n +1)]2 + 2 ⨯1n (n +1)n (n +1)∴S= (1+1 1⨯2 ) + (1+ 1 2 ⨯3 ) + (1+ 1 3⨯ 4) +…+ (1+1 )n (n +1) =n + 1 - 1 + 1 - 1 + 1 - 1 + + 1 - 1=n + 1 -2 23 34 1n + 1n n + 1 n 2 + 2n .n + 1(利用拆项1 = 1 -1 即可求和). n (n +1) n n +1=。
Day1 数与式说明:由于电脑输入问题,下文出现的“√”为根号一、实数1、科学计数法把一个数写成a×10ⁿ的形式叫做科学记数法,其中(1≤|a|<10,n 是整数)方法:把小数点拉到第一个数a的右边,再数经过了多少个数即为n 2、绝对值指一个数在数轴上所对应点到原点的距离注意:“距离”一定是正数3、相反数绝对值相等,正负号相反的两个数互为相反数4、倒数分子和分母相倒并且两个乘积是1的数互为倒数,0没有倒数。
5、无理数、有理数无理数:①开方开不尽的方根②无限不循环小数有理数:整数、分数6、实数的比较大小①定义法:正数>0>负数记忆方法:两个都是负数的情况下,绝对值大的反而小②数轴法:在数轴上的两个数,右边的数比左边的大③作差法:a-b>0则a>b;a-b<0则a<b;a-b=0则a=b7、数轴规定了原点、正方向和单位长度的直线叫数轴。
实数与数轴上的点是一一对应的8、近似数经过四舍五入得到的与原始数据相差不大的一个数9、平方根、算术平方根、立方根平方根:如果x²=a,则称x为a的平方根,其中a≥0,a的平方根也写成±√a(0的平方根是0;负数没有平方根)注意:根号里面的东西一定是≥0算术平方根:如果一个正数x满足x²=a,则称这个正数x为a的算术平方根。
a的算术平方根写作√a(0的算术平方根是0)★平方根与算术平方根的区别:平方根的x可以是正数、负数、0;算术平方根里面的x只能是正数或者0而不能是负数,并且√a没有负号的情况立方根:如果x³=a,则称x为a的立方根,a的立方根也写成±³√a(正数的立方根是正数、负数的立方根是负数)记忆:所谓立方,就是三次方的意思。
其实也是用了“负负得正、正负得负”的原理,之所以“正数的立方根是正数、负数的立方根是负数”,是因为三个正数相乘是正数,而三个负数相乘则是负数。
10、实数的运算(1)运算顺序:乘方-开方-乘除-加减,如果有括号就先算括号里面的,同级运算从左到右。
中考总复习:数与式综合复习—巩固练习(基础)【巩固练习】一、选择题1.下列运算中,计算结果正确的是( )A.632x x x =⋅B.222+-=÷n n n x x xC. 9234)2(x x =D.633x x x =+2. ()1-22⎛⎫⨯ ⎪⎝⎭20112012=( )A .1B .-1C .2D .-23.已知,4a b m ab +==-,化简(2)(2)a b --的结果是( )A .6B .2m -8C .2mD .-2m4.当x <1时,的结果为 ( )A. x -1B. -x -1C. 1-xD. x +15.计算44()()xy xy x y x y x y x y -++--+的正确结果是 ( ) A .22y x - B .22x y - C .224x y - D .224y x -6.(2015春•重庆校级期中)用同样大小的黑色的小三角形按如图所示的规律摆放,则第100个图形有( )个黑色的小三角形.A .300B .303C .306D .309二、填空题7.若单项式22x a 与313x a --是同类项,则x= .8.(2015春•萧山区校级期中)化简的结果是 .已知x+|x ﹣1|=1,则化简的结果是 . 9.已知两个分式:A =442-x ,B =x x -++2121,其中x ≠±2.下面有三个结论: ①A =B ; ②A 、B 互为倒数; ③A 、B 互为相反数.正确的是 .(填序号)10.已知a的值为 .11.在实数范围内因式分解44-x = _____ _____.12.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.三、解答题13.(2015春•扬中市校级月考)计算(1); (2).14.观察下列各式及其验证过程:验证:验证:=验证: =(1)按照上述两个等式及其验证过程的基本思路,猜想 (2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n ≥2)表示的等式,并给出证明.15.(2014秋•泾川县校级月考)分解因式:(1)﹣4x 2yz ﹣12xy 2z+4xyz ;(2)ax 2﹣4ax+4a ;(3)x 2﹣5x+6;(4)(b ﹣a )2﹣2a+2b ;(5)(a 2+b 2)2﹣4a 2b 2.16. A 、B 两地路程为150千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B 后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A 地,求甲车原来的速度和乙车的速度.【答案与解析】一、选择题1.【答案】B ;【解析】同底数幂的乘法法则是底数,不变指数相加,而除法可能转化为乘法进行,幂的乘方是底数不变,指数相乘.A 项结果应等于5x ,C 项结果应等于64x ,而D 项无法运算.2.【答案】C ;【解析】原式=11==22⨯⨯201120112011()22(2)22. 3.【答案】选D ;【解析】原式按多项式乘法运算后为2()4ab a b -++,再将,4a b m ab +==-代入,可得-2m .4.【答案】C ;【解析】开方的结果必须为非负数.5.【答案】B ;【解析】将括号内的式子分别通分.6.【答案】B ;【解析】(1)第一个图需三角形6个,第二个图需三角形9,第三个图需三角形12,第四个图需三角形15,第五个图需三角形18,…第n 个图需三角形3(n+1)枚.∴第100个图形有3(100+1)=303个黑色的小三角形.故选:B .二、填空题7.【答案】1;【解析】 ∵ 22x a 与313x a --是同类项,∴ 231x x =-,解得x =1.8.【答案】6;﹣2x+3. 【解析】=6;∵x+|x﹣1|=1,∴|x﹣1|=﹣(x ﹣1),∴x﹣1≤0,∴x≤1,∴原式=|x ﹣1|+|2﹣x|=﹣(x ﹣1)+2﹣x=﹣x+1+2﹣x=﹣2x+3.故答案为:6;﹣2x+3.9.【答案】③;【解析】因为:B=xx -++2121 =424222-+---x x x x =442--x =-A 故选③.10.【答案】【解析】∵02≥-a ,∴2a ≤0,而2a ≥0,∴a =0, ∴原式=282-=-11.【答案】)2)(2)(2(2-++x x x ;【解析】观察多项式44-x ,发现其有平方差公式特点,所以可以使用平方差公式进行因式分解.需要注意要将因式分解在实数范围内进行到底,且不可半途而废.12.【答案】3张;【解析】本题考查的相关知识有整式的乘法,乘法公式,数形结合思想.解答思路:可由面积相等入手,图形拼合前后面积不变,所以(a +2b) (a +b)=a 2+3ab+2b 2.三、解答题13.【答案与解析】解:(1)原式= ÷= •=;(2)原式=•(﹣)•3•==.14.【答案与解析】.验证(2)由题设及(1)的验证结果,•可猜想对任意自然数n(n≥2)都有:证明:∵n,∴15.【答案与解析】解:(1)﹣4x2yz﹣12xy2z+4xyz=﹣4xyz(x+3y﹣1);(2)ax2﹣4ax+4a=a(x2﹣4x+4)=a(x﹣2)2;(3)x2﹣5x+6=(x﹣2)(x﹣3);(4)(b﹣a)2﹣2a+2b=(b﹣a)2﹣2(a﹣b)=(a﹣b)(a﹣b﹣2);(5)(a2+b2)2﹣4a2b2=(a2+b2﹣2ab)(a2+b2+2ab)=(a﹣b)2(a+b)2.16.【答案与解析】设甲车原来的速度为千米/时,乙车的速度为千米/时,据题意得:解得经检验为方程组的解,并且符合题意.答:甲车原来的速度为45千米/时,乙车的速度为30千米/时.。
