新整理部编人教版高中数学必修一:全册作业与测评(含答案)单元质量评估(二)
- 格式:doc
- 大小:1.02 MB
- 文档页数:10
第二章单元质量评估(二)时限:120分钟 满分:150分一、选择题(每小题5分,共60分) 1.(lg9-1)2的值等于( ) A .lg9-1 B .1-lg9 C .8D .2 22.下列函数中,在区间(0,+∞)上不是增函数的是( ) A .y =2x B .y =log2xC .y =2xD .y =2x 2+x +13.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x >0,那么f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18的值为( )A .27 B.127 C .-27D .-1274.函数f (x )=ln(x 2+1)的图象大致是( )5.已知a =212,b =⎝ ⎛⎭⎪⎫12-0.5,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a6.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )7.一种放射性元素,每年的衰减率是8%,那么a kg 的这种物质的半衰期(剩余量为原来的一半所需的时间)t 等于( )A .lg 0.50.92B .lg 0.920.5 C.lg0.5lg0.92D.lg0.92lg0.58.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln xD .y =|x |9.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c10.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A.⎝⎛⎭⎪⎫110,1 B.⎝⎛⎭⎪⎫0,110∪(1,+∞)C.⎝ ⎛⎭⎪⎫110,10 D .(0,1)∪(1,+∞)11.函数f (x )=log 2|2x -1|的图象大致是( )12.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是减函数,设a =f (log 26),b =f (log 123),c =f ⎝ ⎛⎭⎪⎫13,则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(每小题5分,共20分) 13.已知4a =2,lg x =a ,则x =________.14.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.15.函数y =log a (2x -3)+4的图象恒过定点M ,且点M 在幂函数f (x )的图象上,则f (3)=________.16.已知0<x <y <1,且有以下关系:①3y>3x;②log x 3>log y 3;③⎝ ⎛⎭⎪⎫13y >⎝ ⎛⎭⎪⎫13x;④log 4x <log 4y ;⑤log 14x <log 4y .其中正确的关系式的序号是________.答案1.B 因为lg9<lg10=1,所以(lg9-1)2=|lg9-1|=1-lg9.故选B. 2.C 函数y =2x 为(0,+∞)上的减函数.故选C.3.B f ⎝ ⎛⎭⎪⎫18=log 218=-3,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18=f (-3)=3-3=127. 4.A 函数过定点(0,0),排除选项B 、D ,又f (-x )=ln(x 2+1)=f (x ),所以f (x )为偶函数,排除选项C.故选A.5.A ∵a =212,b =⎝ ⎛⎭⎪⎫12-0.5=2 12=2>1.∴a >b >1.又c =2log 52=log 54<1, 因此a >b >c .6.D 若a >1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈[0,1)时,y =x a 的图象应在直线y =x 的下方,故C 选项错误;若0<a <1,则函数g (x )=log a x 的图象过点(1,0),且单调递减,函数y =x a (x ≥0)的图象应单调递增,且当x ∈[0,1)时图象应在直线y =x 的上方,因此A ,B 均错,只有D 项正确.7.C 设t 年后剩余量为y kg ,则y =(1-8%)ta =0.92ta .当y =12a 时,12a =0.92ta ,所以0.92t=0.5,则t =log 0.920.5=lg0.5lg0.92.8.B A 项,函数y =e -x 为R 上的减函数; B 项,函数y =x 3为R 上的增函数; C 项,函数y =ln x 为(0,+∞)上的增函数;D 项,函数y =|x |在(-∞,0)上为减函数,在(0,+∞)上为增函数. 故只有B 项符合题意,应选B. 9.B 由log 5b =a ,得lg blg5=a ; 由5d =10,得d =log 510=lg10lg5=1lg5, 又lg b =c ,所以cd =a .故选B.10.C 由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.选C. 11.C 当0<x <1时,f (x )=log 2(2x -1)为增函数,排除A.当x <0时,f (x )=log 2(-2x +1)<0且为减函数.故选C.12.A 由f (x )是R 上的偶函数,且在(-∞,0]上是减函数,则f (x )在[0,+∞)上是增函数,由b =f ⎝⎛⎭⎪⎫log 12 3=f (-log 23)=f (log 23),由0<13<log 23<log 26,得f ⎝ ⎛⎭⎪⎫13<f (log 23)<f (log 26),即c <b <a .故选A.13.10解析:由4a=2,可得a =log 42=12.所以lg x =12,即x =10 12=10.14.2解析:由已知可得,lg(ab )=1,故f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.15.9解析:当2x -3=1时y =4.即函数y =log a (2x -3)+4图象恒过定点M (2,4),又M 在幂函数f (x )图象上,设f (x )=x m ,则4=2m ,解得m =2,即f (x )=x 2,则f (3)=32=9.16.①②④解析:∵3>1,y >x ,∴3y >3x ,故①正确. 由对数函数的图象知②正确; 由①正确知③不正确; ∵4>1,x <y ,∴log 4x <log 4y ,故④正确;log 14 x >0,log 4y <0,∴log 12x >log 4y ,故⑤不正确.————————————————————————————三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)计算: (1)⎝⎛⎭⎪⎫21412 -(-0.96)0-⎝ ⎛⎭⎪⎫338- 23 +1.5-2+[(-32)-4]- 34 ;(2)⎝ ⎛⎭⎪⎫lg 14-lg25÷100- 12+7log 72+1.18.(12分)已知函数f (x )=x m-2x 且f (4)=72.(1)求m 的值; (2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.答案17.解:(1)原式=⎝ ⎛⎭⎪⎫94 12 -1-⎝ ⎛⎭⎪⎫278- 23 +⎝ ⎛⎭⎪⎫32-2+[(32)-4]- 34=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2+(32)3=12+2=52.(2)原式=-(lg4+lg25)÷100- 12+14=-2÷10-1+14=-20+14=-6. 18.解:(1)因为f (4)=72, 所以4m-24=72,所以m =1.(2)由(1)知f (x )=x -2x ,所以函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又f (-x )=-x +2x =-⎝ ⎛⎭⎪⎫x -2x =-f (x ).所以函数f (x )是奇函数.(3)函数f (x )在(0,+∞)上是单调增函数,证明如下:设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-⎝ ⎛⎭⎪⎫x 2-2x 2 =(x 1-x 2)⎝⎛⎭⎪⎫1+2x 1x 2, 因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0.所以f (x 1)>f (x 2).所以函数f (x )在(0,+∞)上为单调增函数.———————————————————————————— 19.(12分)设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值和最小值.20.(12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.答案19.解:(1)∵f (1)=2,∴log a 4=2, ∵a >0,且a ≠1,∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3). 故函数f (x )的定义域为(-1,3).(2)∵由(1)知,f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数.∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.∵函数y =-(x -1)2+4的图象的对称轴是x =1,∴f (0)=f (2)<f ⎝ ⎛⎭⎪⎫32,∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最小值为f (0)=log 23.20.解:∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1.(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x -1-13-x -1=0,∴a =-12.(2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴-1<3x -1<0或3x -1>0, ∴-12-13x -1>12或-12-13x -1<-12.