整式的加减第一课时教案
- 格式:doc
- 大小:127.50 KB
- 文档页数:4
2.2整式的加减(第一课时)一、教学目标:1.经历同类项概念形成、合并同类项法则的探究过程,了解同类项的概念,掌握合并同类项的法则。
2.在计算、观察、比较、总结、归纳等数学活动中,发展归纳、概括、总结问题的能力,并能清晰地表达自己的想法。
学会独立思考,体会数学类比的思维方法。
3.在自主学习和于他人交流中,初步学会从数学的角度发现问题和提出问题,获得分析问题和解决问题的一些基本方法,初步形成评价与反思的意识。
二、教学重点、难点:重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
三、教学方式:翻转式教学、探究法、讨论式、现在信息技术的运用(pad)。
四、教学手段:学生自己通过观察、类比、活动、猜想、验证、归纳,自主探索的方式,激发学习兴趣,培养应用意识和发散思维。
五、教学流程:教学环节教师活动1.学习指导、例题讲解的文本及微视频;2.教材中的探究问题;3.教师特别推送:探究一:超市里新到的水果上架时如何摆放呢?课前Pad 学生活动设计意图根据学生个体情况,自主选择学习内容。
从生活中的实例出发,创设情境,在激发学生学习兴趣的同时把生活中的分类思想引入到数学中来。
推送学探究二:习包。
预 1.找出下列单项式的共同点:习课前(1)5a与9a,(2)-5m2n与6m2n,学习包(3)4xyz3与3yxz3,(4)0与5探究三:运用有理数的运算律计算:100⨯2+252⨯2=,100⨯(-2)+252⨯(-2)=.根据上面的方法完成下面的运算,并说明其中的道理.(1)100t+252t=_____.思考、演练、并解答开门见山,设计有探究价值的问题,激发学生探究的热情,有效的帮助学生理解同类项的概念.设计开放性问题,加深对同类项含义的理解,增强学生的数感和符号感,培养学生的抽象思维能力.( ((2)3x 2+2x 2=()x 2; (3)3ab 2—4ab 2=()ab 2.上述运算有什么共同特点,你能从中得出什么 规律?整式的运算和有理数的运算有什么关 系?4.前测试题 3 道。
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
整式的加减教案【精选7篇】《整式的加减》教学设计篇一一、情境诱导前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:在西宁到拉萨路段,列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度是120km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要th,你能用含t的式子表示这段铁路的全长吗?(请列出算式)得到:100t+120×2.1t即:100t+252t对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。
)探究提纲:1、填空:(1)2t+52t=()t(2)3x2+2x2=()x2(3)3ab2-5ab2=()ab2(4)4xy+6xy=2、如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?3、仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳1、抽有问题的学生逐题汇报,学生说教师板书。
2、发动学生进行评价、补充、完善,学生说老师改写,3、教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。
)1、说出两组同类项2、下列各组是同类项的是A2x3与3x2B12ax与8bxCx4与a4Dπ与-33、下列各题计算的结果对不对?如果不对,指出错在哪里?(1)3a+2b=5ab(2)5y2-2y2=3(3)2ab-2ba=0(4)3x2y-5xy2=-2x2y4、–xmy与45x3yn是同类项,则m=,n=。
2.1整式(第1课时)教学目标1.进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题中的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.教学重点进一步理解用字母表示数的意义,正确分析实际问题中的数量关系,并用含有字母的式子表示数量关系.教学难点正确分析实际问题中的数量关系,用含有字母的式子表示数量关系.教学过程新课导入设a,b,c表示三个有理数,则新知探究一、探究学习【问题】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,2 h行驶的路程是多少?3 h呢?t h呢?【思考】在式子100×t=100t中,字母t表示什么?100t又表示什么?【师生活动】学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明地表示列车行驶的路程与时间、速度的关系.【设计意图】让学生经历由数到式的过程,感受从特殊到一般的认识过程,体会用字母表示数的简捷性和必要性,为继续学习用含有字母的式子表示数量关系做好方法上的引导.二、新知精讲【例1】(1)苹果原价是每千克p元,按八折优惠出售,用式子表示现价:_________________;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量:_________________;(3)一个长方体包装盒的长和宽都是 a cm,高是h cm,用式子表示它的体积:_________________;(4)用式子表示数n的相反数:___________;(5)7人共同完成一项工作,若每人的工作效率相同,总工作量为m,用式子表示每人需要完成的工作量:__________.m 【答案】(1)0.8p元(2)mn件(3)a2h cm3(4)-n(5)7【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为后面的学习进行铺垫.【思考】含有字母的式子有什么书写特点?【师生活动】学生对写出的几个式子进行观察,教师引导学生从式子的字母和数字两方面进行回答.【设计意图】熟悉用字母表示数的书写要求,在答题中能正确写出式子.【例2】(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(图中长度单位:cm),用式子表示三角尺的面积;(4)一所住宅的建筑平面图(图中长度单位:m)如图所示,用式子表示这所住宅的建筑面积.