人教A版高中数学必修二精品教案集平面
- 格式:doc
- 大小:114.27 KB
- 文档页数:3
人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。
旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。
对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。
第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。
2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。
3、学生应注意知识点的归纳和总结,形成自己的知识体系。
4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。
四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。
外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。
6。
1 平面向量的概念本节课选自《普通高中课程标准数学教科书—必修第二册》(人教A 版)第六章《平面向量及其应用》,本节课是第1课时,本节课内容包括向量的实际背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念"中介绍向量的定义;在“向量的几何表示"中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等1。
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.2.教学难点:平行向量、相等向量和共线向量的区别和联系.多媒体意的,单位向量的方向具体而定.(2)注意:向量是不能比较大小的,但向量的模(是正数或零)是可以进行大小比较的。
例1。
在图中,分别用向量表示A地至B、C两地的位移,并根据图中的比例尺,并求出A地至B、C两地的实际距离(精确到1km)(三)。
相等向量与共线向量思考1:向量由其模和方向所确定.对于两个向量b a,,就其模等与不等,方向同与不同而言,有哪几种可能情形?【答案】模相等,方向相同;模相等,方向不相同;模不相等,方向相同; 模不相等,方向不相同;1.平行向量定义:[来源:学科网ZXXK]通过例题进一步理解向量的概念,提高学生用向量解决问题的能力。
通过思考,引入平行向量,提高学生的理解问题的能力。
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.2。
相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线....段的起点无关......。
《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
8.5.3 平面与平面平行第1课时平面与平面平行的判定本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第八章《立体几何初步》,本节课主要学习平面与平面平行的判定定理及其应用。
本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多。
而且是空间问题平面化的典范空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法。
本节课是在前面已经学习空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知操作确认(合情推理),归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
1.教学重点:空间平面与平面平行的判定定理;2.教学难点:应用平面与平面平行的判定定理解决问题。
多媒体一、复习回顾,温故知新1. 到现在为止,我们一共学习过几种判断直线与平面平行的方法呢? 【答案】(1)定义法;(2)直线与平面平行的判定定理2. 平面与平面有几种位置关系?分别是什么? 【答案】相交、平行3.怎样判断两平面平行? 二、探索新知1.思考:若平面α∥β,则α中所有直线都平行β吗?反之,若α中所有直线都平行β ,则α∥β吗? 【答案】平行,平行探究:如图8.5-11(1),a 和b 分别是矩形硬纸片的两条对边所在直线,它们都和桌面平行,那么都和桌面平行,那么硬纸片和桌面平行吗?如图8.5-11(2),c 和d 分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗? 【答案】硬纸片与桌面可能相交,如图,三角尺与桌面平行,如图,平面与平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 .符号表示:βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂b a P b a b a通过复习以前所学,引入本节新课。
提问回答例题练习1..二面角的概念(1)半平面:平面的一条直线把平面分为两部分,其中的每一部分都叫做一个半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.(3)二面角的画法和记法:面1-棱-面2 点1-棱-点2二面角βα--l二面角QlP--问题1:我们常说“把门开大些”,是指哪个角开大一些,我们应该怎么刻画二面角的大小?问题2:探究:用课本作模型,相邻两页书也构成二面角,活动:尝试“打开课本”为30°、90°、120°,观察是指哪个角的变化?(4)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.思考:∠AOB 的大小与点O在棱l上的位置有关吗?为什么?二面角的平面角必须满足:①角的顶点在棱上②角的两边分别在两个面内③角的边都要垂直于二面角的棱观察:教室相邻两个墙面与地面可构成几个二面角?分别指出构这些二面角的面、棱、平面角及其度数。