故函数的值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y >12或y <-12. ———————————————————————————— 21.(12分)已知函数f (x )=2x 2-4x +a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[-1,2m ]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1). ①求实数a 的值;②设t 1=12f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.(12分)设函数f (x )=log 2⎝⎛⎭⎪⎫1+x 1-ax (a ∈R ),若f ⎝ ⎛⎭⎪⎫-13=-1. (1)求f (x )的解析式;(2)g (x )=log 21+x k ,若x ∈⎣⎢⎡⎦⎥⎤12,23时,f (x )≤g (x )有解,求实数k 的取值集合.答案21.解:(1)因为抛物线y =2x 2-4x +a 开口向上,对称轴为x =1, 所以函数f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[-1,2m ]上不单调,所以2m >1,得m >12,所以实数m 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.(2)①因为f (1)=g (1),所以-2+a =0,所以实数a 的值为2.②因为t 1=12f (x )=x 2-2x +1=(x -1)2,t 2=g (x )=log 2x ,t 3=2x ,所以当x ∈(0,1)时,t 1∈(0,1),t 2∈(-∞,0),t 3∈(1,2),所以t 2<t 1<t 3. 22.解:(1)f ⎝ ⎛⎭⎪⎫-13=log 21-131+a 3=-1,∴231+a 3=12,即43=1+a 3,解得a =1.∴f (x )=log 21+x1-x .(2)∵log 21+x 1-x ≤log 21+xk=2log 21+x k =log 2⎝ ⎛⎭⎪⎫1+x k 2,∴1+x1-x ≤⎝ ⎛⎭⎪⎫1+x k 2.易知f (x )的定义域为(-1,1),∴1+x >0,1-x >0,∴k 2≤1-x 2.令h (x )=1-x 2,则h (x )在⎣⎢⎡⎦⎥⎤12,23上单调递减, ∴ h (x )max =h ⎝ ⎛⎭⎪⎫12=34.∴只需k 2≤34. 又由题意知k >0,∴0<k ≤32.【…、¥。
最新人教版高一数学必修一单元测试题及答案全套单元评估验收(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四 个选项中,只有一项符合题目要求)1.已知集合力={0, 1},则下列关系表示错误的是()D ・{0, 1}^A解析:{1}与/均为集合,而丘用于表示元素与集合的关系,所以B 错,其 正确的表示应是{1}匸4答案:B2.已知函数y=fix)的对应关系如下表,函数y=g(x)的图象是如下图的曲线 MC,其中力(1, 3), B(2, 1), C(3, 2),则张⑵)的值为( )解析:由图象可知g(2) = l,由表格可知/(1)=2,所以/0-(2)) = 2.答案:B 3・设全集 U={19 2, 3, 4}, M={1, 3, 4}, N={29 4}, P=[2}9 那么下列关系中正确的是( ) A. P=(JM)QNB ・ P=MUNC ・ P=MU((MV)D ・ P=MQN 解析:由题意知®M={2},故P=(5M)CN ・A. 3 X1 2 3 Ax)2 3 0C ・1D ・0 B ・2答案:A4.已知函数/U )的定义域为(一1, 0),则函数/(2x+l )的定义域为()A ・(一1, 1)C ・(一1, 0) —l<2x+l<0,解得一1 <xv —2,即函数/(2x+l )的定答案:BA. 一2B. 4 C ・ 2 D ・ 一 4 解析:对于/(2x+l ),5. 2X 9 X >0, 已知何仏+1),虫0・ +/—D的值等于(解析:函数的定义域为{X^l},排除c 、D,当x=2时,j=0,排除A, 故选B・6. %—2 X —的图象是( 4+I J =X ) B A D 答案:B答案:B-1),当炖(一 1, +°°)时,几)为增函数,又因为ao,所以当(=0时,担)有1 「 1 、最小值一㊁,所以函数的值域为一㊁,+°°L ■答案:c8・已知全集t/=R,集合 M={x|—2Wx —lW2}和7¥={兀氏=2力一1, k=l 9 2,・・・}的关系的Verni 图如图所示,则阴影部分表示的集合的元素共有()A. 3个C. 1个 解析:M={x|—2Wx —lW2} = {x|—1 WxW3},N={1, 3, 5,…},则MQ N={\, 3},所以阴影部分表示的集合共有2个 元素,故选B.答案:B9・已知函数/(x )=ax 3-bx-49其中a, b 为常数.若川一2) = 2,贝!J 爪2) 的值为() 解析:因为/(-2)=a(-2)3+Z>-(-2)-4=2, 所以8a+2方=一6,所以爪2) = 8。
A. [-3,3]B. ( — s, 3]新编人教版精品教学资料第二章单元质量评估(一)时限:120^钟满分:150分一、选择题(每小题5分,共60分)1.集合 M = {x|lgx<0}, N = {y|y=2x—1},则 MAN 等于()A. (-1,1)B. (0,1)C. (-1,0)D.(一巴 1)12. 22+log 29 的值是( )A. 12 2B. 9+ 2C. 9 2D. 8+ 2__ 13 .函数y=,—;—-用定义域是()log 2 x — 2a 24 .设a>0,将广 表不成分数指数哥的形式,其结果是(Va 3/a 215A. a 2B. a 673C. a 6D. a 2一— 1 x2 2x , 5 .函数y= (1) 的值域是()A.( (2)C. (2,3) U (3, +s) B. (2, +s)D. (2,4)U (4, +s)3C. (0,3]D. [3, 十*6 .三个数60.7, (0.7)6, log 0.76的大小顺序是(A. (0.7)6<log 0.76<60.7B. (0.7)6<60.7<log 0.76 C. log 0.76<60.7<(0.7)6D. log 0.76<(0.7)6<60.77.已知0<a<1,则a 2,2a , log 2a 的大小关系是( )A. a 2>2a>log 2a B. 2a>a 2>log 2a C. log 2a>a 2>2aD. 2a>log 2a>a 21 ,,8 .函数f(x) = ln(x ——)的大致图象是( )x ,Ji ;j yA Byi :.尹C D9 .已知指数函数y=f(x)的反函数的图象过点(2, —1),则此指数 函数的反函数为()A. y=(1)xB. y= 2xC. y=log 1 x210 .设 a = log 32, b=log 52, c=log 23,则( )A. a>c>bB. b>c>aC. c>b>aD. c>a>b11 .已知函数f(x) = log a (2x+b —1)(a>0, a#1)的图象如图所示,1D. y= log 2xA. 10<a<b <B. 0<b<1<1 aC. 1 0<b <a<1D.0<1<h<1 a b12.若 f(x)=lg(10x+1) + ax 是偶函数,4X— b D —一FL g (x )=-2「是奇函数,那么a+ b 的值为()A. 1B. - 1C. -2D.2、填空题(每小题5分,共20分)则a, b 满足的关系是(xx, x>4,13.若f(x) ={ 1 2 3 4则f(log23)的值是.l f(x+ 1), x<4,14.如图,在第一象限内,矩形ABCD的三个顶点A, B, C分别2 3在函数y = log亭x, v= x , y=(53)x的图象上,且矩形的边分别平行于两坐标轴,若点A的纵坐标是2,则点D的坐标是.15.下列区间中,函数f(x) = |ln(2 —x)|在其上为增函数的是.(填序号)_ … 4 3 …①(一0°, 1];②[T, 3];③[0, 2);④[1,2)16.函数y = a2x+2a x—1(a>0, a# 1)在区间[—1,1]上有最大值14, 则a的值是.答案2 B .. lgx<0, •..0<x<1,・・.M=(0,1), N = (—1, +s),・•.M AN=(0,1).故选B.* log29 13 C 2 =2 210g29 = V2 9 = 9也,选C.一一,[x —2>0,—, 一一 - 一4 C 由题意可知所以x>2且x?3,故选C.l.x-2^1,2 2 2 2 -a a a a 2—64. C' =/ 2 = = ""y = a aa,■ V a a 3 A/a 3 a 3276=a5. C 由丫= (3)x2 2x=(3)(x 1)21,故0<y<3.选C.6. D 由于60.7>1,0<(0.7)6<1, log0.76<0,故选D.7.B由于0<a<1,所以2a>20=1,0<a2<1, log2a<log21 = 0,因此2a>a2>log2a,故答案为B.8.B f(x) = ln(x —1)的定义域为{x|x—1>0} = (—1,0)U(1, +-), xx1 ............ 一所以排除A、D;当x>1时,易知f(x)=ln(x—1)为增函数,排除C,故x选B.9. C 指数函数的反函数为对数函数,设对数函数的解析式为y = log a x(a>0, a*1),其图象经过点(2, —1),所以log a2=—1,解得a1 ........... 一一一,=2.所以此指数函数的反函数为y = log1 x.10. D 易知log23>1, log326(0,1), log526(0,1),在同一平面直角坐标系中画出函数y=log3x与y=log5x的图象(图略),观察可知log32>log52,所以c>a>b.11.A 由图象知函数单调递增,所以a>1,又—1<f(0)<0, f(0) =1 .一log a(20 + b—1)=log a b,即—1<log a b<0,所以0<:<b<1,故选A. a12. D 函数f(x) = lg(10x+1) + ax是偶函数,所以f(x) = f( —x),即lg(10x+1)+ax=lg(10 x+1) —ax,化简得(2a+1)x= 0 对所有的x 都成1 4x—b一,一一立,所以a=-2;函数g(x) = »一是奇函数,所以g(-x) =4 x_ b 4x _ b—g(x),即x = ——2^,化简得(b—1)(4x+1)=0,所以b=1,2“.1故a+ b=].13—14.24解析:log23<4,则f(log23)=f(log23+1)=f(log26+ 1) = f(log2l2+1)= f(log 224), 1_ _110g224>4, . f(10g224)=2iog24 —24.21914.