初中数学总复习基础知识梳理第一专题数与式本专题包括:有理数(七上第二章)用字母表示数(七上第三章)整式(七下第一章)实数(八上第二章)因式分解(八下第二章)分式(八下第三章)有理数与实数:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
算术根的性质:2a =a ;⎩⎨⎧<-≥==)0()0(2a a a aa a(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
2024年北京师范大学附属中学中考第一次模拟考试数学试题一、单选题(24分)1. 十二边形的外角和为( )A. B. C. D.2. 截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A. B. C. D.3. 小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高6分,第三次比第二次低10分,第四次又比第三次高12分.那么这四次测验的平均成绩是( )A. 90分B. 85分C. 分D. 81分4. 在下列这四个标志中,属于轴对称图形是( )A. B. C. D.5. 图中表示被撕掉一块的正边形纸片,若,则的值是( )A. B. C. D. 6. 下列计算正确的是( )A. B. C. D. 7. 已知关于x 的不等式的解集在数轴上的表示如图所示,则m 的值为( )A. B. -1 C. 1 D.8. 如图,是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b 2>4ac ②2a+b=0 ③c﹣a<0 ④若点B (﹣4,y 1)、C (1,y 2)为函数图象上的两点,则y 1<y 2,其中正确结论是( )的30︒150︒360︒1800︒723.910⨯82.3910⨯92.3910⨯90.23910⨯87.5n a b ⊥n 57810628a b ab+=428a a a ⋅=()222ab a b =()426b b =34x mx +>-12-12A. ②④B. ②③C. ①③D. ①④二、填空题(24分)9.方程的解为______.10. 分解因式:=__________________.11. 若代数式有意义,则实数x 的取值范围是______.12. 点、、都在反比例函数的图像上,则、、的大小关系是________.13. 如果分式的值为,则的值是_____.14. 学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G 所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要______分钟.15. 如图,是的半径,是的弦,于点D ,是的切线,交的延长线于点E .若,,则线段的长为______.31512x x=+23x y y -52x -()13,A y -()21,B y -()31,C y ()0ky k x=<1y 2y 3y ()22x x x --0x OA O BC O OA BC ⊥AE O AE OC 45AOC ∠=︒2BC =AE16. 如图,正方形的边长为2,点是边上的动点,连接、,将绕点顺时针旋转得到,将绕点逆时针旋转得到,连接,则线段的取值范围为____________________.三、解答题17. 已知,求代数式的值.18. 解不等式组:.19. 如图,在中,点E ,F 分别在,上,,.(1)求证:四边形是矩形;(2),,,求的长.20. 抖音直播卖货一成为一些商家重要的销售手段,同时也为政府销售农产品提供了一个新的销售平台. 某县为帮助本县的花椒种植户销售花椒,在某电商在平台上对本县一花椒种植户的袋装(500g/袋)花椒面进行直播销售. 该袋装花椒各种成本为20元/袋,如果按40元/袋销售,每天可卖出2000袋,通ABCD E AB ED EC ED E 90︒EN EC E 90︒EM MN MN 210x y +-=222444x yx xy y +++23535x x x x+⎧>⎪⎨⎪-<+⎩ABCD Y BC AD BE DF =AC EF =AECF AE BE =2AB =1tan 2ACB ∠=BC过市场调查发现,每袋烙锅辣椒面售价每降低1元,日销售量可增加200袋(1)若要每天获利43200元,商家又要尽快销售完所有花椒,每袋售价降价多少元?(2)该花椒种植户在线上销售的同时,也在线下实体店售卖同时销售,标价为50元/袋.为提高市场竞争力,增加线下销售量,种植户决定打折销售,但其售价不低于(1)中的售价又不高于45元,则线下销售价格的最少可以打几折?最多可以打几折?21. 如图,直线与双曲线交于、两点,且点的坐标为.(1)求双曲线与直线的解析式;(2)求点的坐标;(3)若,直接写出的取值范围.22. 南昌统计信息网中,发布了2019年02季度、03季度本市农产品生产者价格指数的相关数据,如下表:指标名称02季度03季度增长幅度农产品生产者价格指数103.596.1农业产品95.293.2a 谷物8890.1b蔬菜/食用菌101.997.6水果/坚果85.589.1 3.3饲养动物及其产品113.7100.313.4畜禽产品94.495.41.0y x b =+()0ky k x=≠A B A ()2,3B kx b x+>x 7.4-4.3-牛奶92.5910禽蛋96.499.1 2.7渔业产品94.598.84.3解决下列问题:(1)表中a 的值为_______,b 的值为_______;(2)03季度与02季度相比,各项指标中变化幅度最小的是哪类产品?(3)小红说:“蔬菜/食用菌和渔业产品这两类产品的增长幅度相同”,你认为小红的说法是否正确,请说明理由.23. 小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD ,小亮通过操控器指令无人机测得桥头B ,C 的俯角分别为∠EAB =60°,∠EAC =30°,且D ,B ,C 在同一水平线上.已知桥BC =30米,求无人机飞行的高度AD .(精确到0.01≈1.414)24. 图,在矩形中,为的中点,连接,.(1)求证:;(2)若,求的度数.25. 若a 、b 、c 都是有理数,,且,求的值.26. 如图,为线段上的一个动点,分别过点,作,,连接,.