【答案】三个2. 平面与平面垂直的定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.记作:βα⊥图形表示:深刻二面角概念。
学生做好笔记,并理解记忆学生做好笔记,并力。
通过思考,引入二面角的平面角,提高学生分析问题、概括能力。
通过观察,由实例引入两平观察:如图,建筑工人砌墙时,如何使所砌的墙和水平面垂直?【答案】用铅锤来检测,如系有铅锤的细线紧贴墙面,认为墙面垂直与地面。
3.平面与平面垂直的判定定理如果一个平面过另一个平面的垂线,那么这两个平面垂直。
图形: 符号语言:βαβα⊥⇒⊂⊥a a , 简记:线面垂直,则面面垂直。
三、巩固知识、典型讲练练习:概念辨析.判断下列说法的对错:(1)如果平面α内有一条直线垂直于平面β内的一条直线,则α⊥β.( )(2)如果平面α内有一条直线垂直于平面β内的无数条直线,则α⊥β.( )(3)如果平面α内有一条直线垂直于平面β内的两条相交直线,则α⊥β.( )(4)若m ⊥α , m ⊂β,则α⊥β.( )例 1.在正方体D C B A ABCD ''''-中,求证:平面A C AC BD A ''⊥'平面例2.如图,AB 是圆O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的任意一点,求证:平面PAC⊥平面PBC.练习:练.已知l⊥平面α,直线m⊂平面β.有下面四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确的两个命题是()A.①②B.③④C.②④D.①③四、课堂小结1. 平面与平面垂直的判定:(1)定义(2)判定定理2.数学思想:转化思想五、布置作业习题8.6 6,7题让学生进行小结结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。
8.4.1 平面本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第三章《立体几何初步》,本节课主要学习三个基本事实及三个结论及其应用。
平面是最基本的几何概念,教材以课桌面、黑板面、海平面为例,对它只是加以描述而不不定义。
立体几何中的平面又不同于上面的例子,是上面例子的抽象和概括,它的特征是无限延展性。
为了更精准地理解平面,教材重点介绍了平面的基本性质,即教科书的三个基本事实,这也是本节的重点。
另外,本节还应充分展现三种数学语言的转换与翻译,特别注意图形语言与符号语言的转换。
1.教学重点:符号语言描述空间点、直线、平面之间的位置关系;2.教学难点:平面的画法及表示方法,三个基本事实的地位与作用。
多媒体图形语言:图形:图形语言:符号语言:7.利用基本事实1和基本事实2,再结合“两点确定一条直线”,可得下面三个推论推论1 经过一条直线和这条直线外一点,有且只有一个平面。
推论2 经过两条相交直线,有且只有一个平面。
推论3 经过两条平行直线,有且只有一个平面。
作用:确定一个平面。
例1:用符号表示下列图形中点、直线、平面之间的位置关系.解:().,,1B a A a l ===βαβα().,,,,2P l b P l a b a l ==⊂⊂= βαβα 例2. 如图,已知.//,,,,a PQ b P A b a b a ∈=⋂⊂⊂αα 求证:α⊂PQ 。
证明: ∵PQ ∥a ,∴PQ 与 a 确定一个平面β.∴直线a ⊂β,点 P ∈β. ∵P ∈b ,b ⊂α,∴P ∈α.又∵a ⊂α,∴α与β重合.∴PQ ⊂α. 用数学语言表示点、直线、平面之间的关系,提高学生数学语言的运用能力。
通过例题的讲解,让学生会证明直线与平面的位置关系,提高学生解决与分析问题的能力。
三、达标检测 1.判断正误(1)平面是处处平的面.( ) (2)平面是无限延展的.( )(3)平面的形状是平行四边形.( )(4)一个平面的厚度可以是0.001 cm.( ) 【答案】 (1)√ (2)√ (3)× (4)× 2.下列空间图形画法错误的是( )A B C D【答案】D【解析】遮挡部分应画成虚线.故D 错,选D.3.如果点A 在直线a 上,而直线a 在平面α内,点B 在平面α内,则可以表示为( )通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。
人教版高中数学必修二全册教案【可打印】一、教学内容第一章:空间几何1.1 平面几何基本概念1.2 平面几何图形的度量关系1.3 空间几何基本概念1.4 空间几何图形的度量关系二、教学目标1. 掌握空间几何的基本概念和性质,能够识别并运用相关的几何图形。
2. 理解并掌握平面几何与空间几何之间的联系与区别,提高空间想象能力。
3. 学会运用几何图形的度量关系解决实际问题,培养解决问题的能力。
三、教学难点与重点教学难点:空间几何图形的认识与度量关系的运用。
教学重点:平面几何与空间几何的联系与区别,几何图形在实际问题中的应用。
四、教具与学具准备教具:几何模型、多媒体课件、黑板、粉笔。
学具:直尺、圆规、三角板、量角器。
五、教学过程1. 实践情景引入利用多媒体展示生活中的空间几何图形,让学生观察并描述。
提问:如何计算这些几何图形的面积和体积?2. 例题讲解讲解例1:求一个长方体的表面积和体积。
讲解例2:求一个正四面体的表面积和体积。
3. 随堂练习学生独立完成练习1:求一个圆柱的表面积和体积。
学生独立完成练习2:求一个圆锥的表面积和体积。
学生分享学习心得,互相交流。
5. 应用拓展学生分组讨论:如何将所学的空间几何知识应用于实际问题?教师点评,给予鼓励和建议。
六、板书设计1. 空间几何基本概念及图形2. 平面几何与空间几何的联系与区别3. 几何图形的度量关系及计算公式4. 例题解答步骤5. 练习题解答七、作业设计1. 作业题目计算一个长方体的表面积和体积。
计算一个正四面体的表面积和体积。
计算一个圆柱的表面积和体积。
计算一个圆锥的表面积和体积。
2. 答案长方体表面积:2ab + 2bc + 2ac,体积:abc正四面体表面积:√3a²,体积:(a³/12)√2圆柱表面积:2πrh + 2πr²,体积:πr²h圆锥表面积:πrl + πr²,体积:(1/3)πr²h八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生的掌握情况调整教学方法。