【思考】船在河流中行驶时,船的速度要分几种情况讨论?【师生活动】学生讨论之后,进行回答,教师根据学生回答的结果进行点评.【设计意图】让学生意识到,在特殊情形下用字母表示数时,可能会有多种情况存在.【答案】解:(1)船在这条河中顺水行驶的速度是(v+2.5) km/h,逆水行驶的速度是(v-2.5) km/h;(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元;(3)三角尺的面积(单位:cm2)是12ab-πr2;(4)这所住宅的建筑面积(单位:m2)是x2+2x+18.【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫.【思考】观察(1)(2)中写出的式子,总结特点.【师生活动】学生独立回答.【设计意图】让学生知道在书写后面带有单位的式子时,所写的式子要加括号.【思考】在(2)中,当x=70,y=50,z=80时,共需要多少钱?【师生活动】学生讨论之后,派代表在黑板上写出计算过程和答案,教师根据答题结果进行讲解.【设计意图】通过这一步,让学生知道,在字母的取值确定时,式子的取值是确定的.【思考】结合前面的例题,组内讨论:用字母表示数,有什么特点?【师生活动】学生分组讨论,教师展示课件上的总结,让学生对照学习.【设计意图】知道用字母表示数的必要性,为后续整式的相关学习做铺垫.【新知】讨论:如何分析题目,找数量关系?(1)抓关键词,明确它们的意义以及它们之间的关系,如:和、差、积、商;大、小;倍、分、比……提高/降低、顺水/逆水、打折等.(2)理清语句层次,明确运算顺序.(3)牢记概念和公式.【师生活动】学生小组讨论,如何找出数量关系,推举代表进行回答,教师根据回答结果进行点评,并给出正确的方法.【设计意图】通过对问题中的文字语言进行分析,转化成符号语言,进一步熟练列出式子,用字母表示数.【新知】用字母表示数的书写要求.【师生活动】教师在课件中给出表格,引导学生进行填空.【设计意图】检验学生是否准确掌握了用字母表示数的书写要求,进一步规范学生的式子写法.课堂小结板书设计一、字母可以表示任何数二、字母可以简明地表示数量关系三、用字母表示数的书写格式课后任务完成教材第56页练习1~4题.。
《整式的加减》第一课时教案范文《整式的加减》数学公开课教学设计整式的加减第一课时教案1目标:1.知道整式加减运算的法则,熟练进行整式的加减运算;(重点)2.能用整式加减运算解决实际问题;(难点)3.能在实际背景中体会进行整式加减的必要性.一、情境导入1.学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)让学生写出答案:n+(n+1)+(n+2)+(n+3);(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算?2.化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上的化简实际上进行了哪些运算?怎样进行整式的加减运算?二、合作探究探究点一:整式的加减【类型一】整式的化简化简:3(2×2-y2)-2(3y2-2×2).解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:3(2×2-y2)-2(3y2-2×2)=6×2-3y2-6y2+4×2=10×2-9y2.方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.【类型二】整式的化简求值化简求值:12a-2(a-13b2)-(32a+13b2)+1,其中a=2,b=-32.解析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=12a-2a+23b2-32a-13b2+1=-3a+13b2+1,当a=2,b=-32时,原式=-3×2+13×(-32)2+1=-6+34+1=-414.方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.【类型三】利用“无关”进行说理或求值有这样一道题“当a=2,b=-2时,求多项式3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3的值”,马小虎做题时把a=2错抄成a=-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.解析:先通过去括号、合并同类项对多项式进行化简,然后代入a,b的值进行计算.解:3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3=(3-4+1)a3b3+(-12+14+14)a2b+(1-2)b2+b+3=b-b2+3.因为它不含有字母a,所以代数式的值与a的取值无关.方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.探究点二:整式加减的应用如图,小红家装饰新家,小红为自己的房间选择了一款窗帘(阴影部分表示窗帘),请你帮她计算:(1)窗户的面积是多大?(2)窗帘的面积是多大?(3)挂上这种窗帘后,窗户上还有多少面积可以射进阳光.解析:(1)窗户的宽为b+b2+b2=2b,长为a+b2,根据长方形的面积计算方法求得答案即可;(2)窗帘的面积是2个半径为b2的14圆的面积和一个直径为b的半圆的面积的和,相当于一个半径为b2的圆的面积;(3)利用窗户的面积减去窗帘的面积即可.解:(1)窗户的面积是(b+b2+b2)(a+b2)=2b(a+b2)=2ab+b2;(2)窗帘的面积是π(b2)2=14πb2;(3)射进阳光的面积是2ab+b2-14πb2=2ab+(1-14π)b2.方法总结:解决问题的关键是看清图意,正确利用面积计算公式列式即可.三、板书设计整式的加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.整式的加减第一课时教案2教学目的:知识与技能目标:会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