(2, 16)解析:由2 = 1og电x可得点A(2, 2),由2 = x 2得点B(4,2),又冷) 222 2 = 196,即点C(4, 16),所以点D的坐标为(2, 16).15.④»公、,八…ln(2 —x), x<1,解析:将函数f(x)化为分段函数,得f(x「一爪2—乂),1<x<2,作出函数的图象如图所示,根据图象可知f(x)在[1,2)上为增函数,其他三个区间都不满足题意.,、116.3或3 3解析:令t = a x,则t>0,函数y=a2x+2a x—1 可化为y=(t+1)2—2.当a>1 时,x6 [―1,1], .「Waka,即1wtwa, a a /・・・当t = a 时,y max=(a+1)2—2=14,解得a=3或a= —5(舍去);当0<a<1 时,.x6 [― 1,1], /. a< a x<:即awtw1, •・.当t = 1 时, aa a y max=(:+ 1)2-2=14,解得a=3或a= —5(舍去).故a 的值是3或1. a35 3三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10 分)(1)已知lg2 = a, lg3=b,试用a, b 表示log215;「& - 3 .(2)化简求值:[6; + 382 + 0.027 x(-3)2.18.(12 分)设x, y, z6 (0, +s),且3x = 4y = 6z,、一1 1 1(1)求证:rx=2y;(2)比较3x,4y,6z的大小.答案17.解:(1)由对数的运算性质以及换底公式可得10lg15 lg(3X 2)log215= lg2 = ^2lg3 + lg10 —lg2 b+1-a---- ----- ----------lg2 a .(2)^^64+382+0.027 3 X( —3) 2R Q,- 2 .一= ^y22+3/(23?+[(10 1X3)3] x(-3 1) 2= 5+22+102X 3 2X32=106.5.18 .解:设 3x=4y=6z= k,因为 x, y, z6(0, 十0°),所以 k>1, 且 x= log s k, y= log 4k, z= log 6k.1111 1.(1)证明:因为 2 -X = log^— jog^=log k 6Tog k 3=log k 2 = Rog k 4 = 1 1 1 1 1 不 - T = 丁,所以一—一=丁. 210g 4k 2y z x 2y~ 3 4 31og k 4 —41og k 3(2)因为 3x — 4y = 310g 3k — 410g 4k =顺一颉=唠卜3 唠卜4 =n 4 6 41og k 6 -61og k 4因为 4y — 6z = 410g 4k — 610g 6k=硒一记靛=1og k 4 1og k 6 2 1og k 36-1og k 64 _ 八10g k 4 1og k 6 <°,所以 4y<6z ■综上可知,19 . (12分)抽气机每次抽出容器内空气的 60%,要使容器内的空气少于原来的0.1%,则至少要抽几次? (1g2 = 0.301 0)1 V20 . (12分)已知f(x)是R 上的奇函数,且当x>0时,f(x) = (2)x+1. (1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并依据图象解不等式|f(x)|<1.答案1og k 64—1og k 81 1og 3 1og 4 <0,所以 3x<4y. 3x<4y<6z.19.解:设抽n次可使容器内的空气少于原来的0.1%,则a (1 - 60%)n<0.1%a(设原来容器中的空气体积为a).即0.4n<0.001,两边取常用对数,得 n lg0.4<lg0.001.所以n>噜署(因为lg0.4<0).1g V.于原来的0.1%.,一 , 一 1 、20 .解:(1)当 x<0 时,—x>0,则 f(—x) =(2)x +1.因为 f(x)是 R1 7上的奇函数,所以f(x) = —f( —x),从而f(x) = -(2) —1,止匕即x<0时 f(x)的解析式.因为f(x)是R 上的奇函数,所以f(0) = 0,从而函数f(x),(1)x+1, x>0的解析式为f (x ) =< 0, x=01 V , 一 、-(2)x —1, x<0. ......... 1、,(2)因为指数函数y=(2)x 为减函数,且图象过点(0,1),因此可以先 21 . (12 分)已知函数 f (x ) = 4x -2x+1+ 3.所以 ,-3n>2lg2-1 7.5.故至少需要抽 8次,才能使容器内的空气少画出x>0时f(x)的图象,再关于原点作对称图形即得到x<0时的图象.注 意不能漏掉点(0,0),画出图象如图所示.⑴当f(x) = 11时,求x的值;(2)当x6 [ —2,1]时,求f(x)的最大值和最小值.22. (12分)定义在[—1,1]上的奇函数f(x),当x6[ —1,0]时,f(x) =1a, r―2x(a € R).(1)写出f(x)在[0,1]上的解析式;(2)求f(x)在[0,1]上的最大值.答案21.解:令2x=t,则t>0,且f(x) = 4x-2x+1 + 3=(2x)2-2 2x+3 = t2 -2t + 3.(1)当f(x) = 11 时,即t2—2t + 3=11? (t—4)(t+2)=0,由t>0 可解得t=4,即2x=4,解得x= 2..1 1(2)当x6 [ — 2,1]时,t6 [4, 2],因此t2—2t+ 3=(t—1)2 + 2 且4<1<2一 1且2—1>1 —4,可知当t=1时,f(x)取得最小值2,当t=2时,f(x)取得最大值3.22.解:(1)设x6 [0,1],则—x6 [—1,0].1 a ,x xf( - x) = 4 x—2 x= 4 —a 2由于f(x)为奇函数,・•.f(x)= —f(—x) = a 2x—4x, x6[0,1]. (2) ♦・由(1)得f(x) = a2x—4x, x6 [0,1] 令t=2x, t€ [1,2],2.*.g(t) = at-t2=-(t-2)2+j.、一a当2<1 时,即a<2 时,g(t)max = g(1) = a— 1;a当1W2W2,即2<a<4 时,g(t)max = g(a)=\;,.a 一 . 一一当2>2,即a>4 日寸,g(t)max = g(2) = 2a —4,综上:当a<2时,f(x)最大值为a-1;a2当2 w a w 4时,f(x)取大值为—;当a>4时,f(x)最大值为2a— 4.。
高中数学必修一单元质量评估(一)(第一章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}【解析】选C.因为A={0,1,2},B={x|-1<x<2},所以A∩B={0,1}.2.(2015·天津高一检测)设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( ) A.2 B.0C.1D.不确定【解析】选C.因为N⊆M,所以集合N中元素均在集合M中,所以x=1.3.在下列由M到N的对应中构成映射的是( )【解析】选C.选项A中,集合M中的数3在集合N中没有数与之对应,不满足映射的定义;选项B中,集合M中的数3在集合N中有两个数a,b与之对应;选项D 中,集合M中的数a在集合N中有两个数1,3与之对应,不满足映射的定义.4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【解析】选 C.方法一:f(-3)=a(-3)3+b(-3)=-33a-3b=-(33a+3b)=3,所以33a+3b=-3.f(3)=33a+3b=-3.方法二:显然函数f(x)=ax3+bx为奇函数,故f(3)=-f(-3)=-3.【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定【解析】选B.因为f(x)是偶函数,所以f(-4)=f(4)=5,所以f(4)+f(-4)=10. 5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )【解析】选A.选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件,而B,C,D均不满足条件.6.若f(x)=则f的值为( )A.-B.C.D.【解析】选C.因为<1,所以应代入f(x)=1-x2,即f=1-=.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+1【解析】选B.由f(g(x))=f(2x+1)=6x+3=3(2x+1),知f(x)=3x.8.(2015·西城区高一检测)下列四个图形中,不是以x为自变量的函数的图象是( )【解析】选 C.由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<4【解析】选D.因为A∩R=∅,所以A=∅,即方程x2+x+1=0无解,所以Δ=()2-4<0,所以m<4.又因为m≥0,所以0≤m<4.10.(2015·赣州高一检测)函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( ) A.(-∞,0]和(-∞,1] B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)【解析】选 C.函数f(x)=|x|的单调递增区间为[0,+≦),函数g(x)=x(2-x)=-(x-1)2+1的单调递增区间为(-≦,1].11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个【解析】选B.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2〓5+1=11;若a,b一奇一偶,有12=1〓12=3〓4,每种可以交换位置,这时有2〓2=4, 所以共有11+4=15个.12.(2015·西安高一检测)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)【解析】选 D.由f(x)为奇函数,可知=<0.而f(1)=0,则f(-1)=-f(1)=0.