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
《平面向量的坐标运算》教学设计 本节内容包括“平面向量的正交分解及坐标表示、坐标运算、平面向量共线的坐标表示”,这些内容是上一节所讨论问题的深入,为平面向量的坐标表示奠定理论基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算.(1)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示;会用坐标表示平面向量的线性运算;能用坐标表示向量共线的条件.(2)体会平面向量的正交分解是向量分解中常用且重要的一种分解;引入向量的坐标表示可使向量运算代数化;不仅向量的线性运算可以通过坐标来实现,向量的位置关系也可以通过坐标研究.(3)建立数与形的联系,利用几何图形描述问题,借助几何直观理解问题;理解运算对象,掌握运算法则,探究运算思路,求得运算结果.【问题1】如图,光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行 于斜面的力1F 的作用,沿斜面下滑;一是木块产生垂直于斜面的压力2F .问重力G 与力1F 和2F 有什么关系?【设计意图】通过学生熟悉的力的分解问题,引出本节的主题,由此可以使学生感受到向量的正交分解与现实的联系.任意一个向量可以分解为两个不共线的向量,实际上是平面向量基本定理的一个应用.【师生活动】(1)学生:12G F F =+.(2)老师:由平面向量基本定理,对平面上的任意向量a 均可以分解为不共线的两个向量11a λ和22a λ,使1122a a a λλ=+.(3)老师:在不共线的向量中,垂直是一种重要的特殊情形.把一个向量分解为两个互相垂◆ 教学过程◆ 教学目标◆ 教材分析 G F 1 F 2直的向量,叫做向量正交分解.正交分解是向量分解中常见的一种情形.【问题2】在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角 坐标平面内的每一个向量,如何表示呢?【设计意图】通过类比平面直角坐标系中点用有序数对表示,提示学生思考在直角坐标系中 表示一个平面向量的方法.【师生活动】(1)老师:结合平面向量基本定理,如何在平面直角坐标系中选两个向量作为基底?(2)学生:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.(3)教师:对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数,x y , 使得a xi y j =+.所以a 就由,x y 唯一确定.有序数对(,)x y 叫做向量的坐标,记作 (,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(,)a x y =叫做向量的坐标表示.【问题3】设OA xi y j =+,则向量OA 的坐标与点A 的坐标有什么关系?【设计意图】使学生知道向量的的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.【师生活动】(1)老师:O(2)学生:向量OA 的坐标(,)x y 就是终点A 的坐标;反过来,终点A 的坐标(,)x y 也就是向量OA 的坐标.(3)老师:在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示. 例1.如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.【设计意图】平面向量正交分解的应用,要充分运用图形之间的几何关系,求向量的坐标.【问题4】已知1122(,),(,)a x y b x y ==,你能得出,,a b a b a λ+-的坐标吗?【设计意图】运用向量线性运算的交换律、结合律、分配律,推导两个向量的和、差、以及 数乘运算的坐标运算.(1)学生1:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++1212(,)a b x x y y ∴+=++.(2)学生2:11221212()()()()a b x i y j x i y j x x i y y j -=+-+=-+-1212(,)a b x x y y ∴-=--.(3)学生3:1111()a x i y j x i y j λλλλ=+=+11(,)a x y λλλ∴=.(4)教师:以上推导过程体现了向量的坐标形式与向量形式的相互转化.练习1:已知1122(,),(,)A x y B x y ,求AB 的坐标.(5)学生:22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.(6)教师:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(7)教师:如何在平面直角坐标系中标出坐标为2121(,)x x y y --的点P ?有什么发现?(8)学生:向量AB 的坐标与以原点为起点、点P 为终点的向量的坐标是相同的.(9)教师:试求向量AB 的模长.(10)学生:222121()()AB OP x x y y ==-+-.例2. 如图,已知ABCD 的三个顶点,,A B C 的坐标分别是(2,1)(1,3)(3,4--、、),试求顶点D 的坐标.(1)学生:利用AB DC =,求出点D 的坐标.(2)学生:利用OD OB BD OB BA BC =+=++,求出点D 的坐标.(3)学生:利用11()()22OM OB OD OA OC =+=+,求出点D 的坐标. 【设计意图】让学生熟悉向量的坐标运算.解题过程中,关键是充分利用图形中各线段的位 置关系(主要是平行关系),数形结合,将顶点的坐标表示为已知点的坐标.【问题5】设1122(,),(,)a x y b x y ==,其中0b ≠.若a 与b 共线,这两个向量的坐标会有 什么关系?【设计意图】向量的线性运算可以通过坐标运算实现,引导学生思考向量的共线、垂直的坐 标表示.