《2.2整式加减(1)》教学设计一、教学目标1. 认识同类项,能判断两个式子是否是同类项.2. 能独立完成合并同类项,求多项式的值.3.能用整式表示生活中的数量关系,解决生活中问题.二、重点难点重点:理解同类项的概念;正确合并同类项.难点:根据同类项的概念在多项式中找同类,正确合并同类项.三、教学过程(一)情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?列式:100t+120×2.1t==100t+252t教师追问:这个式子还能化简吗?设计意图:引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要,理解化筒100t+252t的方法是运用有理数的运算律“分配律”,初步体会“数式通性”,促使学生的学习形成正迁移.(二)类比探究1.运用有理数的运算律计算:⑴100×2+252×2=⑵100×(-2)+252×(-2)=归纳:3个式子的结构相同,整式中的字母表示数,可以类比数的运算,运用数的运算法则和运算律进行整式运算.设计意图:通过用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t + 252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解由于式子100t+252t中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法上指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想. 2.运用刚才方法填空:①100252t t-②2232x x+③2234ab ab-观察:上述各多项式的项有什么共同特点?同类项:⑴所含字母相同;⑵相同字母的指数也分别相同.设计意图:进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不止一个等)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想,通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则做好铺垫.3.观察多项式100252t t-,2232x x+,2234ab ab-上述多项式中同类项的运算过程有什么共同特点?归纳:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.设计意图:在观察、比较中,发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的定义及合并同类项的法则.(三)例题讲解例:4x2+2x+7+3x-8x2-2解:=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2 )+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5 (按字母x的指数从大到小顺序排列)归纳步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂)排列.设计意图:归纳化简多项式的一般步骤.例2 (1)求多项式22225432x x x x x-++--的值,其中=12x;22)45()312(234522222--=-+-+-+=--++-x x x x x x x x 解:25-2-21-21===时,原式当x方法总结:在求多项式的值时,可以先将多项式化简(同类项合并),然后再求值. (2)求多项式 22113333a abc c a c +--+ 的值,其中16a =-,2b = , 3c =- . 设计意图:归纳化简求值的方法,先将多项式化简,然后再求值.使运算更简便.例3: (1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ;第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克. 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,把上升的水位变化量记为正.则有:-2a + 0.5a = -1.5a答:这两天水位总的变化情况为下降了1.5a cm.(2)把进货的数量记为正,售出的数量记为负.则有:5x -3x +4x =6x答:进货后这个商店有大米6x 千克.设计意图: 本题让学生体会到数学知识之间的相互联系,同时体会到数学在生活中处处存在,数学来源于生活又服务于生活.(四)巩固提升1.判断同类项:(1) -5ab 3 与 3a 3b( ) (2) 3xy 与 3x( ) (3) -5m 2n 3 与 2n 3m 2( ) (4) 53 与 35( ) (5) x 3 与 53( )判断同类项要注意:① 字母 相同 ,相同字母的指数也 相同 .② 与 系数 无关,与 字母顺序 无关.③常数都是同类项.2. 单项式236ab c -的同类项可以是 . 3. 5x 2y 和42y m x n 是同类项,则 m=_______, n=________.4.判断下列计算是否正确?y 2x 5xy y 3x (4)02ba 2ab (3)32y 5y (2)5ab2b 3a (1)22222-=-=-=-=+注意:1.多项式中只有同类项才能合并;2.若两个同类项的系数互为相反数,则两项的和等于零.5. 下列运算,正确的是 (填序号).①2235a a a += ; ② 22532a b ab ab -= ;③ 22232x x x -= ;④22651m m -=. 6.–x m-3y 与 45y n+1x 3是同类项,则 m=_____,n=______.7.填空(1)x 的4倍与x 的5倍的和是多少?(2)x 的3倍比x 的一半大多少?8.如图,大圆的半径是R,小圆的面积是大圆面积的 94,求阴影部分的面积.9. 用式子表示十位上的数是a ,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位上的数交换位置,计算所得数与原数的和.解:原来的两位数为:10a +b ,新的两位数为:10b +a两个数的和为:10a+b+10b+a=11a+11b所得数与原数的和能被11整除吗?∵11a+11b=11(a+b)∴所得数与原数的和能被11整除.设计意图:设置有梯度的练习题,加深对同类项和合并同类项法则的理解和运用,提高运算能力.(五)课堂小结1.回顾本节课的学习过程.2.本节课运用了什么思想方法研究问题?3.化简求值4.把实际问题抽象为数学模型5.挖掘已知条件,构造所求整式设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心一同类项的概念、合并同类项的概念和法则,感受“数式通性”和类比的数学思想.(六)巩固提高已知m是绝对值最小的有理数,且11m ya b++-与33x a b是同类项,求2222 23639x xy x mx mxy my -+-+-的值.设计意图:提高学生对同类项概念的理解.。
新人教版七年级上整式的加减(第一课时) 教案