又f(x)在(0,+≦)上为增函数,所以当0<x<1时,f(x)<0=f(1),此时<0;又因为f(x)为奇函数,所以f(x)在(-≦,0)上为增函数,所以当-1<x<0时,f(x)>0=f(-1),此时<0,即所求x的取值范围为(-1,0)∪(0,1).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·开封高一检测)已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.【解析】因为A∩B=A,所以A B,所以a≥2.答案:a≥214.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.【解析】若集合{x|ax=1}是任何集合的子集,则它是空集,即方程ax=1无解,所以a=0.答案:015.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤【解析】当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+1,又因为f(x)为偶函数,所以f(x)=f(-x)=1-x.答案:1-x16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).【解析】若a+b≤0,则a≤-b,b≤-a,又因为f(x)为R上递减的奇函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+ f(-b),④正确;又因为f(-b)=-f(b),所以f(b)f(-b)=-f(b)f(b)≤0,③正确.其余错误.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(ðB)∪A.R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.【解析】(1)A∩B={x|3≤x<6}.因为ðB={x|x≤2或x≥9},R所以(ðB)∪A={x|x≤2或3≤x<6或x≥9}.R(2)因为C⊆B,如图所示:所以解得2≤a≤8,所以所求集合为{a|2≤a≤8}.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.【解析】(1)因为f(x)=,所以f(3)==-,所以点(3,14)不在f(x)的图象上.(2)f(4)==-3.(3)令=2,即x+2=2x-12,解得x=14.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b 的值.【解析】因为函数f(x)的对称轴方程为x=-2,所以函数f(x)在定义域[-2,b](b>-2)上单调递增,所以函数f(x)的最小值为f(-2)=a-4=-2,所以a=2.函数f(x)的最大值为f(b)=b2+4b+2=b.所以b2+3b+2=0,解得b=-1或b=-2(舍去),所以b=-1.20.(12分)(2015·烟台高一检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.【解析】(1)由f(1)=2,f(2)=-1,得a+b=2,2a+b=-1,即a=-3,b=5,故f(x)=-3x+5,f(m+1)=-3(m+1)+5=-3m+2.(2)函数f(x)在R上单调递减,证明如下:任取x1<x2(x1,x2∈R),则f(x2)-f(x1)=(-3x2+5)-(-3x1+5)=3x1-3x2=3(x1-x2),因为x1<x2,所以f(x2)-f(x1)<0,即f(x2)<f(x1),所以函数f(x)在R上单调递减.【拓展延伸】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.【解析】(1)取x=y=0,则f(0+0)=2f(0),所以f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),所以f(-x)=-f(x)对任意x∈R恒成立,所以f(x)为奇函数.(2)任取x1,x2∈(-≦,+≦),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,所以f(x2)<-f(-x1),又f(x)为奇函数,所以f(x1)>f(x2),所以f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,所以对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),因为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2〓3=-6,所以f(-3)=-f(3)=6,所以f(x)在[-3,3]上的值域为[-6,6].22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.【解题指南】(1)结合已知等式利用赋值法求解.(2)利用赋值法并结合奇偶性定义判断.(3)结合(2)的结论及已知条件得f=1,再利用奇偶性和单调性脱去符号“f”,转化为一次不等式求解.【解析】(1)令x=y=0,得2f(0)=f(0),所以f(0)=0.(2)令y=-x,得f(x)+f(-x)=f(0)=0,即f(x)=-f(-x),所以f(x)为奇函数.(3)因为f=-1,f(x)为奇函数,所以f=1,所以不等式f(2x-1)<1等价于f(2x-1)<f,又因为f(x)在(-1,1)上是减函数,所以2x-1>-,-1<2x-1<1,解得<x<1.所以不等式的解集为.【误区警示】解答本题(3)时易忽视函数定义域而得出解集为的错误.单元质量评估(二)(第二章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.可用分数指数幂表示为( )A. B.a3C. D.都不对【解析】选C.====.故选C.2.(2015·怀柔高一检测)指数函数y=a x的图象经过点,则a的值是( )A. B. C.2 D.4【解析】选B.因为y=a x的图象经过点,所以a3=,解得a=.3.等于( )A.2B.2+C.2+D.1+【解析】选A.=2〓=2.4.若100a=5,10b=2,则2a+b= ( )A.0B.1C.2D.3【解析】选B.因为100a=102a=5,10b=2,所以100a〓10b=102a+b=5〓2=10,即2a+b=1.【一题多解】选B.由100a=5得a=log1005,由10b=2得b=lg2,所以2a+b=2〓lg5+lg2=1.5.(2015·塘沽高一检测)(log29)·(log34)= ( )A. B. C.2 D.4【解析】选D.(log29)·(log34)=·=·=4.【补偿训练】对数式lo(2-)的值是( )A.-1B.0C.1D.不存在【解析】选A.lo(2-)=lo=lo(2+)-1=-1.6.已知-1<a<0,则( )A.(0.2)a<<2aB.2a<<(0.2)aC.2a<(0.2)a<D.<(0.2)a<2a【解析】选 B.由-1<a<0,得0<2a<1,(0.2)a>1,>1,知A,D不正确.当a=-时,=<=0.,知C不正确.所以2a<<(0.2)a.【补偿训练】(2014·邢台高一检测)设a=lo3,b=,c=,则a,b,c的大小顺序为( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】选A.因为a=lo3<lo1=0,即a<0,0<b=<=1,即0<b<1,而c=>20=1,即c>1,所以a<b<c,选A.7.(2015·重庆高一检测)设函数y=x3与y=的图象的交点为(x0,y0),则x0所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.作出两个函数在同一坐标系内的图象如图所示,即可观察得出.8.若函数y=f的定义域是[2,4],则y= f lo x的定义域是( )A. B.C.[4,16]D.[2,4]【解析】选B.由于2≤lo x≤4,即lo≤lo x≤lo,所以≤x≤,故选B.【误区警示】本题易误认为函数y= f中的变量x也应在[2,4]上从而造成错选D.9.已知函数y=f(x)的反函数f-1(x)=lo x,则方程f(x)=1的解集是( )A. B. C. D.【解析】选D.f-1(x)=lo x,则f(x)=,f(x)=1可得x=0.【一题多解】选D.f(x)=1根据互为反函数的性质得x=f-1(1)=lo1=0.10.(2015·邢台高一检测)已知f(10x)=x,则f(5)= ( )A.105B.510C.lg 10D.lg 5【解题指南】利用换元法,先求出函数的解析式,再计算f(5)的值.【解析】选D.令10x=t>0,则x=lgt,故f(t)=lgt,所以函数f(x)=lgx(x>0),故f(5)=lg5.11.(2015·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M,N,P,Q, G中,可以是“好点”的个数为( )A.0个B.1个C.2个D.3个【解析】选 C.设此函数为y=a x(a>0,a≠1),显然不过点M、P,若设对数函数为y=log b x(b>0,b≠1),显然不过N点,故选C.12.已知函数g(x)=2x-,若f(x)=则函数f(x)在定义域内( )A.有最小值,但无最大值B.有最大值,但无最小值C.既有最大值,又有最小值D.既无最大值,又无最小值【解析】选A.当x≥0时,函数f(x)=g(x)=2x-在[0,+≦)上单调递增,设x>0,则-x<0,f(x)=g(x),f(-x)=g(x),则f(-x)=f(x),故函数f(x)为偶函数,综上可知函数f(x)在x=0处取最小值f(0)=1-1=0,无最大值.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=的定义域是.【解析】因为lo(x-1)≥0,所以0<x-1≤1,所以1<x≤2.答案:(1,2]【补偿训练】函数y=的定义域为.【解析】因为log0.5(4x-3)≥0,所以0<4x-3≤1,所以<x≤1.答案:14.(2015·沈阳高一检测)已知函数f(x)=则f的值为.【解析】因为>0,所以f=log3=log33-2=-2,所以f(-2)=2-2=.答案:15.函数f(x)=log5(2x+1)的单调增区间是.【解析】函数f(x)的定义域为,设u=2x+1,f(x)=log5u(u>0)是单调增函数,因此只需求函数u=2x+1的单调增区间,而函数u=2x+1在定义域内单调递增.