已知,,,设..1.5-ABCD M AD MB MC ABM DCM ∠=∠70BMC ∠=︒ABM ∠4,9,6a b c ===0,0ab bc ><()a b c ---C BD B D AB BD ⊥ED BD ⊥AC EC 5AB =1DE =8BD =CD x =(1)用含代数式表示的长;(2)请问:点满足什么条件时,的值最小?求出这个最小值.(3)根据(2的最小值.27. 如图,圆内接四边形的对角线,交于点,平分,.(1)求证平分,并求的大小;(2)过点作交的延长线于点.若,,求此圆半径的长.28 已知抛物线与轴交于点和点两点,与轴交于点.(1)求此抛物线的函数表达式;(2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.①如图1,若点在第三象限,且,求点的横坐标;②如图2,直线交直线于点,当点关于直线对称点落在轴上时,直接写出四边形的周长.的.的x AC CE +C AC CE ++ABCD AC BD E BD ABC ∠BAC ADB ∠=∠DB ADC ∠BAD ∠C CF AD ∥AB F AC AD =2BF =294y ax x c =++x ()1,0A B y ()0,3C -P A B C PD x ⊥D PC P 45CPD ∠=︒P PD BC E E PC E 'y PECE '。
实数的有关概念◆【基础知识回顾】 1. 12-的倒数为( ) A .12B .2C .2-D .1-2.某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( ) A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 3.如果向东走80 m 记为80 m ,那么向西走60 m 记为( )A .-60 mB .︱-60︱mC .-(-60)mD .601m 4.2-的相反数是( )A .2B .2-C .12D .12-5.-2的绝对值是__________.【参考答案】1.C 2.C 3.A 4.A 5. 2 ◆【应考知识点】⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数整数零负整数有理数实数正分数分数有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数 ⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数还可以分为零负整数负有理数负实数负分数负无理数知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义.3.会求一个数的相反数和绝对值,会比较实数的大小 .4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小. 考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、a (a≥0)之和为零作为条件,解决有关问题. ◆【复习目标】了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义.注意:(1)近似数、有效数字.如0.030是2个有效数字(3,0),精确到千分位;3.14×105是3个有效数字,精确到千位;3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.◆【应考重点例举】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方c a⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. ◆【典型例题及解析】 例1在实数-23,0,-3.14,2π,-0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即“无限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,=2是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π是无理数,而不是分数.在上面所给,2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数,故选C.例2(1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值;(2)实数a ,b ,c 在数轴上的对应点如图所示,化简 【答案】解:(1)依题意,有a+b=0,cd=1,e≠0(a+b )+12cd -2e 0=0+12-2=-32.(2)由图知a>0,b<c<0,且│b│>│a│,∴a+b<0,b -c<0,a -b -│c│-(c -b )=a -a -b+c -c+b=0. 【解析】相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第(2)•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,达到化简的目的.例3今年6月,南宁市举行了第五届泛珠三角区域经贸合作洽谈会.据估算,本届大会合同投资总额达2260亿元.将2260用科学记数法表示为(结果保留2个有效数字)( )A .32.310⨯ B .32.210⨯C .32.2610⨯D .40.2310⨯【答案】A【解析】准确把握概念.把一个数写成a×10 n的形式(其中1≤│a│<10,n 为整数),•这种记数法叫做科学记数法.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.根据题意,可知答案为A.例4若m n n m -=-,且4m =,3n =,则2()m n += . 【答案】49或1;【解析】根据绝对值的定义来进行解答. │a│=(1)(0)(0)aa a a a >⎧⎪=⎨⎪-<⎩.由题意︱m -n ︱= n -m 知道,n>m. 而︱m ︱=4, ︱n ︱=3 故m=±4,n=±3.所以m=-4,n=3或m=-4,n=-3.故(m+n )2=1或49.例5已知x 、y+(y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( )A .14 B .-14 C .74 D .-74【解答】(y -3)2=0∴3x+4=0,y -3=0 ∴x=-43,y=3. ∵axy-3x=y , ∴-43×3a-3×(-43)=3∴a=14∴选A【解析】 若几个非负数之和等于零,则每个非负数均等于零.这是非负数具有的一个y -3)2均为非负数,它们的和为零,只有3x+4=0,且y-3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值. ◆【09年中考题分类汇编】 一、选择题1.(2009年河南省)-5的相反数是( )A .15B .15-C .-5 D.52.(2009年广东梅州)12-的倒数为( ) A .12B .2C .2-D .1-3.(2009年湖北咸宁)4-的绝对值是( )A .4-B .14-C .4D .144.