教学流程安排图
教学过程设计
一、社会原因。
纷繁芜杂的社会是一个大课堂,无时无刻不在对我们的学生产生着影响。
1、学习无用论
2、游戏机、电视等对学生的诱惑。
3、过分强调分数。
二、家庭原因。
1、家庭情况。
2、家庭教育。
(1)期望过高或要求完美。
(2)期望过低。
(3)不关心。
(4)百依百顺。
(5)严重的家庭冲突。
(6)动则训斥。
(7)过分保护。
三、教师原因。
1、不正确的人才观。
2、认识论上存在偏差。
3、对学生缺少发展观念。
4、对教育工作缺少耐心,艺术性不够。
四、班集体原因。
1、不良班风、学风。
2、集体不能悦纳。
五、学生自身原因。
1、智力障碍。
2、情感缺乏。
3、意志缺陷。
4、不良个性。
(1)过分敏感
(2)不够主动
(3)攻击性强。
备课时间:上课日期:2015・10・22教师:课题:2. 2整式的加减第一课时1、能根据同类项满足的两个条件准确地识别出同类项。
会用合并同类项法则解决有关的问- 题。
教〜八2、体验探索同类项概念和合并同类项法则过程,通过“类比法、分桁法”的应用,发展学字生的由果寻因的思维能力、语言表达能力,归纳能力,通过概念的识别和法则的归纳,培养日学生“类比”的数学方法。
标3、通过探索同类项概念和合并同类项法则过程,激发学牛的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦O教法启发式重点同类项的概念及合并同类项的法则难点正确的判断同类项,准确的合并同类项活动活动内容活动设计意图活动1 创设情境,引入新课设置问题情境,激发学生学习兴趣活动2 合作交流,探究新知学生合作交流,探究新知活动3 范例学习,应用新知教师进行板演,规范解题步骤活动4 随堂练习,巩固深化学生进行练习,巩固和深化知识。
活动5 课堂总结,发展潜能培养学生归纳总结的能力。
活动6 课堂检测随堂测验,作为对木节课的实时检测。
课前准备板书设计教具: 2. 2整式的加减第一课时1、同类项的概念例题学具. 2、合并同类项的法则学案课后反思:作业:目标P35分层作业:学案上拓展提高问题与情境师生行为设计意图时间【活动1]创设情境引入新课问题1:当a=2015,b=2016 时,求24ab + Sb2-24ab — 3b — 9b2 + 5b的值? 教师提问,学生思考并回答。
提出问题迅速吸引学生,激发了学牛的学习兴趣。
1分钟问题厶-3b+5b=2b运算过程的依据是什么?教师提出问题6 分问题3:依据上面的计算过程,你能根据乘法分配律化简下列代数式吗?3xy+5xy=5X2-2X2=-7ab2+2ab2=【活动2】自主探究学习新知(一)观察:-3b+5b=(-3+5)b=2b 3xy2+5xy2= (3+5) xy2=8xy2 5ab-2ab=(5-2)ab=3ab-7a2+2a2=(-7+2)a2=-5a2学生思考并回答:3xy+5xy=(3+5) xy 5X2-2X2=(5-2)X2・ 7ab2+2ab2=(-7+2)ab2通过问题的设置,逐步深入,由面到点,探究同类项的实质,为学生准确归纳出同类项的概念做好铺垫。
2.2整式的加减第一课时合并同类项一、教学目标知识与技能1.理解同类项的概念。
2.掌握合并同类项法则,•能正确进行同类项的合并.3. 能先合并同类项化简后求值.过程与方法通过类比有理数的运算律,探究得出合并同类项法则,培养学生观察、探索、分类、抽象概括等能力.情感、态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.二、学情分析七年级学生刚进入初中,学习的积极性比较浓厚,能较好地完成学习任务,但是部分学生的学习习惯不好,整体水平不均匀,学习比较浮躁,成绩参差不齐,部分学生的理解能力和接受能力不尽人意,学习习惯和学习方法上有待加强。
在教课的过程中,要加强对学生基础知识的掌握,注重对知识的重难点的把握,培养学生积极的情感、负责的态度和正确的价值观。
三、教学重点、难点及关键重点掌握合并同类项法则,熟练地合并同类项.难点对同类项概念的理解.关键正确理解同类项概念和合并同类项法则.突破方法从生活中的实例入手,引导学生认识什么样的单项式是同类项,通过类比数的运算律得出合并同类项的法则.四、教法与学法导航教学方法通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题解决为中心,使教学过程成为在教师指导下的一种自主探索的学习活动过程,使学生自主探究同类项的概念,加深对知识点的理解掌握。
学习方法在自主探究学习的过程中,积极动脑、动手、动口获得充足的体验和发展,培养其抽象概括能力.五、教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案).学生准备:整式的有关知识.六、教学过程(一)、导入新课有理数可以进行加减计算,那么整式能否可以进行加减运算呢?又怎样化简呢?这就是我们今天要学习的内容:2.2.1 合并同类项【板书课题】 2.2.1 合并同类项(二).同类项活动一:我们来看本章引言中的问题(2).在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是 2.1t小时,则这段铁路的全长是100t+120×2.1t,即100t+252t问题1.类比数的运算,我们应如何化简式子100t+252t呢?(1)运用有理数的运算律计算:①100×2+252×2;②100×(-2)+252×(-2).(2)根据(1)中的方法将下面的式子化简,并说明其中的道理.100t+252t.思路点拨:(1)中两式的结构相同,每个式子的两项都含有一个相同的因数,因此根据分配律可得:100×2+252×2=(100+252)×2=352×2100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)而(2)式中的式子只是将(1)中两式的相同数字因数2(或-•2)换成了字母t,式子的结构并没有发生改变,因此学生很容易根据分配律将式子化简100t+252t=(100+252)×t=352t,这就完成了由数到式由特殊到一般的过渡.问题2.你能根据问题1将下面的式子化简吗?(1)100t-252t ; (2)3x 2+2x 2; (3)3ab 2-4ab 2.思路点拨:对于上面的(1)、(2)、(3),应先找出每个式子两项公共的因式,再利用分配律可得100t-252t=(100-252)t=-152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=-ab 2问题3.上述运算有什么共同特点,你能从中得出什么规律?思路点拨:教师组织学生分四人小组进行讨论,引导学生观察、•类比,从而发现规律,鼓励学生用自己的语言表达.上面的三个多项式都可以合并为一个单项式,(1)中多项式的项100t和-252t ,它们都含有相同字母t ,并且t 的指数都是1;(2)中的多项式的项3x 2+2x 2都含有相同字母x ,并且字母x 的指数都是2;(3)•中的多项式的项3ab 2和-4ab 2都含有字母a ,b ,并且字母a 的指数都是1,b 的指数都是2.也就是说它们都是只有系数不同,而所含字母及相同字母的指数都相同。