所以函数f(x)的单调增区间是.答案:16.(2015·通化高一检测)已知函数f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是.【解题指南】由于函数在(-≦,+≦)上是减函数,故此分段函数应在每一段上也为减函数,且当x=1时应有3a-1+4a≥0,以此确定a的值.【解析】由于函数f(x)=是(-≦,+≦)上的减函数,则有,解得≤a<.答案:【延伸探究】若本题将函数改为“f(x)=”且在(-∞,+∞)上是增函数,又如何求解a的取值范围?【解析】由于函数f(x)=是(-≦,+≦)上的增函数,则有:,解得a>1.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)2log32-log3+log38-5log325.(2)log2.56.25+lg+ln(e)+log2(log216).【解析】(1)原式=log34-log3+log38-2=log3-=log39-9=2-9=-7.(2)原式=2-2++log24=.18.(12分)(2015·咸阳高一检测)已知f(x)=log a(1-x)(a>0,且a≠1)(1)求f(x)的定义域.(2)求使f(x)>0成立的x的取值范围.【解析】(1)依题意得1-x>0,解得x<1,故所求定义域为{x|x<1}.(2)由f(x)>0得log a(1-x)>log a1,当a>1时,1-x>1即x<0,当0<a<1时,0<1-x<1即0<x<1.19.(12分)(2014·十堰高一检测)已知函数f=(m2-m-1)是幂函数,且x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.【解析】因为f(x)是幂函数,所以m2-m-1=1,解得m=-1或m=2,所以f(x)=x-3或f(x)=x3,又易知f(x)=x-3在(0,+≦)上为减函数,f(x)=x3在(0,+≦)上为增函数.所以f(x)=x3.20.(12分)(2015·临沂高一检测)已知f是偶函数,当x≥0时,f=a x,若不等式f≤4的解集为[-2,2],求a的值.【解题指南】由已知先求出x<0的解析式,根据f≤4,利用分段函数分段求解,结合其解集为[-2,2],确定出a的值.【解析】当x<0时,-x>0,f(-x)=a-x,因为f为偶函数,所以f=a-x,所以f=(a>1),所以f≤4化为或,所以0≤x≤log a4或-log a4≤x<0,由条件知log a4=2,所以a=2.21.(12分)设a>0,f(x)=+是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上是增函数.【解题指南】(1)根据题意,利用偶函数的定义对一切x∈R有f(-x)=f成立,确定出a的值.(2)利用函数单调性的定义证明.【解析】(1)依题意,对一切x∈R有f(-x)=f成立,即+=+ae x,所以=0,对一切x∈R成立,由此得到a-=0,所以a2=1,又a>0,所以a=1.(2)设0<x1<x2,f-f=-+-=(-)<0,所以f<f,所以f(x)在(0,+≦)上是增函数.22.(12分)(2015·蚌埠高一检测)已知函数f(x)=log a(x+3)-log a(3-x),a>0且a ≠1.(1)求函数f(x)的定义域.(2)判断并证明函数f(x)的奇偶性.(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【解析】(1)由题得解得-3<x<3,故函数f(x)的定义域为(-3,3).(2)函数f(x)为奇函数,由(1)知函数f(x)的定义域关于原点对称,f(-x)=log a(-x+3)-log a(3+x)=-f(x),所以函数f(x)为奇函数.(3)当a>1时,函数f(x)为增函数,从而函数f(x)在区间[0,1]上也为增函数,最大值为f(1)=log a4-log a2=log a2.单元质量评估(三)(第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2.(2015·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.【补偿训练】下列函数中能用二分法求零点的是( )【解析】选C.在A中,函数无零点,在B和D中,函数有零点,但它们在零点两侧的函数值的符号相同,因此它们都不能用二分法来求零点.而在C中,函数图象是连续不断的,且图象与x轴有交点,并且其零点两侧的函数值异号,所以C中的函数能用二分法求其零点.3.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+≦)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4.(2015·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5.(2015·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( ) A.(3,4) B.(0,1) C.(1,2) D.(2,3)【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6.(2015·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=0【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7.(2015·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.【解题指南】本题如果注意到定义域可排除C,D选项,用f(a)·f(b)<0去验证B 选项即可得到答案.【解析】选 B.f(x)=3x-log2(-x)的定义域为(-≦,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内. 【补偿训练】在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为( ) A. B.C. D.【解析】选C.将选项代入f(x)=e x+4x-3.检验f f=(-2)(-1)<0,且f(x)=e x+4x-3的图象在上连续不断,故选C.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.【补偿训练】函数f(x)=+k有两个零点,则( )A.k=0B.k>0C.0≤k<1D.k<0【解析】选D.在同一平面直角坐标系中画出y1=和y2=-k的图象:由图象知,-k>0即k<0.11.(2015·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( ) A.①②③ B.①③ C.②③ D.①②【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是. 【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+≦).答案:[0,1)∪(2,+≦)【补偿训练】若函数f(x)=|7x-1|-k有两个零点,则实数k的取值范围是.【解析】函数f(x)=|7x-1|-k有两个零点,等价于方程k=|7x-1|有两个不等实根,即函数y=|7x-1|的图象与y=k的图象有两个公共点,结合图象知0<k<1.答案:(0,1)15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k ∈Z)内,则k= .【解题指南】由lgx+x-3=0,可得lgx=-x+3,令y 1=lgx,y 2=-x+3,结合两函数的图象,可大体判断零点所在的范围,然后结合零点的存在性定理来进行判断.【解析】由lgx+x-3=0,可得lgx=-x+3,令y 1=lgx,y 2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216.定义在R 上的偶函数y=f(x),当x ≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x 轴的交点个数是 .【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:2三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2015·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.【解析】因为函数的图象是连续不断的,并且由对应值表可知f ·f <0,f ·f(0)<0,f ·f <0,所以函数f 在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18.(12分)设f(x)=ax 2+(b-8)x-a-ab 的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18]. 19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解.用二分法逐次计算,列表如下:由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20.(12分)(2015·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.【解题指南】设出解析式,利用根与系数的关系求出未知量.【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21.(12分)(2015·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大. 22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51〓180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多要花16980元.综合质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·大庆高一检测)设集合U=,集合M=,N=,则M ∩(ðN)等于( )UA. B.C. D.【解析】选B.