第10章 稳恒磁场
- 格式:doc
- 大小:462.50 KB
- 文档页数:6
大学物理第十章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十章稳恒磁场知识点5:电流的磁效应、磁场1、【】发现电流的磁效应的是:A:法拉第 B:安培 C:库仑 D:奥斯特2、【】提出分子电流假说的是:A:法拉第 B:安培 C:麦克斯韦 D:奥斯特3、【】下列说法错误的是:A:磁场和电场一样对其中的电荷都有力的作用;B:磁场只对其中的运动电荷有磁力的作用;C:运动的电荷激发磁场;D:磁场线永远是闭合的。
4、【】下列对象在磁场中不会受到磁场的作用的是:A:运动电荷 B:静止电荷 C:载流导体 D:小磁针5、【】关于静电场和磁场的异同,下列表述错误的是:A:静电场是有源场,而磁场是无源场;B:静电场是无旋场,而磁场是涡旋场;C:静电力是一种纵向力,而磁场力是一种横向力;D:静电场和磁场对其中的任何电荷都有力的作用。
知识点6:磁感应强度概念1、均匀圆电流I的半径为R,其圆心处的磁感应强度大小B=_________。
2、一条无限长载流导线折成如图示形状,导线上通有电流则P点的磁感强度B =______________.(μ0 = 4π×10-7 N·A-2)3、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)(a 为正值),点处的磁感强度的大小为___ ___ _,方向为_____________.4、真空中稳恒电流I 流过两个半径分别为R 1,R 2的同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入. (1) 如果两个半圆共面 (图1) ,圆心O 点的磁感强度0B的大小为__________________,方向为___________;(2) 如果两个半圆面正交 (图2) ,则圆心O 点的磁感强度0B 的大小为______________,0B的方向与y 轴的夹角为_______________。
磁场 磁感应强度 基本磁现象1、通有电流的导线周围,小磁针会发生偏转。
2、磁铁附近的载流导线及载流线圈会受到力的作用。
3、载流导线之间或载流线圈之间有相互作用力。
4、电子射线束在磁场中路径发生偏转。
一切磁现象的根源是电流。
任何物质的分子中都存在有圆形电流,称为分子电流.分子电流相当于一个基元磁铁。
当物体不显示磁性时,各分子电流作无规则的排列, 它们对外界所产生的磁效应互相抵消。
在外磁场的作用下,与分子电流相当的基元磁铁将趋向于沿外磁场方向取向,从而使整个物体对外显示磁性。
磁感应强度磁现象中,电流与电流之间,电流与磁铁之间以及磁铁与磁铁之间的相互作用是通过一种叫磁场的特殊物质来传递的。
磁场对外的重要表现:1、磁场对进入场中的运动电荷或载流导体有磁力的作用;2、载流导体在磁场中移动时,磁场的作用力将对载流导体作功,表明磁场具有能量。
引入磁感应强度矢量B 来描述磁场的强弱和方向。
试验线圈(线度必须小,其引入不影响原有磁场的性质)的面积为 S ∆,线圈中电流为0I ,则定义试验线圈的磁矩为 n S I P m ∆0= 磁矩是矢量,其方向与线圈的法线方向一致,n 表示沿法线方向的单位矢量,法线与电流流向成右螺旋系。
(附图)线圈受到磁场作用的力矩(称为磁力矩)使试验线圈转到一定的位置而稳定平衡。
此时,线圈所受的磁力矩为零,此时线圈正法线所指的方向,定义为线圈所在处的磁场方向。
如果转动试验线圈,只要线圈稍偏离平衡位置,线圈所受磁力矩就不为零。
当试验线圈从平衡位置转过090时,线圈所受磁力矩为最大。
在磁场中给定点处,比值m P M max 仅与试验线圈所在位置有关,即只与试验线圈所在处的磁场性质有关。
规定磁感应强度矢量B 大小为m P M B max =磁场中某点处磁感应强度的方向与该点处试验线圈在稳定平衡位置时的法线方向相同;磁感应强度的量值等于具有单位磁矩的试验线圈所受到的最大磁力矩。
单位:磁感应强度的国际单位为特斯拉,简称特。
稳恒磁场小结稳恒磁场是指磁场的大小和方向都不随时间而变化的磁场。