2.2整式的加减(第1课时)教学目标1.理解同类项的概念.2.掌握合并同类项的方法,能正确合并同类项.3.能利用合并同类项化简多项式,并求多项式的值.教学重点能够识别同类项,并掌握合并同类项的方法.教学难点正确合并同类项,并能进行同类项的化简求值.教学过程新课导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度可以达到120 km/h.请根据这些数据回答下面的问题:在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,能用含t的式子表示这段铁路的全长吗?新知探究一、探究学习【问题】(1)运用有理数的运算律计算:100×2+252×2=704 ,100×(-2)+252×(-2)=-704 .(2)根据(1)中的方法完成下面的运算:100t+252t=352t .【师生活动】学生先根据以前学过的知识,解决第(1)问.【设计意图】对学习过的运算律进行复习回顾,为学习合并同类项做铺垫.【思考】可以使用(1)中的方法完成(2)的运算吗?为什么?【师生活动】学生独立解决问题(2).【设计意图】体现数式通性,类比数的计算来学习式的运算.【问题】仿照式子100t+252t的化简方法,填空:(1)100t-252t=(-152 )t;(2)3x2+2x2=( 5 )x2;(3)3ab2-4ab2=(-)ab2.思考:上述运算中,项数发生了什么变化?【师生活动】师生合作,完成填空.【设计意图】认识到合并同类项的本质是项与项之间的合并.【问题】分别观察这三个多项式中的各项,有什么发现?(1)100t-252t=()t;(2)3x2+2x2=()x2;(3)3ab2-4ab2=()ab2.【师生活动】学生回答.【设计意图】进一步突出同类项的本质.二、新知精讲【新知】所含字母相同,并且相同字母的指数也相同的项叫做同类项.【师生活动】指导学生总结出同类项需要满足的两个条件.【设计意图】巩固对同类项的定义的理解,为后面准确进行合并同类项做铺垫.【思考】展示同类项的动图,思考满足什么条件的项是同类项?【问题】判断下列各组中的两项是不是同类项,并说明理由.(1)0.35ab2与-12ab2;(2)2m3n与23nm3;(3)-23与32.【师生活动】学生先独立作答,然后集体订正.【设计意图】巩固对同类项的认识,总结判断同类项的方法.【新知】把多项式中的同类项合并成一项,叫做合并同类项.【思考】根据前面的学习过程,思考:合并同类项是怎样进行的?100t+252t=(100+252)t=352t;100t-252t=(100-252)t=-152t;3x2+2x2=(3+2)x2=5x2;3ab2-4ab2=(3-4)ab2=-ab2.(1)合并前后系数之间存在怎样的关系?(2)合并同类项后,字母和字母的指数有何变化?【师生活动】学生独立思考,回答问题.【设计意图】为引出合并同类项法则做铺垫.【新知】合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.【问题】应如何化简下面的多项式?4x2+2x+7+3x-8x2-2.【师生活动】学生尝试解题,教师给予纠正指导.【设计意图】归纳化简多项式的一般步骤.三、典例精讲【例1】合并下列各式的同类项:(1)xy2-15xy2;(2)-3x2y+2x2y+3xy2-2xy2;(3)4a2+3b2+2ab-4a2-4b2.【答案】解:(1)原式=115⎛⎫-⎪⎝⎭xy2=45xy2;(2)原式=(-3+2)x2y+(3-2)xy2=-x2y+xy2;(3)原式=(4a2-4a2)+(3b2-4b2)+2ab=(4-4)a2+(3-4)b2+2ab=-b2+2ab.【师生活动】学生独立完成,然后互相纠错、评价.【设计意图】加深对同类项的概念和合并同类项法则的理解和运用,提高运算能力.【例2】(1)求多项式2x2-5x+x2+4x-3x2-2的值,其中x=12;(2)求多项式3a+abc-13c2-3a+13c2的值,其中a=16-,b=2,c=-3.【答案】解:(1)原式=(2+1-3)x2+(-5+4)x-2=-x-2.当x=12时,原式=12--2=52-.(2)原式=(3-3)a+abc+1133⎛⎫-+⎪⎝⎭c2=abc.当a=16-,b=2,c=-3时,原式=16⎛⎫- ⎪⎝⎭×2×(-3)=1.【师生活动】学生独立完成,然后互相纠错、评价.【设计意图】进一步熟悉合并同类项法则,同时让学生意识到,将多项式适当化简后可以简化计算.【例3】(1)水库水位第一天连续下降了a h,每小时平均下降2 cm;第二天连续上升了a h,每小时平均上升0.5 cm,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?【答案】解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量为-2a cm,第二天水位的变化量为0.5a cm.两天水位的总变化量(单位:cm)为-2a+0.5a=(-2+0.5)a=-1.5a.这两天水位总的变化情况为下降了1.5a cm.(2)把进货的数量记为正,售出的数量记为负.进货后这个商店共有大米(单位:kg)5x-3x+4x=(5-3+4)x=6x.【师生活动】学生分组讨论,解决问题.【设计意图】综合性较强,涉及用负数表示具有相反意义的量,也涉及用整式表示数量关系和合并同类项的内容,让学生对学过的内容进行巩固和综合运用.课堂小结板书设计一、同类项二、合并同类项课后任务完成教材第65页练习1~4题.。
2.2整式的加减(1)—同类项、合并同类项、升(降)幂排列【学习目标】1.理解同类项的概念,在具体情景中,认识同类项。
2. 理解合并同类项的概念,领会合并同类项法则。
3.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
【学习重难点】重点:理解同类项的概念;领会合并同类项法则。
难点:根据同类项的概念在多项式中找同类项。