因为ðN=,M=,所以M∩(UðN)=.U【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则ð(A∪B)U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以ð(A∪B)={2,4}.U2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+≦).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x ≠2,故函数的定义域为[-1,2)∪(2,+≦).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠〒1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=〒,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( )A.c<b<aB.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小. 【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+≦)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.(2015·鹰潭高一检测)函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3).【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.(2015·临川高一检测)已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=log m(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。
选择性必修第一册全册课后练习及章末测验第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1第1课时空间向量与平行关系........................................................................... - 34 -1.4.1第2课时空间向量与垂直关系........................................................................... - 42 -1.4.2用空量研究距离夹角问题................................................................................... - 50 -第一章章末测验............................................................................................................ - 63 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 82 -2.2.1直线的点斜式方程............................................................................................... - 86 -2.2.2直线的两点式方程............................................................................................... - 91 -2.2.3直线的一般式方程............................................................................................... - 96 -2.3.1 2.3.2两条直线的交点坐标两点间的距离公式............................................. - 101 -2.3.3 2.3.4点到直线的距离公式两条平行直线间的距离..................................... - 106 -2.4.1圆的标准方程 .................................................................................................... - 112 -2.4.2圆的一般方程 .................................................................................................... - 116 -2.5.1直线与圆的位置关系......................................................................................... - 121 -2.5.2圆与圆的位置关系............................................................................................. - 127 - 第三章圆锥曲线的方程.................................................................................................... - 143 -3.1.1椭圆及其标准方程............................................................................................. - 143 -3.1.2第1课时椭圆的简单几何性质......................................................................... - 148 -3.1.2第2课时椭圆的标准方程及性质的应用......................................................... - 154 -3.2.1双曲线及其标准方程......................................................................................... - 162 -3.2.2双曲线的简单几何性质..................................................................................... - 168 -3.3.1抛物线及其标准方程......................................................................................... - 176 -3.3.2抛物线的简单几何性质..................................................................................... - 182 -第三章章末测验.......................................................................................................... - 189 -第一章 空间向量与立体几何 1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32.∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→, AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0. (2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M 为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →,故MN →=⎝ ⎛⎭⎪⎫12,0,-12.]14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →, ∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z -(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b|a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( ) A .cos 〈a ,b 〉=-25 B .a ⊥b C .a ∥bD .|a |=|b |AD [∵向量a =(1,2,0),b =(-2,0,1), ∴|a |=5,|b |=5,a ·b =1×(-2)+2×0+0×1=-2,cos 〈a ,b 〉=a ·b |a |·|b |=-25=-25.由上知A 正确,B 不正确,D 正确.C 显然也不正确.]12.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A .110B .25C .D .22C [建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=BM →·AN →|BM →|·|AN →|=36×5=3010.] 13.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.(-64,-26,-17) [∵a ,b ,c 两两垂直. ∴a ·b =0,a ·c =0,b ·c =0,∴⎩⎨⎧-x +2y -12=0x -4-4z =0-1-2y +3z =0,解得:x =-64,y =-26,z =-17. 故(x ,y ,z )=(-64,-26,-17).]14.(一题两空)已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当|P A →|=|PB →|时,点P 的坐标为________;当AP →·BP →=0取最小值时,点P 的坐标为________.⎝ ⎛⎭⎪⎫32,0,0 ⎝ ⎛⎭⎪⎫12,0,0 [因为P 在x 轴上,设P (x,0,0),由|P A →|=|PB →|,则( x -1)2+4+0=x 2+1+1解得x =32.∴点P 的坐标为⎝ ⎛⎭⎪⎫32,0,0,又AP →=(x -1,-2,0),BP →=(x ,-1,1).。