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元5.(2009年内蒙古包头)国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米6.(2009年四川绵阳)如果向东走80 m 记为80 m ,那么向西走60 m 记为( )A .-60 mB .︱-60︱mC .-(-60)mD .601m 7.(2009年山西太原)在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .48.(2009年湖北襄樊)A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B点,则B 点所表示的数为( )A .3-B .3C .1D .1或3-9.(2009年湖北宜昌)如果+20%表示增加20%,那么-6%表示( ).A .增加14%B .增加6%C .减少6%D .减少26% 10.(2009年内蒙古包头)27的立方根是( )A .3B .3-C .9D .9-11.(2009年黑龙江哈尔滨)36的算术平方根是( ).A.6B.±6C.6D.±6 二、填空题1.(2009年湖南邵阳)-2的绝对值是__________.2.(2009年青海)15-的相反数是 ;立方等于8-的数是 .3.(2009年湖北黄冈)13-=_________;0(=_________;14-的相反数是_________.4.(2009年湖南怀化)若()2240a c --=,则=+-c b a . 5.(2009年福建泉州)宝岛台湾的面积约为36 000平方公里,用科学记数法表示约 为 平方公里.6.(2009年山西省)山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .【参考答案】 选择题 1. D 2. C 3. C 4. A5. D 【解析】本题考查科学记数法和有效数字,将一个数用科学记数法表示为()10110na a ⨯≤<的形式,其中a 的有效数字就是10na ⨯的有效数字,且n 等于这个数的整数位数减1。
第一章《数与式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分) 1.-13的相反数是(B )A .-13 B.13C .-3D .3【解析】 根据相反数的定义,可得13是-13的相反数.2.某种细胞的直径是0.00000095 m ,将0.00000095用科学记数法表示为(A )A .9.5×10-7B .9.5×10-8C .0.95×10-7D .95×10-5 【解析】 0.00000095=9.5×10-7. 3.关于12的叙述,错误的是(A ) A.12是有理数B .面积为12的正方形的边长为12 C.12=2 3D .在数轴上可以找到表示12的点 【解析】12是无理数,故选A.4.已知点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①b -a <0;②a +b >0;③|a |<|b |;④ba>0.其中正确的是(C )(第4题)A .①②B .③④C .①③D .②④ 【解析】 由题意,得b <-3<0<a <3,且|b |>|a |, ∴b -a <0,a +b <0,ba<0,故①③正确,②④错误.5.能说明“对于任何实数a ,|a |>-a ”是假命题的一个反例可以是(A ) A .a =-2 B .a =13 C .a =1 D .a = 2【解析】 若|a |>-a ,则|a |+a >0,此时a >0. ∴当a ≤0时,|a |>-a 不成立,∴反例只要是非正数都可以. 6.下列计算正确的是(B )A .2a +3b =5abB.8+2=3 2C .(-2a 2b )3=-6a 6b 3D .(a -b )2=a 2-b 2【解析】 A .2a 与3b 不是同类项,不能合并,故此选项错误. B.8+2=22+2=32,故此选项正确. C .(-2a 2b )3=-8a 6b 3,故此选项错误. D .(a -b )2=a 2-2ab +b 2,故此选项错误.7.已知实数a ,b 在数轴上对应的点的位置如图所示:(第7题)化简a 2+(a +b )2-(2a -b )2的结果是(B ) A. a B. -2b C. -3a D. -a +2b【解析】 从数轴中可知a <-1,0<b <1,∴a +b <0,2a -b <0,∴原式=-a -(a +b )+(2a -b )=-2b .8.若⎝⎛⎭⎫4a 2-4+12-a ·W =1,则W =(D )A. a +2(a ≠±2)B. -a +2(a ≠±2)C. a -2(a ≠±2)D. -a -2(a ≠±2) 【解析】根据题意,得W =14(a +2)(a -2)-a +2(a +2)(a -2)=1a -2-(a +2)(a -2)=-(a +2)=-a -2.9.用大小相等的正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是(C )(第9题)A .2n +1B .n 2-1C .n 2+2nD .5n -2【解析】易知第1个图形小正方形的个数是22-1=3,第2个图形小正方形的个数是32-1=8,第3个图形小正方形的个数是42-1=15,……依此类推,第n个图形小正方形的个数是(n+1)2-1=n2+2n.10.如图①,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为(B)(第10题)A. 2a-3bB. 4a-8bC. 2a-4bD. 4a-10b【解析】根据题意,得2[a-b+(a-3b)]=4a-8b.二、填空题(每小题3分,共24分)11.若分式2x-3有意义,则x的取值范围是__x≠3__.【解析】x-3≠0,∴x≠3.12.把多项式16m3-mn2分解因式的结果是m(4m+n)(4m-n).【解析】16m3-mn2=m(16m2-n2)=m(4m+n)(4m-n).13.若a+b=4,ab=2,则(a-b)2=__8__.【解析】(a-b)2=(a+b)2-4ab=42-4×2=8.14.设一列数中相邻的三个数依次为m,n,p,且满足p=m2-n,若这列数为-1,3,-2,a,-7,b,…,则b=__128__.【解析】由p=m2-n,得a=32-(-2)=11,∴b=112-(-7)=121+7=128.15.已知a2-4a+4+|b-3|+a-2b+c=0,则(bc)a=__144__.【解析】 a 2-4a +4+|b -3|+a -2b +c =0,(a -2)2+|b -3|+a -2b +c =0,∴a -2=0,b -3=0,a -2b +c =0, ∴a =2,b =3,c =4, ∴(bc )a =(3×4)2=144. 16.若关于x 的方程2x -2+x +m 2-x=2的解为正数,则m 的取值范围是__m <6且m ≠0__. 【解析】 原方程去分母,得2-x -m =2(x -2),解得x =2-m3.∵原方程的解为正数,∴2-m3>0,解得m <6.又∵x ≠2,∴2-m3≠2,解得m ≠0.综上所述,m <6且m ≠0.17.