【师生活动】(1)学生:若a 与b 共线,则当且仅当存在实数λ,使得a b λ=,从而1122(,)(,)x y x y λ=,所以1212x x y y λλ=⎧⎨=⎩ 消去λ得到12210x y x y -=. 例3.已知(11)(13),(25A B C --,,,,),试判断A B C ,,三点的位置关系.【设计意图】引导学生三点共线的实质是从同一点出发的两个向量共线.(1)学生:口述解题思路,书写解题过程.(2)老师:引导学生总结思想方法.例4.设点P 是线段12P P 上的一点,12P P 、的坐标分别是1122(,)(,)x y x y 、. (1)当点P 是线段12P P 的中点时,求点P 的坐标;(2)当点P 是线段12P P 的一个三等分点时,求点P 的坐标.【设计意图】本例实际上是给出了线段的中点坐标公式,线段的三等分点坐标公式.引导学生推导线段的定比分点公式.利用向量共线的坐标表示求线段的定比分点坐标公式,只要通过简单的向量线性运算就可实现,这是向量的坐标运算带来的优越性.【师生活动】(1)学生:利用121()2OP OP OP =+,求得点P 的坐标. (2)学生:利用121233OP OP OP =+(或122133OP OP OP =+),求得点P 的坐标. (3)老师:三等分点有两种可能的位置,如果学生没有回答全面,要引导学生讨论补充.(4)老师:当12PP PP λ=时,点P 的坐标是什么? (5)学生:由学生类比求得中点坐标及三等分点坐标的过程,给出一般定比分点的坐标公式,进一步熟练向量的坐标运算,体会其中的数学思想方法.【问题6】你能够总结一下本节课我们学习的内容吗?【设计意图】课堂小结,由学生完成,概括本节课所学习的基本概念和运算法则,由教师提炼和总结本节课获得基本原理的数学研究方法.【习题检测】1.课中检测:(完成练习,拍照上传)练习1.已知点(0,0)O ,向量(2,3),(6,3),OA OB ==-点P 是线段AB 的三等分点,求点P 的坐标.练习2.已知(2,3),(4,3)A B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐 标.2.课后检测请完成课后练习,检测学习效果.。
学设计③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高.→讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3.教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?2教教学内容教学环节与活动设计课题§1.2.3空间几何体的直观图教学目标知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下面空间图形与在中心投影下面空间图形两种方法的各自特点.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.情感态度价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.重点用斜二测面法画空间几何值的直观图. 难点用斜二测面法画空间几何值的直观图.教学设计教学内容教学环节与活动设计一、创设情景,揭开课题三视图用三个角度的正棱影图反映空间几何体的形状和大小,我们能否将空间图形用一个平面图形来表示呢?二、探索新知1.水平放置的平面图形的直观图的画法.(1)例1 用斜二测法画水平放置的正六边形的直观图.画法:(1)如图(1),在正方边开ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O′,使∠x′O′y′ = 45°.(2)在图(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N ′ =12MN. 以点N ′为中点,画B′C′平行于x′轴,并且等于BC;再以M ′为中点,画E′F′平行于x′轴,并且等于EF.(3)连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′(图(3))教教学内容教学环节与活动设计学设计2)斜二测画法基本步骤.(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.2.简单几何体的直观图画法例2 用斜二测画法画长、宽、高分别是4cm,3cm,2cm的长方体ABCD–A′B′C′D′的直观图.画法:(1)画轴. 如图,画x轴、y轴、z轴,三轴交于点O,使∠xOy = 45°,∠xOz = 90°(2)画底面. 以点O为中点,在x轴上取线段MN,使322教教学内容教学环节与活动设计学设计2.判断下列结论是否正确,正确的在括号内画“√”,错误的画“×”.(1)角的水平放置的直观图一定是角. (√)(2)相等的角在直观图中仍然相等. (×)(3)相等的线段在直观图中仍然相等. (×)(4)若两条线段平行,则在直观图中对应的两条线段仍然平行. (√)3.利用斜二测画法得到的①三角形的直观图是三角形.②平行四边形的直观图是平行四边形.③正方形的直观图是正方形.④菱形的直观图是菱形.以上结论,正确的是( A )A.①②B.①C.③④D.①②③④4.用斜二测画法画出五棱锥P–ABCDE的直观图,其中底面ABCDE是正五边形,点P在底面的投影是正五边形的中心O(尺寸自定).教学小结1.平面图形斜二测画法. 2.简单几何体斜二测画法. 3.简单组合斜二测画法. 4.注意事项.课后反思教教学内容教学环节与活动设计学设计点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱. 过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段A′A,B′B,C′C,D′D.(4)成图,顺次连接A,B,C,D,并加以整理(去掉辅助线,将被挡的部分改为虚线),就得长方体的直观图.3.简单组合体画法例 3 已知几何体的三视图说出它的结构特征,并用斜二测画法画它的直观图.画法:(1)画轴.如图(1),画x轴、z轴,使∠xOz=90°.