第二章单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b>0,则下列不等式中总成立的是()A.ba>b+1a+1B.a+1a>b+1bC.a+1b>b+1a D.2a+ba+2b>ab答案 C解析解法一:由a>b>0⇒0<1a<1b⇒a+1b>b+1a.故选C.解法二(特值法):令a=2,b=1,排除A,D;再令a=12,b=13,排除B.2.若a<b<c,则1c-b+1a-c的值为()A.正数B.负数C.非正数D.非负数答案 A解析1c-b+1a-c=a-c+c-b(c-b)(a-c)=a-b(c-b)(a-c).∵a<b<c,∴c-b>0,a-c<0,a-b<0,∴a-b(c-b)(a-c)>0.3.若不等式a>b与1a>1b同时成立,则必有()A.a>b>0 B.0>1a>1bC.a>0>b D.1a>1b>0答案 C解析若a>b>0,则1a<1b,若0>a>b,则1a<1b,所以只有当a >0>b 时,满足1a >1b .故选C. 4.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +3y =12m -3,x +2y =-2m +2的解中x 和y 互为相反数,则m 的值为( )A .2B .3C .4D .5答案 A解析 解方程组⎩⎪⎨⎪⎧2x +3y =12m -3,x +2y =-2m +2,得⎩⎪⎨⎪⎧x =7m -12,y =-92m +7,∵x 和y 互为相反数,∴x +y =0,则7m -12-92m +7=0,得m =2,故选A.5.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≥5或x ≤-1} B .{x |x >5或x <-1} C .{x |-1<x <5} D .{x |-1≤x ≤5} 答案 B解析 不等式x 2-2x -5>2x 可化为x 2-4x -5>0,解得x >5或x <-1. 6.已知m >0,n >0,m +n =1且x =m +1m ,y =n +1n ,则x +y 的最小值是( ) A .4 B .5 C .8 D .10答案 B解析 依题意有x +y =m +n +1m +1n =1+m +n m +m +n n =3+n m +mn ≥3+2=5,当且仅当m =n =12时取等号.故选B.7.已知x >0,y >0,且4x +y =1,则1x +1y 的最小值为( ) A .3 B .6 C .9 D .12答案 C解析 ∵x >0,y >0,4x +y =1,∴1x +1y =(4x +y )⎝ ⎛⎭⎪⎫1x +1y=4+y x +4xy +1≥5+2y x ·4xy =9.当且仅当y x =4x y ,即x =16,y =13时等号成立. ∴1x +1y 的最小值为9.8.若正实数x ,y 满足x +y +1x +1y =5,则x +y 的最大值是( ) A .2 B .3 C .4 D .5答案 C解析 由x +y +1x +1y =5,得(x +y )+x +y xy =5. 即5=(x +y )+x +y xy ≥(x +y )+4x +y ,(x +y )2-5(x +y )+4≤0. 解得1≤x +y ≤4.所以x +y 的最大值是4.故选C.9.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94 D .3答案 B解析 因为正实数x ,y ,z 满足x 2-3xy +4y 2-z =0. 所以xy z =xy x 2-3xy +4y 2=1x 2+4y 2xy -3≤14-3=1(当且仅当x 2=4y 2,即x =2y 时取等号).则2x +1y -2z =22y +1y -22y 2 =-⎝ ⎛⎭⎪⎫1y -12+1≤1,故选B.10.若关于x 的不等式ax -b >0的解集为(1,+∞),则关于x 的不等式ax +b x -2>0的解集为()A.(-∞,-2)∪(1,+∞)B.(1,2)C.(-∞,-1)∪(2,+∞)D.(-1,2)答案 C解析由题意知,x=1为方程ax-b=0的根,∴a-b=0,即a=b,∵ax-b>0的解集为(1,+∞),∴a>0,故ax+bx-2=a(x+1)x-2>0,转化为(x+1)(x-2)>0.∴x>2或x<-1.11.设[x]表示不超过x的最大整数(例如:[5.5]=5,[-5.5]=-6),则不等式[x]2-5[x]+6≤0的解集为()A.(2,3) B.[2,4)C.[2,3] D.(2,4]答案 B解析不等式[x]2-5[x]+6≤0可化为([x]-2)·([x]-3)≤0,解得2≤[x]≤3,根据[x]表示不超过x的最大整数得不等式的解集为2≤x<4.故选B.12.在R上定义运算x*y=x(1-y).若关于x的不等式x*(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是()A.[0,2] B.[-2,-1)∪(-1,0]C.[0,1)∪(1,2] D.[-2,0]答案 D解析由题意,得x*(x-a)=x[1-(x-a)]=x[(a+1)-x],所以x*(x-a)>0,即x[x-(a+1)]<0.当a=-1时,不等式的解集为空集,符合题意;当a>-1时,不等式的解集为(0,a+1),又因为其为[-1,1]的子集,所以0<a+1≤1,得-1<a≤0;当a<-1时,不等式的解集为(a+1,0),又因为其为[-1,1]的子集,所以0>a +1≥-1,得-2≤a <-1. 综上所述,a 的取值范围是[-2,0].故选D.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.不等式0≤x 2-2x -3<5的解集为________. 答案 {x |-2<x ≤-1或3≤x <4} 解析 由x 2-2x -3≥0得x ≤-1或x ≥3; 由x 2-2x -3<5得-2<x <4, ∴-2<x ≤-1或3≤x <4.∴原不等式的解集为{x |-2<x ≤-1或3≤x <4}.14.若不等式|3x -b |<4的解集中的整数解有且仅有1,2,3,则b 的取值范围为________.答案 (5,7)解析 |3x -b |<4⇔-4<3x -b <4⇔b -43<x <b +43. ∵仅有整数1,2,3∈⎝ ⎛⎭⎪⎫b -43,b +43,∴⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,∴⎩⎨⎧4≤b <7,5<b ≤8,∴5<b <7. 15.若a >0,则a +82a +1的最小值为________. 答案 72解析 由题意可知a +82a +1=a +12+4a +12-12≥2⎝ ⎛⎭⎪⎫a +12×4a +12-12=72,当且仅当a +12=4a +12,即a =32时等号成立.所以a +82a +1的最小值为72. 16.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰的价格________3枝康乃馨的价格(填“>”“<”或“=”).答案 >解析 设1枝玫瑰的价格为x 元,1枝康乃馨的价格为y 元,由题意可得⎩⎨⎧ 6x +3y >24,4x +4y <20,即⎩⎨⎧2x +y >8,x +y <5,设2x -3y =m (2x +y )+n (x +y )=(2m +n )x +(m +n )y ,则⎩⎨⎧2m +n =2,m +n =-3,解得⎩⎨⎧m =5,n =-8,所以2x -3y =5(2x +y )-8(x +y )>5×8-5×8=0,即2x >3y ,所以2枝玫瑰的价格高.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)若实数x ,y ,z 满足y +z =3x 2-4x +6,y -z =x 2-4x +4.试确定x ,y ,z 的大小关系.解 因为y -z =x 2-4x +4=(x -2)2≥0,所以y ≥z . 又y +z =3x 2-4x +6,y -z =x 2-4x +4, 所以z -x =(y +z )-(y -z )2-x =1+x 2-x=⎝ ⎛⎭⎪⎫x -122+34>0,所以z >x ,即y ≥z >x . 18.(本小题满分12分)已知函数y =ax 2+bx +c 满足x =1时,y =0,且a >b >c ,求ca 的取值范围.解 函数y =ax 2+bx +c 满足x =1时y =0,则a +b +c =0.根据a >b >c ,知:①若a >b >0>c ⇔a >-(a +c )>0>c ⇒1>-1-c a >0>ca ⇒-2<ca <-1;②若a >0>b >c ⇔a >0>-(a +c )>c ⇒1>0>-1-c a >c a ⇒-1<c a <-12; ③若a >b =0>c ⇔a >-(a +c )=0>c ⇒ca =-1, 综上所述,c a 的取值范围是-2<c a <-12.19.(本小题满分12分)已知a ,b ,x ,y ∈(0,+∞)且1a >1b ,x >y ,求证:xx +a >y y +b.证明 ∵x x +a -yy +b =bx -ay (x +a )(y +b ), 又∵1a >1b 且a ,b ∈(0,+∞),∴b >a >0. 又∵x >y >0,∴bx >ay >0. ∴bx -ay (x +a )(y +b )>0,∴x x +a >yy +b.20.(本小题满分12分)设函数y =mx 2-mx +1(m >0). (1)若存在实数x ,使y <0成立,求实数m 的取值范围; (2)若存在x ∈[1,3],使y <-m +5成立,求实数m 的取值范围. 解 (1)若存在实数x ,使y <0成立, 则⎩⎨⎧m >0,m 2-4m >0,解得m >4. 所以实数m 的取值范围为(4,+∞). (2)若存在x ∈[1,3],使y <-m +5成立, 则存在x ∈[1,3],使m (x 2-x +1)-4<0成立. 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又m (x 2-x +1)-4<0,所以m <4⎝ ⎛⎭⎪⎫x -122+34.设函数z =4⎝ ⎛⎭⎪⎫x -122+34,则函数z =4⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最大值为4,所以只需m <4即可.