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ,第1次Fy 1=2x x +1,第2次Fy 2=2y 1y 1+1,第3次Fy 3=2y 2y 2+1,…F(第17题)则第n 次运算的结果y n =2n x(2n -1)x +1(用含字母x 和n 的代数式表示).【解析】 将y 1=2x x +1代入y 2=2y 1y 1+1,得y 2=2×2xx +12x x +1+1=4x3x +1.将y 2=4x 3x +1代入y 3=2y 2y 2+1,得y 3=2×4x 3x +14x 3x +1+1=8x7x +1.……依此类推,第n 次运算的结果y n =2n x(2n -1)x +1.18.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a +b )n (n =1,2,3,4,…)的展开式的系数规律(按a 的次数由大到小的顺序):1 1(a +b )1=a +b 12 1(a +b )2=a 2+2ab +b 213 3 1(a +b )3=a 3+3a 2b +3ab 2+b 31 4 6 4 1(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4……(第18题)根据上述规律,可知⎝⎛⎭⎫x -2x 2016的展开式中含x 2014项的系数是__-4032__.【解析】 由规律可知,⎝⎛⎭⎫x -2x 2016的展开式中含x 2014项就是展开式中的第二项,即2016x 2015·⎝⎛⎭⎫-2x 1=-4032x 2014,∴系数是-4032.三、解答题(共66分) 19.(12分)计算:(1)2×[5+(-2)3]-(-|-4|÷2-1).【解析】 原式=2×(5-8)-⎝⎛⎭⎫-4÷12=-6-(-8)=2. (2)(-1)2017-|-2|+(3-π)0×38+⎝⎛⎭⎫14-1.【解析】 原式=-1-2+1×2+4=3.(3)-32+8+|1-2|-4sin 30°+318-4cos 45°.【解析】 原式=-9+2 2+2-1-4×12+12-4×22=-9+3 2-1-2+12-22=2-232.20.(6分)已知4x =3y ,求代数式(x -2y )2-(x -y )(x +y )-2y 2的值. 【解析】 原式=x 2-4xy +4y 2-x 2+y 2-2y 2 =-4xy +3y 2.∵4x =3y ,∴原式=-3y 2+3y 2=0. 21.(6分)先化简,再求值:⎝⎛⎭⎫a a +2+1a 2-4÷a -1a +2+1a -2,其中a =2+ 2. 【解析】 原式=a (a -2)+1a 2-4·a +2a -1+1a -2=(a -1)2(a -2)(a -1)+1a -2=a a -2.当a =2+2时,原式=2+22=2+1.22.(6分)小明解方程1x -x -2x =1的过程如图所示,请指出他解答过程中的错误,并写出正确的解答过程.(第22题)【解析】 小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.正确解法如下:方程两边同乘x ,得1-(x -2)=x . 去括号,得1-x +2=x . 移项,得-x -x =-1-2.合并同类项,得-2x =-3,解得x =32.经检验,x =32是原方程的解,∴原方程的解为x =32.23.(8分)如图为4×4的网格(每个小正方形的边长均为1)与数轴.(第23题)(1)求出图①中阴影部分的面积.(2)求出图①中阴影部分正方形的边长. (3)在图②的数轴上作出表示8的点A . 【解析】 (1)S 阴影=4×4×12=8.(2)边长=8=2 2.(3)在数轴上画边长为2的正方形,以原点为圆心、对角线长为半径画弧,交x 轴正半轴于点A ,则点A 即为表示8的点(画图略).24.(8分)若a ,b 为实数,且满足|a -1|+ab -2=0,求1ab +1(a +1)(b +1)+1(a +2)(b +2)+…+1(a +2014)(b +2014)的值.【解析】 ∵|a -1|+ab -2=0,∴a =1,ab =2,∴b =2,∴原式=11×2+12×3+…+12015×2016=1-12+12-13+…+12015-12016=1-12016=20152016.25.(10分)(1)已知a ,b ,c 为△ABC 的三边长,且满足关系式a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.(2)若a ,b ,c 是△ABC 的三边长,且满足关系式a 2+b 2+c 2-ab -ac -bc =0,试判断△ABC 的形状.(3)已知△ABC 的三边长分别为a ,b ,c ,且a =m 2-n 2,b =2mn ,c =m 2+n 2(m >n ,且m ,n 都是正整数),则△ABC 是直角三角形吗?请说明理由.【解析】 (1)∵a 2c 2-b 2c 2=a 4-b 4,且a ,b ,c 都是正数, ∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2), ∴(a 2+b 2)(a 2-b 2)-c 2(a 2-b 2)=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0, ∴a =b 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.(2)a 2+b 2+c 2-ab -ac -bc =0可配方成12[(a -b )2+(b -c )2+(a -c )2]=0,故a =b =c ,∴△ABC 为等边三角形.(3)是.理由:∵a 2+b 2=(m 2-n 2)2+(2mn )2=m 4-2m 2n 2+n 4+4m 2n 2=m 4+2m 2n 2+n 4=(m 2+n 2)2=c 2,∴△ABC 为直角三角形.26.(10分)阅读材料:把形如ax 2+bx +c 的二次三项式(或其中某一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a 2±2ab +b 2=(a ±b )2.例如:(x -1)2+3,(x -2)2+2x ,⎝⎛⎭⎫12x -22+34x 2是x 2-2x +4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据材料解决下列问题:(1)比照上面的例子,写出x 2-4x +2的三种不同形式的配方. (2)将a 2+ab +b 2配方(至少两种形式).(3)已知a 2+b 2+c 2-ab -3b -2c +4=0,求a +b +c 的值.【解析】 (1)①x 2-4x +2=(x 2-4x +4)-2=(x -2)2-2.②x 2-4x +2=(x 2-2 2x +2)+(2 2-4)x =(x -2)2+(2 2-4)x . ③x 2-4x +2=[(2x )2-4x +2]-x 2=(2x -2)2-x 2. (2)(a +b )2-ab或⎝⎛⎭⎫a +12b 2+34b 2或⎝⎛⎭⎫12a +b 2+34a 2. (3)由已知等式可得⎝⎛⎭⎫a -b 22+3⎝⎛⎭⎫b 2-12+(c -1)2=0,∴⎩⎪⎨⎪⎧a =1,b =2,c =1,∴a +b +c =4.。