【学习过程】一、创设问题情境:1、⑴、5个人+8个人=⑵、5只羊+8只羊= ⑶、5个人+8只羊=2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x 2y , -mn 2, 5a , -x 2y , 7mn 2,83, 9a , -32xy , 0, 0.4mn 2,95,2xy 2.观察归为一类的式子,思考它们有什么共同的特征?说出各自的分类标准。
和 , 和 , 和 , 和 分别是同一类。
因为: 。
3、运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐? 二、自主学习与合作探究: (一)自学提纲:请同学们围绕着“什么叫做同类项?什么叫做合并同类项?合并同类项法则是什么?多项式的升(降)幂排列?”这些问题,自学课文第63页开始到65页“例题1”为止。
并把课文中的空填好。
(二)、自学检测:1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )(3)3x 2y 与-31yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( ) (5)23与32是同类项。
( )2. 若2a m b 2m+3n 与a 2n-3b 8可以合并成一项,则m 与 n 的值分别是______3.把多项式x 4-y 4+3x 3y -2xy 2-5x 2y 3用适当的方式排列。
北师大版数学七年级上册3.4《整式的加减》(第1课时)教案一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节主要介绍整式的加减运算。
在此之前,学生已经学习了有理数的加减法和乘除法,整数的加减法和乘除法,以及多项式的概念。
本节内容是这些知识的进一步扩展和应用,为学生今后的代数学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于加减法和乘除法有了一定的理解。
但是,对于整式的加减运算,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将已有的知识迁移到整式的加减运算中,通过实际操作,加深对整式加减运算的理解。
三. 教学目标1.理解整式的加减运算的定义和规则。
2.能够进行简单的整式加减运算。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.重点:整式的加减运算的定义和规则。
2.难点:如何引导学生将已有的知识迁移到整式的加减运算中,以及如何进行复杂的整式加减运算。
五. 教学方法采用问题驱动法和案例教学法,通过实际操作,引导学生理解整式的加减运算的定义和规则,培养学生的问题解决能力和逻辑思维能力。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过提问,引导学生回顾已学的有理数和整数的加减法,以及多项式的概念。
2.呈现(10分钟)展示PPT课件,介绍整式的加减运算的定义和规则。
通过案例,让学生理解整式的加减运算的实际意义。
3.操练(10分钟)让学生分组进行练习,运用整式的加减运算的规则,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成练习题,巩固整式的加减运算的知识。
教师选取部分学生的作业,进行讲解和分析。
5.拓展(10分钟)引导学生思考如何将整式的加减运算应用到实际问题中,例如解析几何中的直线方程,通过实际案例,让学生理解整式的加减运算的应用价值。
6.小结(5分钟)对本节课的内容进行小结,强调整式的加减运算的定义和规则,以及其在实际问题中的应用。
整式的加减(1)第一课时一、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项.(2)能先合并同类项化简后求值.二、过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.教学重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项.2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则.教具准备投影仪.三、教学过程,新课引入有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2).在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+120×2.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?四、新授(1)运用有理数的运算律计算:100×2+252×2=______;100×(-2)+252×(-2)=________.100×2+252×2=(100+252)×2=352×2100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-•2)•就有,•100t+252t=(100+252)×t=352t.事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,•都是两个数分别与同一个数乘积的和,这里t表示同一个因数,•因此根据分配律也应该有:100t+252t=(100+252)t=352t2.填空:(1)100t-252t=()t;(2)3x2+2x2=()x2;(3)3ab24ab2=()ab2.观察(1)中多项式的项100t和-252t,它们都含有相同字母t,并且t的指数都是1;(2)中的多项式的项3x2+2x2都含有相同字母x,并且字母x的指数都是2;(3)•中的多项式的项3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.若两个同类项的系数互为相反数,则两项的和等于零,即这两项相抵消,如-3ab2+3ab2=(-3+3)ab2=0·ab2=0.多项式中只有同类项才能合并,不是同类项不能合并.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x2+5x+5或写成5+5x-4x2.例1.合并下列各式的同类项:(1)xy2-15xy2;(2)-3x2y+2x2y+3xy2-2xy2;(3)4a2+3b2+2ab-4a2-4b2.例2.(1)求多项式2x2-5x+x24x-3x22的值,其中x=12.(2)求多项式3a+abc-13c2-3a+13c2的值,其中a=-16,b=2,c=-3.