(2)画圆的柱的下底面. 在x轴上取A,B两点,使AB 的长度等于俯视图中圆的直径,且OA = OB. 选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱下底面的作法作出圆柱的下底面.(3)在Oz上截取点O′,使OO′等于正视图中OO′的长度,过点O′作平行于轴Ox的轴O′x′,类似圆柱下底面的作法作出圆柱的上底面.(4)画圆锥的顶点. 在Oz上截取点P,使PO′等于正视图中相应的高度.(5)成图. 连接PA′、PB′,AA′,BB′,整理得到三视图表示的几何体的直观图.(如图(2))三、随堂练习1.用斜二测画法画出下列水平放置的平面图形的直观图(尺寸自定):(1)任意三角形;(2)平行四边形;(3)正八边形.33学设计给出锥体的体积计算公式:ShV31=锥(S为底面面积,h为高)⑤讨论:台体的上底面积S’,下底面积S,高h,由此如何计算切割前的锥体的高?→如何计算台体的体积?'x sx h s=+''h sxs s∴=-'11)33V S h x S x=+-台('111333Sh Sx S x=+-'11()33Sh S S x=+-'''11()33h sSh S Ss s=+--''11()33Sh s s h s=++''1()3h s ss s=++⑥给出台体的体积公式:''1()3V S S S S h=++台(S,'S分别上、下底面积,h为高)''2211()()33V S S S S h r rR R hπ=++=++圆台(r、R分别为圆台上底、下底半径)⑦比较与发现:柱、锥、台的体积计算公式有何关系?从锥、台、柱的形状可以看出,当台体上底缩为一点时,台成为锥;当台体上底放大为与下底相同时,台成为柱。
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征. (2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察.根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥.2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果.在此基础上得出棱柱的主要结构特征.(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行.概括出棱柱的概念.4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示.5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示.7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示.8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括.9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体.10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考.1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题.4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用.3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得.作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图.3.三视图与几何体之间的相互转化.(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法.4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流.(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图.2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图.1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点.2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.3.情感态度与价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图.三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程.2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画.2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容.(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评.画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.强调斜二测画法的步骤.练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查.2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点.教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法.3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图.教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事.(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图.