在物理学中,磁场的产生是由电荷运动而引起的,因此稳恒磁场可以通过电流来产生。
在这篇文章中,我们将讨论稳恒磁场的性质、产生、应用及相关实验等内容。
稳恒磁场可以被表示为磁感应强度B,B的方向与磁力线相同。
磁力线是从磁北极流向磁南极的。
磁北极与磁南极的定义与地球上的地理北极和地理南极不同。
在磁力线中,磁感应强度越强,磁力线越密集。
在稳恒磁场中,磁场与电流有一个简单的关系。
电流与磁场的方向关系可以由安培定则来确定。
安培定则的核心思想是:当一条电流元素通过一点时,该电流元素造成的磁场再该点的贡献方向与电流元素方向的右手定则相同。
该定则可以通过实验验证。
另外,稳恒磁场还有一个重要的特性:在稳恒磁场中,不会存在单独的磁极。
总有一个磁极与之相对应。
这一特性被称为“磁偶极子”的性质。
稳恒磁场可以通过电流来产生。
当电荷经过导线时,它会产生磁场。
当电流在圆环上流动时,会产生一个垂直于圆环平面的磁场。
在物理学实验中,通常使用初始磁场为零的可调电阻来产生电流。
通常使用Hall电效应来测量电阻中电流的强度。
在Hall电效应中,将电阻放在强磁场中,当电流通过电阻时,电阻中的电子会受到洛伦兹力的影响,使得电阻中的电子发生偏转,最终在一个方向上聚积起来。
这个方向与电流方向垂直,并形成Hall电压。
由于稳恒磁场的特性,它在许多领域中都有应用。
在现代物理学中,稳恒磁场用于粒子加速器中的磁铁,可以帮助加速器中的粒子定向行进。
磁共振成像是另一个使用稳恒磁场的重要技术。
在磁共振成像中,磁场中的氢原子核可以被用于诊断人体内部的病变。
磁场中的氢原子核的性质是由磁场强度的大小和方向所决定的,因此磁共振成像需要一个非常稳定的磁场。
在物理学中,稳恒磁场还可以用来研究磁性材料和磁性现象。
通过使用稳恒磁场,可以测量磁材料的磁场和演示磁现象。
此外,稳恒磁场还可以用来研究交变磁场的行为,在许多相对论简化模型中,也常使用稳恒磁场。
第十章 稳恒磁场问题10-1 你能说出一些有关电流元d I l 激发磁场d B 与电荷元d q 激发电场d E 有何异同吗?解 电流元激发的磁场与电荷元激发的电场是两个基元场. 由毕奥—萨伐尔定律定律得电流元d I l 激发的磁场为 0r2d d 4I rμ⨯=πl e B由电荷元电场强度公式得电荷元d q 激发的电场为20d d 4qr ε=πE相同点: 这两个场的大小都与场点到“元”(电流元、电荷元)的距离平方成反比; 这两个场都是矢量场,满足叠加原理.相异点: 电荷元产生的电场呈球对称,其方向与r 的方向相同或相反;电流元产生的磁场不具有球对称性,其方向垂直于d l 与r 组成的平面,遵从右手螺旋法则. 另外,d E 的大小与电荷元的电量d q 成正比,而d B 的大小不仅与d I l 的大小成正比,还与其方向有关.10-2 在球面上铅直和水平的两个圆中通以相等的电流,电流流向如图所示.问球心O 处磁感强度的方向是怎样?解 由右手螺旋法则可知,铅直的圆中电流在O 处产生的磁场方向垂直于铅直面向里;水平圆中电流在O 处产生的磁场方向垂直于水平面向下;并且这两个圆产生的磁感应强度大小相等。
所以球心处总的磁感应强度斜向里,与竖直向上方向的夹角为135.10-3 电流分布如图所示,图中有三个环路1、2和3. 磁感强度沿其中每一个环路的线积分各为多少?解 由安培环路定理0i id lI μ⋅=∑⎰B l 可知环路1 101d l I μ⋅=⎰B l 环路2 202d l I μ⋅=⎰B l 环路3()3012d 2l I I μ⋅=-⎰B lOII10-4 “无限长”载流直导线的磁感强度02IB dμ=π可从毕奥-萨伐尔定律求得.你能否用安培环路定律来求得呢? 如果可以,需要作哪些假设条件呢?解 “无限长”载流直导线周围的磁场分布呈轴对称,距离导线相等处的场点磁感强度大小相等. 取以直导线为中轴线、半径为d 的同心圆为积分路径,积分方向与直导线中电流方向遵从右手螺旋定则. 由安培环路定律可得2ld B d I μ=π=⎰B l ⋅02IB dμ=π在此解法中需要场点距直导线的距离d 为有限.10-5 如图所示,在一个圆形电流的平面内取一个同心的圆形闭合回路,并使这两个圆同轴,且互相平行.