解:(1)2x2-5x+x2+4x-3x2-2 (仔细观察,标出同类项) =(2+1-3)x2+(-5+4)x-2 (系数相加,字母部分不变)=-x-2 (系数是“1”或“-1”时省略不写) 当x=12时,原式=-12-2=-52(2)3a+abc 213c --3a 213c + =(3-3)a+abc+(-13+13)c 2 =abc当a=-16,b=2,c=-3时,原式=(-16)×2×(-3)=1 例3.(1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ,•第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克,上午卖出3袋,•下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?五、巩固练习课本第66页,练习第1、2、3题.六、课堂小结1.什么叫同类项?字母相同,次数也相同的项是同类项吗?举例说明.2.什么叫合并同类项?怎样合并同类项?合并同类项的依据是什么?七、作业布置1.课本第71页习题2.2第1、7、10题.。
《整式的加减》第一课时教学设计与反思教学设计一、教材分析本节课选自北师大版七年级数学上册第三章第4节第一课时,是一堂探究活动课。
根据大纲要求,合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是今后学习解方程、解不等式的基础。
另一方面,这节课与前面所学知识有着千丝万缕的关系,在合并同类项过程中,要不断的运用有理数的运算,可以说合并同类项是有理数运算的延伸与拓广。
因此这是一节承上启下的课。
二、学情分析我班的学生大部分是学习基础不太好,已学的知识掌握不牢固,新的知识接受慢。
本节课要在学生已经掌握了单项式、多项式的基础上进行整式的加减运算。
教学过程中,设法创设情境,激发学生的学习兴趣,提高学生解决问题的能力。
鼓励他们大胆尝试,敢于发表自己的看法,以从中获得成功的体验,激发学生的学习热情,相信学生学习本节内容一定能达到预期的效果。
三、教学策略通过“试一试”、“说一说”、“想一想”、“议一议”、“算一算”、“做一做”、“看一看”等活动,让学生经历类比、猜想、归纳、探究等自主活动,通过合作交流、变式训练进行意义建构,从而获得知识与技能的增长,体验数学思想方法的价值。
同时也追求一种民主平等的对话语境,营造师生、生生的互动和交往的和谐探究环境,充分体现数学探究及数学应用的基本“精神”。
四、教学目标知识与技能目标1.情境中感受合并同类项的必要性,理解合并同类项法则所依据的运算法则;2.了解合并同类项的法则,能进行同类项的合并;过程与方法目标1、通过具体情境导入同类项以及合并同类项的概念,经历合并同类项的过程,培养学生的观察、归纳等能力。
2、通过大量练习巩固,培养学生计算能力,帮助学生形成解题经验。
情感态度与价值观目标。
在学习中培养学生分类、化繁为简等数学思想、方法,鼓励学生敢于发表自己的观点,从交流中获益。
五、教学重点、难点教学重点:正确合并同类项教学难点:找出同类项并正确合并六、教学过程[活动六] 领悟法则——想一想、议一议如图,求长方形ABCD的面积,你可以找到几种方法?合并同类时,有什么规律?[活动五] 领悟法则—看一看教学反思(一)课例亮点:这节公开课获得同科组老师的好评。
整式的加减第一课时教
案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
整式的加减
第一课时
一、教学目标
知识与技能:1.?理解同类项的概念,并能正确辨别同类项。
2.?掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1.?探索在具体情境中用整式表示事物之间的数量关系,发展
学生的抽象概括能力。
2.通过类比数的运算律得出合并同类项的法则,在教学中渗透
“类比”的数学思想。
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提
高学习数学的兴趣。
2.培养学生合作交流的意识和探索精神。
二、教学重点与难点
重点:合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
三、学习课时(四课时——第一课时)
四、重、难点突破
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。
五、教学方法
讨论及探究式教学方法
六、教具准备
课件。
2.2 整式的加减
第一课时
一、教学目标
知识与技能:1. 理解同类项的概念,并能正确辨别同类项。
2. 掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1. 探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。
2.通过类比数的运算律得出合并同类项的法则,在教学中渗透“类比”的
数学思想,并体会这种类比思想。
(增加)
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学
的兴趣。
2.培养学生合作交流的意识和探索精神。
二、教学重点与难点
重点:同类项概念,合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
三、学习课时(四课时——第一课时)
四、重、难点突破
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。
五、教学方法
讨论及探究式教学方法
六、教具准备
课件
七、教学过程设计
问题与情境师生行为设计意图
[活动1]
问题1:教室里非常混乱,有很多书本、扫把、粉笔等东西,问学生如何整理?为什么?
问题2:青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。
列车在冻土地段的行驶速度可以达到100千米/时,在非冻土地段的行驶速度可以达到120米/时,请根据这些数据回答下列问题:
[学生] 思考并回答:
将扫把放到一起,将书本
摆放整齐…。
[师] 引导学生意识
到“归类”存在于生活中。
由学生举例在生活中那些
运用到归类方法。
学生思考并回答:
100t+252t
从生活中的实例出
发,创设情境,在激发学
生学习兴趣的同时把生
活中的分类思想引入到
数学中来。
着重指出分类
时把具有相同特征的归
为一类。
在具体情境中用整
式表示问题中的数量关
系,利用实际问题吸引学
生的注意力。
问题与情境师生行为设计意图
在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的1.2倍,如果通过冻土地段需要t 小时,你能用含t 的式子表示这段铁路的全长吗?