第一章单元综合测试一、单选题1.已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( ) A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形2.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4 3.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF BD ⊥于F ,EG AC ⊥与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .65.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( )A .310B .13C .25D .496.如图,正方形ABCD 的边长8AB =,E 为平面内一动点,且4AE =,F 为CD 上一点,2CF =,连接EF ,ED ,则2EF ED +的最小值为( )A .B .C .12D .10二、填空题7.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=________.8.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为________.9.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=________.10.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是________度.三、作图题11.在正方形ABCD 中,E 是CD 边上的点,过点E 作EF BD ⊥于F .(1)尺规作图:在图中求作点E ,使得EF EC =;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC ,求BCF ∠的度数.四、综合题12.如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF AC ⊥,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若32OE =,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.13.如图,在ABC △中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:A BDE F E △≌△;(2)求证:四边形ADCF 为矩形.14.如图,四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.15.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,且EBF △是等腰直角三角形,其中90EBF ∠=︒,连接CE 、CF(1)求证:ABF CBE △≌△;(2)判断CE 与EF 的位置关系,并说明理由.16.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:HEA CGF ∠∠=;(2)当AH DG =时,求证:菱形EFGH 为正方形.第一章单元综合测试答案解析一、 1.【答案】B【解析】∵四边形ABCD 是平行四边形,OA OC =∴,OB OD =,故A 正确,∵四边形ABCD 是平行四边形,AB CD =,不能推出四边形ABCD 是菱形,故B 错误,∵四边形ABCD 是平行四边形,90ABC ∠=︒, ∴四边形ABCD 是矩形,故C 正确,∵四边形ABCD 是平行四边形,AC BD =,AC BD ⊥, ∵四边形ABCD 是正方形.故D 正确.故答案为:B . 2.【答案】B【解析】∵四边形ABCD 是菱形,8AC =,6BD =,142CO AC ==∴,132OD BD ==,AC BD ⊥,5DC =∴,90EOC DOE ∠+∠=︒,90DCO ODC ∠+∠=︒,OE CE =∵,EOC ECO ∠=∠∴,DOE ODC ∠=∠∴,DE OE =∴,1522OE CD ==∴故答案为:B . 3.【答案】B【解析】∵四边形ABCD 是菱形,OA OC =∴,OB OD =,AC BD ⊥,12S AC BD =⨯, EF BD ⊥∵于F ,EG AC ⊥于G ,∴四边形EFOG 是矩形,EF OC ∥,EG OB ∥,∵点E 是线段BC 的中点,EF ∴、EG 都是OBC △的中位线,1124EF OC AC ==∴,1124EG OB BD ==,∴矩形EFOG 的面积11111=44828EF EG AC BD AC BD S ⎛⎫=⨯=⨯=⨯⨯ ⎪⎝⎭;答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
20XX 年北师大版数学中考复习一 数与式【典型例题1】例1. 如果收入200元记作+200元,那么支出150元记作( ) A. +150元 B. –150元 C. +50元 D. –50元例2. 点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( ) A. 3 B. –1 C. 5 D. –1或3 例3. |-3|的相反数是( ) A. –3 B. 3 C. 31D.31-例4. 下列计算正确的是( )A. 416±=B. 12223=-C.4624=÷D.2632=⋅例5. 将302)3()2()30sin (--︒--,,这三个实数按从小到大的顺序排列,正确的结果是( )A. 302)3()2()30sin (-<-<︒-- B. 032)2()3()30sin (-<-<︒-- C. 203)30sin ()2()3(-︒-<-<-D. 230)30sin ()3()2(-︒-<-<-例6. 据20XX 年5月27日《沈阳日报》报道,“五·一”黄金周期间20XX 年沈阳“世园会”的游客接待量累计1760000人次,用科学记数法表示为( )A. 410176⨯人次B. 3106.17⨯人次C. 61076.1⨯人次D. 710176.0⨯人次 例7. 下列计算错误的为( )A. 22a 4)a 2(=-B. 523a )a (=C. 120= D.8123=-例8. 有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A. 8B. 22C. 32D. 23例9. 如图所示,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律___________。
例10. 计算:02)36(|221|8)3(----+--。
例11. 先化简,再求值:1x 4x )1x 151x (--÷--+,其中425x -=。