由于此闭合回路内不包含电流,所以把安培环路定理用于上述闭合回路可得d 0l⋅=⎰B l由此结果能否说在闭合回路上各点的磁感强度为零?解 不能,d 0l⋅=⎰B l 不仅与磁感强度的大小有关,还与磁感强度与积分路径的夹角θ有关. 当90θ=时,d 0l⋅=⎰B l 也成立.10-6 如图所示,设在水平面内有许多根长直载流导线彼此紧挨着排成一行,每根导线中的电流相同. 你能求出邻近平面中部A 、B 两点的磁感强度吗?A 、B 两点附近的磁场可看作均匀磁场吗?解 由于导线数目甚多,且电流分布均匀,相当于一个无限大带电平面. 由对称性可知,在平面中部附近各点的磁感强度大小相等. 设各导线中的电流为I ,单位长度的导线数目为n . 如图所示,取长为L 的矩形回路abcd ,回路内所包含的电流为nIL ,且使ab 、cd 边与磁场平行,bc 、da 边与磁场垂直,所以由安培环路定律可知0d d d labcdnIL μ=+=⎰⎰⎰B l B l B l ⋅⋅⋅012B nI μ=可见当导线电流、导线分布密度一定时,在平面中部附近的场强可以视为均匀磁场.O I10-7 如果一个电子在通过空间某一区域时,电子运动的路径不发生偏转,我们能否说这个区域没有磁场?解 由洛仑兹力e =-⨯F v B 可知,电子进入磁场是否受力偏转与电子进入磁场时的速度方向有关,若电子进入磁场时初始速度方向与磁场方向平行,即sin 00vB ⨯==v B此时虽然磁感强度不为零,但电子运动路径不会发生偏转.10-8 方程q =⨯F v B 中的三个矢量,哪些矢量始终是正交的?哪些矢量之间可以有任意角度?解 由右手螺旋法则可知 q =⨯F v B 中 ,力F 与粒子速度v ,F 与磁感强度B 始终正交,v 与B 可以有任意角度.10-9 气泡室是借助于小气泡显示在室内通过的带电粒子径迹的装置,如图是气泡室中所摄照片的描绘图,磁感强度B 的方向垂直平面向外,在照片的点P 处有两条曲线,试判断哪一条径迹是电子形成的?哪一条是正电子形成的?解 由q =⨯F v B 可知向右偏离的径迹是正电子形成的, 向左下偏离的径迹是电子形成的.10-10 在磁场中,若穿过某一闭合曲面的磁通量为零,那么,穿过另一非闭合曲面的磁通量是否也为零呢?解 不一定. 磁场为有旋无源场,由磁场中的高斯定理可知,穿过任一闭合曲面的磁通量必为零,即d 0SΦ=⋅=⎰B S ;而穿过一非闭和曲面的磁通量不一定为零,例如处于均匀磁场中的半球面S ,磁感强度的方向与半球面中轴线平行,则穿过此半球面的磁通量为2d 2SR B Φ=⋅=π⎰B S .10-11 安培定律d d I =⨯F l B 中的三个矢量,哪两个矢量始终是哪些矢量始终是正交的?哪些矢量之间可以有任意角度?解 由右手螺旋法则可知d d I =⨯F l B 中, 安培力d F 与d I l 、安培力d F 与磁感强度B 始终是正交的, d I l 与B 之间可以有任意角度.10-12 如图,把一载流线圈放入一永久磁铁的磁场中,在磁场的作用下线圈将发生转动.(1)图(a )中的线圈怎样转动?(2)图(b )中的线圈由上往下看是顺时针在转动,问磁铁哪一边是N 极,哪一边是S 极?(3)图(c )中的线圈由上往下看是反时针在转动,问线圈中电流的流向怎样?解 (1) 图(a )中的线圈由上往下看是反时针转动. (2)图(b )中左边磁铁是N 极,右边磁铁是S 极. (3)图(c )中线圈电流是顺时针.10-13 如均匀磁场的方向铅直向下,一矩形导线回路的平面与水平面一致,试问这个回路上的电流沿哪个方向流动时,它才处于稳定平衡状态?解 载流回路在磁场中会受到磁场的作用. 要矩形导线回路处于平衡状态,则要求整个导线回路所受合力及磁力矩都为零. 由于回路为矩形,无论电流流向如何,它所受合外力均为零. 同时要使回路所受磁力矩也为零,由n IS =⨯M e B 可知,载流线圈的n e 方向必须与磁感强度的方向相同,回路所受的磁力矩才为零,即电流方向与磁感强度方向应遵从右手螺旋定则.10-14 如图所示,有两个圆电流A 和B 平行放置,这两个圆电流间是吸引还是排斥?