问题3:式子100t +252t 能化简吗?依据是什么?
探究1
(1)运用有理数的运算律计算: =⨯+⨯22522100 ,
=-⨯+-⨯)2(252)2(100 .
(2)根据(1)中的方法完成下面的运算,并说明其中的道理. =
+t t 252100 . 探究2 (1)=-t t 252100( )t
(2)=+2
223x x ( )2x (3)
=-2243ab ab ( )2ab
提出问题3,让学生带着这个问题来解决探究1. [学生] 独立完成探究1中的(1),并对(2)进行分组讨论. [师] 巡视,对能化简出结果的小组,请他们说出化简的理由及依据.对不能化简出的小组应加以引导,参与到他们的讨论中. 增加:小组展示环节 在探究1的基础上,以原有的关于数的运算律的知识,开展探究2. 观察多项式中各项的特点,得出同类项的概念以及合并同类项的概念. 同类项:所含字母相同,并且相同的字母的指数也相同的项. 合并同类项:把多项式中的同类项合并成一项. 类比数的运算,探究得出合并同类项的法则. 法则:所得项的系数是合并前各同类项系数的和,字母部分不变. 合并同类项以及整式的加减是建立在单项式、多项式的相关概念的基础上,因此在学习新知识之前对前面的知识有必要进行简单的回顾.
通过对探究1和探究2的探讨,引出同类项的概念、合并同类项概
念.
问题3是本节内容
的核心,让学生在探究的
过程中体会用字母表示数的意义,培养学生的抽
象概括能力,在小组合作中体会交流的重要性和必要性。
注意:1、学生在活动中
是否参与到讨论中 2、学生对概念的理解
和掌握情况以及对合并同类项法则的总结情况 3、学生表述情况是否
有条理,是否清晰 4、在同类项的定义中,重点强调划线部分;说明
几个常数项也是同类项的合理性;法则中的注意点(以上删掉)增加“两
相同,两无关”
问题与情境
师生行为
设计意图
[活动2] 问题1: 说一说:
5253432222+++--xy y x xy y x
(1) 这个多项式中含有哪些项? (2) 各项的系数是多少? (3) 那些项可以合并成一项?为什么? 找一找: 游戏:一个同学任意说出一个单项式,另一个同学说出它的同类项.(删掉) 试一试: 试着把多项式合并同类项. 2837242
2--+++x x x x
问题2: 例1 合并下列各式的同类项: (1)22
5
1xy xy -;
(2)22222323xy x y y x y x -++-;
(3)2
22244234b a ab b a --++.
学生独立思考后回答.
一次请两位同学做游戏,可以进行多次.
学生独立完成,教师详细讲解,并示范.
注意:学生对同类项的
正确判别以及合并时不要漏项.
学生独立完成,教师巡视并讲解板演(2).
注意:再次强调同类项的概念,能够熟练的判别同类项(当字母不止一个
时,与字母的顺序无关,
如(2)中的y x 22和x y 23 学生接受同类项的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调同类项判断标准,使学生通过甄别、比较,逐步提高准确度和熟练度.
游戏的加入是为了让所有的同学都真正参与到课堂中来,让同学在轻松的环境中进一步体会同类项的概念.
巩固同类项的概念、合并同类项概念、合并同类项法则.通过具体练习让学生熟悉如何识别同类项、体会合并同类项的过程就是化简多项式的过程,并具体示范,让学生进一步了解化简过程的依据.
合并同类项法则的直接运用.
在巡视过程中了解学生的困难点,再在讲解过程中加以重视.
[活动3]
例2 (1)求多项式
23452222--++-x x x x x 的值,
其中2
1=x ;
学生独立完成,教师巡视.引导学生应用两种
方法进行比较:直接代入
求值,先化简再求值,看
哪种方法简便.
在比较两种方法的过程中,体会合并同类项 对运算的简化作用;自己得出结论:解决这类问题先化简再求值更简单.
问题与情境
师生行为
设计意图
(2)求多项式
2231
3313c a c abc a +--+的值,其
中3,2,6
1
-==-=c b a
问题2:
例3 (1)水库中水位第一天连续下降了a 小时,每小时平均下降cm 2;第二天连续上升了a 小时,每小时上升cn 5.0,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?
引导学生回顾用正负数表示具有相反意义的量,然后学生独立完成.要求:学生独立或合作完成(增加)
注意:关注学生是否能用正负数表示题目中具有相反意义的量.
提高学生将所学知识运用在实际问题中的能力,培养用数学的思想解决实际问题.
[活动4] 比一比:规定时间内完成下面的练习,看谁做得既快又对. (1)x x 2012-; (2)x x x 57-+; (3)a a a 7.23.05-+-;
(4)
y y y 23
2
31+-; (5)ab ba ab 86++-;
(6)2
2
5.010y y -.
学生独立完成,教师
巡视.增加:小组互评,相互学习。
通过比一比这个环节使学生能够熟练地进行整式的加减运算,让学生对本节知识的理解得到巩固.
[活动5]
通过本节的学习,你最开心的是解决了些什么问题,又学到了什么知识?
师生交流这节课的收获与体会.了解学生对知识点的总结是否全面、准确.
教师总结.
由学生进行小结,能够提高学生的归纳总结能力和语言表达能力. 八、作业设计。