【模拟试题】一、选择题1. 下表是5个城市的国际标准时间(单位:时),那么北京时间20XX 年6月17日上午9时应是( ) A. 伦敦时间20XX 年6月17日凌晨1时B. 纽约时间20XX 年6月17日晚上22时C. 多伦多时间20XX 年16日晚上20时D. 汉城时间20XX 年6月17日上午8时2. 下列计算正确的是( ) A. –3+2=1 B. |-2|=-2C. 3×(-3)=-9D. 20-1=13. –0.5的倒数是( )A. 21-B. 21C. –2D. 24. 下列四个数据,精确的是( ) A. 小莉班上有45人B. 某次地震中,伤亡10万人C. 小明测得数学书的长度为21.0cmD. 吐鲁番盆地低于海平面大约155m 5. 估算324+的值是( ) A. 在5和6之间 B. 在6和7之间C. 在7和8之间D. 在8和9之间6. 根式2)3(-的值是( ) A. –3 B. 3或-3C. 3D. 97. 计算23x )x (⋅-的结果是( )A. 5xB. 6xC. 5x -D. 6x -8. 把代数式x 9xy 2-分解因式,结果正确的是( )A. )9y (x 2- B. 2)3y (x +C. )3y )(3y (x -+D. )9y )(9y (x -+9. 小王利用计算机设计了计算程序,输入和输出的数据如下:那么,当输入数据为8时,输出的数据是( )A. 618B. 638C. 658D. 67810. 根据下表中的规律,从左到右的空格中应依次填写的数字是( )A. 100,011B. 011,100C. 011,101D. 101,110二、填空题1. 在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________。
2. 21-的倒数是__________。
3. 用“”定义新运算:对于任意实数a ,b ,都有a b=b 2+1。
例如,74=42+1=17,那么53=_________;当m 为实数时,m (m 2)=__________。
4. 我们常用的数是十进制的数,而计算机程序处理中使用的是只有数码0和1的二进制数。
这两者可以相互换算,如将二进制数1101换算成十进制数应为13212021210123=⨯+⨯+⨯+⨯,按此方法,则将十进制数25换算成二进制数应为__________。
5. 用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n 个图案中正方形的个数是__________。
6. 若x=2,则3x81的值是__________。
7. 今年1~5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到__________。
8. 计算312-的结果是__________。
9. 某天傍晚,北京的气温由中午的零上3℃下降了5℃,这天傍晚北京的气温是__________。
10. 如图所示,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有___________个。
三、解答题1. 计算:1 0)31()2(4|3|---+--。
2. 在下面两个集合中各有一些实数,请你分别从中选出2个有理数和2个无理数,再用“+,-,×,÷”中的3种符号将选出的4个数进行3次运算,使得运算结果是一个正整数。
3. 先化简,再求值:1xx1xxx2+÷+-,其中12x+=。
4. 对于试题:“先化简,再求值:x111x3x2----,其中x=2。
”某同学写出了如下解答:解:x111x3x2----2x21x3x)1x(3x)1x)(1x(1x)1x)(1x(3x1x1)1x)(1x(3x-=++-=+--=-++--+-=---+-=当x=2时,原式=2×2-2=2。
她的解答正确吗?如不正确,请你写出正确解答。
5. 课堂上,李老师给大家出了这样一道题:当x=3,37225+-,时,求代数式1x2x21x1x2x22+-÷-+-的值。
小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程。
【典型例题2】例 1. 实数a ,b ,c ,d 在数轴上的对应点如图所示,则它们从小到大的顺序是____________________。
a b d c +=+=;;c b ad -=-=;例2. 把下列各数填到相应的集合里: 7515491723270310153... ,,,,,,,,--π 整数集合:{ } 分数集合:{ } 有理数集合:{ } 无理数集合:{ } 例3. ()若,求34430220032004a b a b ++-=. 例4. 已知实数a 、b 在数轴上对应点的位置如图:()化简:a b a b -++=2例5. 在张江高科技园区的上海超级计算机中心内,被称为“神威I ”的计算机的运算速度为每秒384000000000次,这个速度用科学记数法表示为每秒_________次。
例6. 计算:()11212181513⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪⨯---- ()()()()222456045211cos sin ︒-︒+----π例7. ()()[]()计算:-⨯+⨯--⨯-÷--⎡⎣⎢⎤⎦⎥3232469232 例8. (20XX 年·北京海淀区)x y 、是实数,,若,则实数的值是3469032x y y axy x y a ++-+=-= ( )A B C D ....14147474--例9.(48-814)-(313-5.02); 例10 解下列方程(每小题8分,共32分):1.132543297=-----x x x x ; 2. x x x --=+-21321;3. 32421132+-=---x x x x ; 【典型例题3】例1 20XX 年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行 (用科学记数法表示,结果保留三个有效数字) ( )A .4.28×104千米B .4.29×104千米C .4.28×105千米D .4.29×105千米例2若2)a 与1b -互为相反数,则2a b -的值为 .例3设a =a 在数轴上对应的点的大致位置是 ( )A . BC .D .例4 扑克牌游戏:小明背对小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆不少于两张,且各堆牌的张数相同; 第二步:从左边一堆拿出两张,放入中间一堆; 第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 .例5 下列计算中,正确的是A .235a b ab +=B .33a a a ⋅=C .623a a a ÷=D .222()ab a b -= 例6 如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形,通过计算两个图形的面积, 验证了一个等式,这个等式是 ( )A .()()22a b a b a b -=+- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()()2222a b a b a ab b +-=+-例7 观察下列各等式:2622464+=--,5325434+=--,7127414+=--,aba bb图1102210424-+=---,…….