解 圆电流A 产生的磁场与B 产生的磁场方向相反, 它们之间相互排斥.10-15 若在上题两圆电流A 和B 之间放置一平行的圆电流C (如图),这个圆电流如何运动?解 由各圆电流产生的磁场方向可知,圆电流A和C 相互吸引, 圆电流C 与B 相互排斥,所以圆电流C 向A 移动.INSIS N(a)(b)(c)A1I 2I 3I BC1I 2I AB习题10-1 如图所示,两根长直导线互相平行的放置,导线内电流大小相等均为10A I =,方向相同,求图中M 、N 两点的磁感强度B 的大小和方向(图中00.020m r =).解 由无限长带电直导线在距离其r 处的磁感强度大小为02IB rμ=π可知,两导线在M 点产生的磁感强度大小相等为12002M M IB B r μ==π由右手螺旋法则可知它们的方向相反,由磁场的叠加可得M 点的磁感强度0M B =同理N 点的磁感强度为120000()cos()4N N N II B B B r r π=+=+4π4π 4001.010T Ir μ-==⨯2π其方向沿水平向左.10-2 已知地球北极地磁场磁感强度B 的大小为56.010T -⨯. 如图所示,如设想此地磁场是由地球赤道上一圆电流所激发, 此电流有多大? 流向如何?解 设赤道圆电流为I ,地球半径为66.3710m R =⨯。
第十章 稳 恒 磁 场10-1 两根无限长直导线相互垂直地放置在两正交平面内,分别通有电流I 1=2A ,I 2=3A ,如图所示。
求点M 1和M 2处的磁感应强度。
图中AM 1=AM 2=lcm ,AB=2cm.。
解:无限长电流的磁感应强度为dIB πμ=20,两无限长 电流在点M 1和M 2处的磁感应强度相互垂直,合磁感 应强度为)3(10232221201I I I B M +⨯πμ=-T 551047.414102--⨯+⨯= )(1022221202I I I B M +⨯πμ=-T 551021.794102--⨯+⨯= 10-2一无限长的载流导线中部被弯成圆弧形,圆弧半径R=3cm ,导线中的电流I=2A , 如图所示,求圆弧中心O 点的磁感应强度。
解:两半无限长电流在O 点产生的磁感应强度 方向相同,叠加为•πμ⨯=方向 4201RIB O 3/4圆电流在O 点产生的磁感应强度为⊗μ⨯=方向 24302RI B O O 点的合磁感应强度为⊗⨯=⨯⨯⨯⨯⨯π=πμ=+=-方向 T 101.80.43 10322104 ) 1- 43( 25-27-021R I B B B O O O 10-3图中三棱柱面高h =1.0m ,底面各边长分别为ab=0.6m ,bc=0.4m ,ac=0.3m ,沿ad 边有直长导线,导线申通有电流I=4A 。
求通过cbef 面的磁通量。
解:通过cbef 面的磁通量应与通过gbje 面的磁通量相当 ag=ac=0.3m ,有 hdx x 2I d 6.03.00⎰⎰πμ=⋅φSS B =0.30.6ln20πμ=Ih Wb 1054.5n2 21104 7--7⨯=π⨯⨯π=l10-4两根平行直长导线载有电流I 1=I 2=20A 。
试求(1)两导线所在平面内与两导线等距的一点A 处的磁感应强度;(2)通过图中矩形面积的磁通量。
图中r 1=r 3=10cm ,r 2=20cm ,l =25cm 。
第十章 稳恒磁场问题10-1 你能说出一些有关电流元d I l 激发磁场d B 与电荷元d q 激发电场d E 有何异同吗?解 电流元激发的磁场与电荷元激发的电场是两个基元场. 由毕奥—萨伐尔定律定律得电流元d I l 激发的磁场为 0r2d d 4I rμ⨯=πl e B由电荷元电场强度公式得电荷元d q 激发的电场为20d d 4qr ε=πE相同点: 这两个场的大小都与场点到“元”(电流元、电荷元)的距离平方成反比; 这两个场都是矢量场,满足叠加原理.相异点: 电荷元产生的电场呈球对称,其方向与r 的方向相同或相反;电流元产生的磁场不具有球对称性,其方向垂直于d l 与r 组成的平面,遵从右手螺旋法则. 另外,d E 的大小与电荷元的电量d q 成正比,而d B 的大小不仅与d I l 的大小成正比,还与其方向有关.10-2 在球面上铅直和水平的两个圆中通以相等的电流,电流流向如图所示.问球心O 处磁感强度的方向是怎样?解 由右手螺旋法则可知,铅直的圆中电流在O 处产生的磁场方向垂直于铅直面向里;水平圆中电流在O 处产生的磁场方向垂直于水平面向下;并且这两个圆产生的磁感应强度大小相等。
