探究一
探究二
探究三
探究四
错因分析:由基本不等式得到 u=ax+by+cz≤5 是正确的,但这只
是能说明 u 的最大值有小于或等于 5 两种可能,并不能得出 u 的最大
值一定是 5.事实上,如果 u 的最大值为 5,错解中的三个不等式应同时
取“=”,于是 a=x,b=y,c=z,从而得出 a2+b2+c2=x2+y2+z2,即 t=5,这是不
=
������������时,等号成立,此时
u=ax+by+cz
的最大值为
3,从
而 t 的最小值为 3.
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
12345
1.已知 x,y,z>0,且 x+y+z=1,则 x2+y2+z2 的最小值是(
.
解析:由柯西不等式,得(12+12+12)(a2+4b2+9c2)≥(a+2b+3c)2,即a2+4b2+9c2≥12,当a=2b=3c=2时,等号成立,所
以a2+4b2+9c2的最小值为12.
答案:12
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
x=251,y=-1,z= 159或
x=-151,y=-3,z=151
时等号成立.
∴25×1≥(x+y+z-2)2.