依据以上各等式成立的规律,在括号内填入适当的数,使等式20()2204()4+=--成立.例8 小红家春天粉刷房间,雇佣了5个工人,干了10天完成;用了某种涂料150升,费用为4800元;粉刷面积为150平方米.最后结算工钱时,有以下几种方案:方案一:按工算,每个工30元(一个工人干一天是一个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元.请你帮助小红家出主意,选择方案 付钱最合算(最省). 【巩固提高】 一、填空题1.早春二月的某一天,我省南部地区的平均气温为-3℃,北部地区的平均气温为-6℃,则当天南部地区比北部地区的平均气温高 ℃.2.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是 吨.3.某下岗职工购进一批苹果,到集贸市场零售.已知卖出的苹果重量x (千克)与售价y试写出用x 的关系式.4.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…….这些等式反映出自然数间的某种规律.设n 表示自然数,试用关于n 的等式表示出你所发现的规律: .5_ _______.6.如果每人每天浪费1粒大米,全国13亿人口,每天大约要浪费 吨大米(1克大米约52粒).7.如图所示,如果横行的两个数字之和相等,竖列上的两个数字之和相等,那么a ,b ,c ,d 依次可为 (只填写一组你认为适合的数字即可).8.如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,则第(n ) 个图形中需用黑色瓷砖 块.(用含n 的代数式表示)…… 9.多项式142+x 加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是 (填上你认为正确的一个即可,不必考虑所有的可能情况).第7题第8题10.当x = 时,分式23-x x无意义.11.若m ,n 满足0)4(22=-++n m ,分解因式)()(22n mxy y x +-+= .12.200520052)2)= .13.我们平常用十进制数,如:2639=2×103+6×102+3×101++9×100,显然十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只要两个数码0和1.如二进制中,101=1×22+0×21+1×20等于十进制的数5,那么二进制中的1101等于十进制的数 .14.某种型号的拖拉机,原来平均每小时耗油x 升,经技术改造后,现在平均每小时耗油减少2升,那么容量为m 升的油箱装满油后,比原来多工作 小时. 二、选择题1.蜗牛前进的速度每秒只有1.5毫米,恰好是某人步行速度的1000分之一,那么此人步行的速度大约是每小时 ( ) A .9千米 B .5.4千米 C .900米 D .540米2.如果实数a 与b 互为相反数,则a 、b 一定满足. ( )A .ab = 1B .ab = -1C .a + b = 0D .a -b = 03.一个点从数轴上原点开始,先向右移动2个长度单位,再向左移动3个长度单位,这时它表示的数是 ( ) A .2 B .-2 C .1 D .-14.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有 ( ) A .0个 B .1个 C .2个 D .3个5.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为 ( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米6.n 个学生按五人一组,分成若干组,其中有一组少1人,则共有组数为 ( )A .15-nB .51-nC .51+nD .不能确定7.若0<a <1,则a a a 12、、之间的大小关系为 ( ) A .21 a a a >> B .a a a 12>> C .a a a >>21D .不能确定8.如果把y x x+中的x 和y 都扩大两倍,那么这个代数式的值为 ( )A .扩大两倍B .不变C .缩小两倍D .以上都不对9.不论x 取什么值时,下列分式一定有意义的是 ( )A .x x 12-B .11+-x xC .1-x xD .11+-x x10. 在数轴上,a 位于2的左边,b 位于2的右边,则4ab +与22a b +的大小关系是( )A .4ab +>22a b +B .4ab +=22a b +C .4ab +<22a b +D .无法比较大小三、解答题:1.比较下列各组算式结果的大小(在横线上选填“>”、“<”、“=”):3423422⨯⨯+ ; 1)2(2 1)2(22⨯-⨯+-;2122 )21()2(22⨯⨯+; 2222222⨯⨯+;…… 通过观察归纳,写出能反映这种规律的一般结论,并说明你的理由.2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300米处,商场在学校西200米处,医院在学校东500米处.若将马路近似地看作一条直线,以学校为为原点,向东为正方向,用1个单位长度表示100米. (1)在数轴上表示出四家公共场所的位置; (2)列式计算青少年宫与商场之间的距离.3.某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.三次降价处理(2)该商店按新销售方案,相比原价全部售完,哪一种方案更盈利?4.请你先化简下式,再选取一个使原式有意义,而你又喜爱的数代入求值.112223+----x x x x x x5.阅读下列题目的计算过程:)()( )()(D 1 C 223 B )1(23 A )1)(1()1(2)1)(1(312132⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯--=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+--=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯---=⋯⋯⋯⋯⋯⋯⋯⋯-+---+-=+---x x x x x x x x x x x x x x1.上述计算过程,从哪一步开始出现错误?请你写出该步的代号;2.错误的原因是;3.本题目正确的结论是.6.n7.观察点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;……①211=②2132+=③21353++=④⑤.……(2)通过猜想写出与第n个点阵相对应的等式.8.在公式12)1(22++=+aaa中,当a分别取1,2,3,…,n时,可得下列n个等式:1121)11(22+⨯+=+,1222)12(22+⨯+=+,1321)13(22+⨯+=+,……,12)1(22+⨯+=+nnn.将这个n等式的左右两边分别相加,可推导出求和公式1+2+3+…+n=?请你将推导过程写出来.第。