所以球心处总的磁感应强度斜向里,与竖直向上方向的夹角为135.10-3 电流分布如图所示,图中有三个环路1、2和3. 磁感强度沿其中每一个环路的线积分各为多少?解 由安培环路定理0i id lI μ⋅=∑⎰B l 可知环路1 101d l I μ⋅=⎰B l 环路2 202d l I μ⋅=⎰B l 环路3()3012d 2l I I μ⋅=-⎰B lOII10-4 “无限长”载流直导线的磁感强度02IB dμ=π可从毕奥-萨伐尔定律求得.你能否用安培环路定律来求得呢? 如果可以,需要作哪些假设条件呢?解 “无限长”载流直导线周围的磁场分布呈轴对称,距离导线相等处的场点磁感强度大小相等. 取以直导线为中轴线、半径为d 的同心圆为积分路径,积分方向与直导线中电流方向遵从右手螺旋定则. 由安培环路定律可得2ld B d I μ=π=⎰B l ⋅02IB dμ=π在此解法中需要场点距直导线的距离d 为有限.10-5 如图所示,在一个圆形电流的平面内取一个同心的圆形闭合回路,并使这两个圆同轴,且互相平行.由于此闭合回路内不包含电流,所以把安培环路定理用于上述闭合回路可得d 0l⋅=⎰B l由此结果能否说在闭合回路上各点的磁感强度为零?解 不能,d 0l⋅=⎰B l 不仅与磁感强度的大小有关,还与磁感强度与积分路径的夹角θ有关. 当90θ=时,d 0l⋅=⎰B l 也成立.10-6 如图所示,设在水平面内有许多根长直载流导线彼此紧挨着排成一行,每根导线中的电流相同. 你能求出邻近平面中部A 、B 两点的磁感强度吗?A 、B 两点附近的磁场可看作均匀磁场吗?解 由于导线数目甚多,且电流分布均匀,相当于一个无限大带电平面. 由对称性可知,在平面中部附近各点的磁感强度大小相等. 设各导线中的电流为I ,单位长度的导线数目为n . 如图所示,取长为L 的矩形回路abcd ,回路内所包含的电流为nIL ,且使ab 、cd 边与磁场平行,bc 、da 边与磁场垂直,所以由安培环路定律可知0d d d labcdnIL μ=+=⎰⎰⎰B l B l B l ⋅⋅⋅012B nI μ=可见当导线电流、导线分布密度一定时,在平面中部附近的场强可以视为均匀磁场.O I10-7 如果一个电子在通过空间某一区域时,电子运动的路径不发生偏转,我们能否说这个区域没有磁场?解 由洛仑兹力e =-⨯F v B 可知,电子进入磁场是否受力偏转与电子进入磁场时的速度方向有关,若电子进入磁场时初始速度方向与磁场方向平行,即sin 00vB ⨯==v B此时虽然磁感强度不为零,但电子运动路径不会发生偏转.10-8 方程q =⨯F v B 中的三个矢量,哪些矢量始终是正交的?哪些矢量之间可以有任意角度?解 由右手螺旋法则可知 q =⨯F v B 中 ,力F 与粒子速度v ,F 与磁感强度B 始终正交,v 与B 可以有任意角度.10-9 气泡室是借助于小气泡显示在室内通过的带电粒子径迹的装置,如图是气泡室中所摄照片的描绘图,磁感强度B 的方向垂直平面向外,在照片的点P 处有两条曲线,试判断哪一条径迹是电子形成的?哪一条是正电子形成的?解 由q =⨯F v B 可知向右偏离的径迹是正电子形成的, 向左下偏离的径迹是电子形成的.10-10 在磁场中,若穿过某一闭合曲面的磁通量为零,那么,穿过另一非闭合曲面的磁通量是否也为零呢?解 不一定. 磁场为有旋无源场,由磁场中的高斯定理可知,穿过任一闭合曲面的磁通量必为零,即d 0SΦ=⋅=⎰B S ;而穿过一非闭和曲面的磁通量不一定为零,例如处于均匀磁场中的半球面S ,磁感强度的方向与半球面中轴线平行,则穿过此半球面的磁通量为2d 2SR B Φ=⋅=π⎰B S .10-11 安培定律d d I =⨯F l B 中的三个矢量,哪两个矢量始终是哪些矢量始终是正交的?哪些矢量之间可以有任意角度?