教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系.4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点.5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系.(3)培养学生空间想象能力和思维能力. 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状.(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系. 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响.从而增强学习的积极性. 二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算 难点:台体体积公式的推导 三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标.2、教学用具:实物几何体,投影仪 四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类.(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容.2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评. 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系.(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解.如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系.(s ’,s 分别我上下底面面积,h 为台柱高) 4、例题分析讲解(课本)例1、 例2、 例3 5、巩固深化、反馈矫正 教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 . (答案:m a ππ332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积. (答案:2325cm 3)6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式.用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握. 7、评价设计习题1.3 A 组1.3§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能错误!未找到引用源。
一、教学目标:
1、知识与技能
(1)利用生活中的实物对平面进行描述;
(2)掌握平面的表示法及水平放置的直观图;
(3)掌握平面的基本性质及作用;
(4)培养学生的空间想象能力。
2、过程与方法
(1)通过师生的共同讨论,使学生对平面有了感性认识;
(2)让学生归纳整理本节所学知识。
3、情感与价值
使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点
重点:1、平面的概念及表示;
2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具
1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板
四、教学思想
(一)实物引入、揭示课题
师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?引导学生观察、思考、举例和互相交流。
与此同时,教师对学生的活动给予评价。
师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容。
(二)研探新知
1、平面含义
师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示
师:在平面几何中,怎样画直线?(一学生上黑板画)
之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成
一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)
D C B
A α
α β α
β
课本P41 图 2.1-4 说明
平面内有无数个点,平面可以看成点的集合。
点A 在平面α内,记作:A ∈α
点B 在平面α外,记作:B α 2.1-4
3、平面的基本性质
教师引导学生思考教材P41的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(教师引导学生阅读教材P42前几行相关内容,并加以解析)
符号表示为
A ∈L
B ∈L => L α A ∈α
B ∈α
公理1作用:判断直线是否在平面内
师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2 公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 =>
有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读P42的思考题,从而归纳出公理3
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据
4、教材P43 例1
通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用。
5、课堂练习:课本P44 练习1、2、3、4
6、课时小结:(师生互动,共同归纳)
(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?
7、作业布置
(1)复习本节课内容;
·B ·A α
L A · α C · B
· A · α P · α L
β
·B
(2)预习:同一平面内的两条直线有几种位置关系?。