解 由右手螺旋法则可知d d I =⨯F l B 中, 安培力d F 与d I l 、安培力d F 与磁感强度B 始终是正交的, d I l 与B 之间可以有任意角度.10-12 如图,把一载流线圈放入一永久磁铁的磁场中,在磁场的作用下线圈将发生转动.(1)图(a )中的线圈怎样转动?(2)图(b )中的线圈由上往下看是顺时针在转动,问磁铁哪一边是N 极,哪一边是S 极?(3)图(c )中的线圈由上往下看是反时针在转动,问线圈中电流的流向怎样?解 (1) 图(a )中的线圈由上往下看是反时针转动. (2)图(b )中左边磁铁是N 极,右边磁铁是S 极. (3)图(c )中线圈电流是顺时针.10-13 如均匀磁场的方向铅直向下,一矩形导线回路的平面与水平面一致,试问这个回路上的电流沿哪个方向流动时,它才处于稳定平衡状态?解 载流回路在磁场中会受到磁场的作用. 要矩形导线回路处于平衡状态,则要求整个导线回路所受合力及磁力矩都为零. 由于回路为矩形,无论电流流向如何,它所受合外力均为零. 同时要使回路所受磁力矩也为零,由n IS =⨯M e B 可知,载流线圈的n e 方向必须与磁感强度的方向相同,回路所受的磁力矩才为零,即电流方向与磁感强度方向应遵从右手螺旋定则.10-14 如图所示,有两个圆电流A 和B 平行放置,这两个圆电流间是吸引还是排斥?解 圆电流A 产生的磁场与B 产生的磁场方向相反, 它们之间相互排斥.10-15 若在上题两圆电流A 和B 之间放置一平行的圆电流C (如图),这个圆电流如何运动?解 由各圆电流产生的磁场方向可知,圆电流A和C 相互吸引, 圆电流C 与B 相互排斥,所以圆电流C 向A 移动.INSIS N(a)(b)(c)A1I 2I 3I BC1I 2I AB习题10-1 如图所示,两根长直导线互相平行的放置,导线内电流大小相等均为10A I =,方向相同,求图中M 、N 两点的磁感强度B 的大小和方向(图中00.020m r =).解 由无限长带电直导线在距离其r 处的磁感强度大小为02IB rμ=π可知,两导线在M 点产生的磁感强度大小相等为12002M M IB B r μ==π由右手螺旋法则可知它们的方向相反,由磁场的叠加可得M 点的磁感强度0M B =同理N 点的磁感强度为120000()cos()4N N N II B B B r r π=+=+4π4π 4001.010T Ir μ-==⨯2π其方向沿水平向左.10-2 已知地球北极地磁场磁感强度B 的大小为56.010T -⨯. 如图所示,如设想此地磁场是由地球赤道上一圆电流所激发, 此电流有多大? 流向如何?解 设赤道圆电流为I ,地球半径为66.3710m R =⨯。
课时:2课时教学目标:1. 理解稳恒磁场的基本概念,包括磁感应强度、磁场中的高斯定理、毕奥-萨伐尔定律等。
2. 掌握毕奥-萨伐尔定律的应用,能够计算载流导线产生的磁场。
3. 理解安培环路定理,并能够运用其解决实际问题。
4. 了解磁矩、磁力矩、洛伦兹力等概念,并掌握其应用。
教学重点:1. 稳恒磁场的基本概念和公式。
2. 毕奥-萨伐尔定律的应用。
3. 安培环路定理的推导和应用。
教学难点:1. 毕奥-萨伐尔定律公式的推导和应用。
2. 安培环路定理的推导和应用。
教学过程:第一课时一、导入1. 回顾静电场的基本概念,引出稳恒磁场。
2. 介绍稳恒磁场的基本概念,如磁感应强度、磁场中的高斯定理等。
二、新课讲授1. 磁感应强度:- 定义磁感应强度,讲解其大小和方向。
- 举例说明磁感应强度在生活中的应用。
2. 磁场中的高斯定理:- 介绍高斯定理的概念,讲解其数学表达式。
- 举例说明高斯定理在解决实际问题中的应用。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁感应强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁感应强度。
四、总结1. 回顾本节课所学内容,强调稳恒磁场的基本概念和公式。
2. 布置课后作业,巩固所学知识。
第二课时一、导入1. 回顾上一节课所学内容,引出毕奥-萨伐尔定律。
2. 介绍毕奥-萨伐尔定律的概念,讲解其数学表达式。
二、新课讲授1. 毕奥-萨伐尔定律:- 定义毕奥-萨伐尔定律,讲解其数学表达式。
- 举例说明毕奥-萨伐尔定律在解决实际问题中的应用。
2. 安培环路定理:- 介绍安培环路定理的概念,讲解其数学表达式。
- 推导安培环路定理,讲解其推导过程。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁场强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁场强度。
四、总结1. 回顾本节课所学内容,强调毕奥-萨伐尔定律和安培环路定理的应用。
2. 布置课后作业,巩固所学知识。
教学反思:1. 本节课通过理论讲解和实例分析,帮助学生掌握了稳恒磁场的基本概念和公式。
1、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的洛伦兹力之比是____________,运动轨迹半径之比是______________. 1:2 1:2
2、一带电粒子平行磁感线射入匀强磁场,则它作________________运动.
一带电粒子垂直磁感线射入匀强磁场,则它作________________运动. 一带电粒子与磁感线成任意夹角射入匀强磁场,则它作_____________运动. 匀速直线 匀速率圆周 等距螺旋线
3.一磁场的磁感强度为k c j b i a B
++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为_______Wb .
πR 2c
4.均匀磁场的磁感强度B
垂直于半径为r 的圆面.今以该圆周为边线,作一半球
面S ,则通过S 面的磁通量的大小为_______.
πr 2B
5. 若电子在垂直于磁场的平面内运动,均匀磁场作用于电子上的力为F ,轨道的曲率半径为R ,则磁感强度的大小应为________.(已知电子电量e 和质量e m )
R
F
m e B e 1=
6. 一质量为m ,电荷为q 的粒子,以0v
速度垂直进入均匀的稳恒磁场B 中,电
荷将作半径为________的圆周运动.
m q B
v
7、有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,
按图示方式置于均匀外磁场B
中,则该载流导线所受的 安培力大小为________.
aIB
c a
1.四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I.这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O的磁感强度的大小为
I
a
(A) I
a
B
π
=0
2μ
. (B) I
a
B
2π
=0
2μ
.
(C) B = 0. (D) I
a
B
π
=0
μ
.
C
2. 如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知
(A) 0
d=
⎰⋅
L
l
B
,且环路上任意一点B = 0.
(B) 0
d=
⎰⋅
L
l
B
,且环路上任意一点B≠0.
(C) 0
d≠
⎰⋅
L
l
B
,且环路上任意一点B≠0.
(D) 0
d≠
⎰⋅
L
l
B
,且环路上任意一点B =常量.
B
3. 两根平行的金属线载有沿同一方向流动的电流.这两根导线将:
(A) 互相吸引. (B) 互相排斥.
(C) 先排斥后吸引. (D) 先吸引后排斥.
A
4、在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为
(A) 0
4
I
R
μ
π
.(B) 0
2
I
R
μ
π
.
(C) 0.(D) 0
4
I
R
μ
.
D
5、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比. D
6、 一运动电荷q ,质量为m ,进入均匀磁场中,
(A) 其动能改变,动量不变. (B) 其动能和动量都改变. (C) 其动能不变,动量改变. (D) 其动能、动量都不变.
C
7、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等, 电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是
(A) Oa . (B) Ob . (C) Oc . (D) Od .
C
8、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则
(A) 回路L 内的∑I 不变,L 上各点的B
不变.
(B) 回路L 内的∑I 不变,L 上各点的B
改变. (C) 回路L 内的∑I 改变,L 上各点的B
不变。
(D) 回路L 内的∑I 改变,L 上各点的B
改变.
B
9、已知一有限长螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线
管,则两个半环螺线管的自感系数
(A) 都等于
L 21. (B) 有一个大于L 21,另一个小于L 21
. (C) 都大于L 21. (D) 都小于L 2
1
.
D
10、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者
O
中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. C
三:判断
1、一电子以速率v 进入某区域。
若该电子运动方向不改变,那么该区域一定无磁场 ×
2. 空间某点磁感应强度
的方向是运动正电荷在该点所受的最大的力与其速度
矢积的方向。
√
四:计算
1. 如图,无限长直载流导线通有电流I ,在其右侧有面积为S a a =⨯的正方形回
路,回路与长直载流导线在同一平面,且回路的一边与长直载流导线平行,求通过面积为S 回路的磁通量。
解: r
I
B πμ20=
2分 ⎰⎰⋅π=
=S
r a r I
S B t d 2d )(0μ
Φ 3分
⎰
+π
=
a b b
r
r
a I d 20μb
a
b a
I +=
ln
20π
μ 3分
2、已知均匀磁场,其磁感应强度B = 2.0 Wb ·m -2,方向沿x 轴正向,如图所示。
试求:
(1) 通过图中abOc 面的磁通量; (2) 通过图中bedO 面的磁通量;
(3) 通过图中acde 面的磁通量。
解:匀强磁场B 对平面S 的磁通量为:
cos BS Φθ==⋅B S (2分)
设各面向外的法线方向为正
(1) 24.0cos -=π=abO c abO c BS Φ Wb (2分) (2) 0)2/cos(=π=bedO bedO BS Φ (2分) (3) 24.0cos ==θΦacde acde BS Wb (2分)
3*. 有二根导线,分别长2米和3米,将它们弯成闭合的圆,且分别通以电流I 1和I 2,已知两个圆电流在圆心处的磁感强度大小相等.求圆电流的比值I 1 / I 2.
解: 11012R I B μ=, 22022R I
B μ= 3分
由 21B B = 得 2211//R I R I = 2分 ∴
3
2
22212121=ππ==R R R R I I 3分
4、图中实线所示的闭合回路ABCDA 中,通有电流10 A ,两弧的
半径均为R =0.5 m ,且AB = CD ,求: O 点处的磁感强度B
. (μ0 = 4π×10-7 N/A 2)
解:(1) AD 、BC 两直线段电流在O 点处产生的磁场:
R I R I
B π=+π=
001)22
2
2(
2/242μμ 2分 AB 、CD 两圆弧段电流在O 点处产生的磁场:
)4/(02R I B μ= 2分
=π
+=
)1
41
(0R I B μ 1.43×10-5 T 2分 方向垂直纸面向外. 2分
5、一根无限长导线弯成如图形状,设各线段都在同一平面 内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余 为直线.导线中通有电流I ,求图中O 点处的磁感强度.
解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:
4321B B B B B
+++=
∵ 1B 、4B 均为0,故 32B B B
+= 2分
)2(4102R I
B μ= 方向 ⊗ 2分
242)sin (sin 401203R
I
a I B π=-π=μββμ
)2/(0R I π=μ 方向 ⊗ 2分
其中 2/R a =, 2/2)4/sin(sin 2=
π=β
2/2)4/sin(sin 1-=π-=β
∴ R
I
R
I
B π+
=2800μμ)1
41
(20π
+=
R I μ 方向 ⊗ 2分
6、将细导线弯成边长d =10 cm 的正六边形,若沿导线流过电流强度为I =25 A 的电流,求六边形中心点的磁感强度B .(μ0 =4π×10-7 N ·A -2 )
解: 长直通电导线 )s i n (s i n 2210θθμ-π=
d
I
B 3分
六边形通电导线)30sin 30(sin 3260︒+︒π=
d
I B μ 3分
=1.73×10-
4 T 2
分
2。