又m >0,∴m 的取值范围是(0,4).21.(本小题满分12分)某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入为50万元.(1)问捕捞几年后总盈利最大,最大是多少? (2)问捕捞几年后年平均利润最大,最大是多少? 解 (1)设该船捕捞n 年后的总盈利为y 万元.则 y =50n -98-[12×n +0+4+8+…+4(n -1)]=50n -98-⎣⎢⎡⎦⎥⎤12×n +n (n -1)2×4 =-2n 2+40n -98=-2(n -10)2+102.所以捕捞10年后总盈利最大,最大是102万元. (2)年平均利润为y n =-2⎝ ⎛⎭⎪⎫n +49n -20≤-2⎝⎛⎭⎪⎫2n ·49n -20=12,当且仅当n =49n ,即n =7时等号成立.所以,捕捞7年后年平均利润最大,最大是12万元.22.(本小题满分12分)已知关于x 的不等式(kx -k 2-4)·(x -4)>0,其中k ∈R .(1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.解 (1)当k =0时,A ={x |x <4}; 当k >0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <4或x > k +4k当k <0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k +4k <x <4. (2)由(1)知:当k ≥0时,集合B 中的元素的个数无限;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集. 因为k +4k =-⎣⎢⎡⎦⎥⎤(-k )+4-k ≤-4,当且仅当k =-2时取等号,所以当k =-2时,集合B 的元素个数最少.此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.。
姓名,年级:时间:必修1 学期综合测评(二)对应学生用书P111 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数f(x)=11-x+错误!的定义域是()A.(-∞,-1) B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞)答案C解析由错误!得x〉-1且x≠1,故选C。
2.下列函数中,是奇函数,又在定义域R上为减函数的是( )A.y=错误!x B.y=错误!C.y=-2x3 D.y=log2(-x)答案C解析本题考查函数的单调性与奇偶性.y=错误!x与y=log2(-x)为非奇非偶函数,排除A,D;y=错误!为奇函数,但在(-∞,0)和(0,+∞)上是减函数,即在R上不为减函数,排除B;y=-2x3既是奇函数又在R 上是减函数,故选C.3.下列各组函数中,表示同一函数的是( )A.y=1,y=x0 B.y=lg x2,y=2lg xC.y=|x|,y=(x)2 D.y=x,y=错误!答案D解析对于A,当x=0时后者无意义;对于B和C,当x〈0时前者有意义而后者无意义;D显然正确.4.设函数f(x)=错误!则f[f(3)]=( )A。
错误! B.错误! C。
错误! D.3答案C解析本题考查分段函数的计算.f(3)=错误!,故f[f(3)]=f错误!=错误!,故选C.5.已知函数f(x)是偶函数,且在区间[0,1]上是减函数,则f(-0。
5)、f(-1)、f(0)的大小关系是( )A.f(-0.5)<f(0)〈f(-1)B.f(-1)<f(-0。
5)<f(0)C.f(0)〈f(-0.5)〈f(-1)D.f(-1)<f(0)〈f(-0。
5)答案B解析因为函数f(x)是偶函数,所以f(-0。
5)=f(0。
5),f(-1)=f(1).又因为f(x)在区间[0,1]上是减函数,所以f(-1)<f (-0.5)<f(0).6.已知函数f(x)=|lg x|-错误!x有两个零点x1,x2,则有()A.x1x2<0 B.x1x2=1C.x1x2〉1 D.0〈x1x2<1答案D解析根据分析,不妨设0<x1〈1,x2〉1,根据函数零点的概念则有|lg x1|-错误!x1=0,|lg x2|-错误!x2=0,即-lg x1=错误!x1,lg x2=错误!x 2,后面的方程减去前面的方程得lg (x 1x 2)=⎝ ⎛⎭⎪⎪⎫12x 2-错误!x 1,由于x 2〉x 1,根据指数函数的性质,错误!x 2-错误!x 1〈0,所以lg (x 1x 2)〈0,即0〈x 1x 2<1,故选D.7.已知f (x )=错误!是R 上的增函数,则实数a 的取值范围是( ) A 。
单元质量评估(二)(第二章)(90分钟120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1.下列式子中正确的是( )A.=B.=aC.=D.a0=a【解析】选C.因为==,故A错误.因为=|a|,故B 错误.而a0=1(a≠0),故D错误.C显然正确.2.(2017·烟台高一检测)化简的结果为( )A. B. C. D.a【解析】选C.原式====.3.(2017·开封高一检测)已知x,y,z都是大于1的正数,m>0,且log x m=24,log y m=40,log xyz m=12,则log z m= ( )A. B.60 C. D.【解析】选B.因为log xyz m=12,所以log m(xyz)=,即log m x+log m y+log m z=,所以++log m z=,即log m z=,故log z m=60.4.计算:(log29)·(log34)= ( )A. B. C.2 D.4【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.5.函数y=(1-x+log3x的定义域为( )A.(-∞,1]B.(0,1]C.(0,1)D.[0,1]【解析】选B.由题意得,1-x≥0且x>0,解得0<x≤1.6.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图象经过点(,a),则f(x)= ( )A.log 2xB.lo xC.D.x2【解析】选B.因为函数y=f(x)的图象经过点(,a),所以函数y=a x(a>0,且a≠1)过点(a,),所以=a a,即a=,故f(x)=lo x.7.(2017·大连高一检测)已知a=212,b=,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a【解析】选A.因为a=212,b==,且y=2x在(-∞,+∞)上是增函数,所以a>b>20=1.又c=2log52=log54<1,因此a>b>c.8.设f(x)=则f(f(2))的值为( )A.0B.1C.2D.3【解析】选C.因为f(2)=log3(22-1)=log33=1,所以f(f(2))=f(1)=2e1-1=2.【延伸探究】本题条件不变,若f(a)=2,则a=__________.【解析】f(a)=2⇒或⇒a=1或a=. 答案:1或9.若函数y=(m2+2m-2)x m为幂函数且在第一象限为增函数,则m的值为( )A.1B.-3C.-1D.3【解析】选A.因为函数y=(m2+2m-2)x m为幂函数且在第一象限为增函数,所以所以m=1.10.设f(x)是定义在实数集R上的函数,满足条件:y=f(x+1)是偶函数,且当x≥1时,f(x)=5x,则f,f,f的大小关系是( )A.f<f<fB.f<f<fC.f<f<fD.f<f<f【解析】选D.因为y=f(x+1)是偶函数,所以y=f(x+1)的对称轴为x=0,所以y=f(x)的对称轴为x=1.又x≥1时,f(x)=5x,所以f(x)=5x在[1,+∞)上是增函数,所以f(x)在(-∞,1]上是减函数.因为f=f,且>>,所以f<f<f,即f<f<f.11.函数y=log2|x|的大致图象是( )【解题指南】将原函数化为分段函数的形式,结合该函数的性质,即可找出正确答案.【解析】选D.因为y=log2|x|=故选D.12.已知函数f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(3,13)B.C. D.【解题指南】结合解析式,画出函数图象,利用数形结合思想即可求出abc的取值范围.【解析】选B.由图可见因为|log3b|=|log3a|,log3b=-log3a,log3b+log3a=0,ab=1,所以abc=c∈.【拓展】巧用图象解题函数的图象与性质是一一对应的,在解函数问题时,经常用到函数的图象,这体现了一种思想方法——数形结合,“数”是函数的特征,它精确、量化、具有说服力;而“形”是函数的图象,它形象、直观,能降低思维难度,简化解题过程.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·成都高一检测)如图,矩形ABCD的三个顶点A,B,C分别在函数y=lo x,y=,y=的图象上,且矩形的边分别平行于两坐标轴.若点A的纵坐标为2,则点D的坐标为________.【解析】由题图可知,点A(x A,2)在函数y=lo x的图象上,所以2=lo x A,x A==.点B(x B,2)在函数y=的图象上,所以2=,x B=4.点C(4,y C)在函数y=的图象上,所以y C==.又x D=x A=,y D=y C=,所以点D的坐标为.答案:14.(2015·安徽高考)计算:lg+2lg2-=________.【解析】原式=lg5-lg2+2lg2-2=lg5+lg2-2=-1.答案:-115.(2017·德州高一检测)函数y=a x+2-1(a>0且a≠1)的图象恒过定点________.【解析】令x+2=0得x=-2,此时y=0,故函数y=a x+2-1的图象恒过定点(-2,0).答案:(-2,0)16.已知实数a,b满足等式==m,则下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的关系式为________(用编号作答).【解析】当m=1时,a=b=0;当m>1时,a<b<0(如图所示);当0<m<1时,0<b<a(如图所示);综上知①②⑤可能成立.答案:①②⑤三、解答题(本大题共4个小题,共40分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)-(-0.96)0-+1.5-2+[(-)-4.(2)÷10+.【解析】(1)原式=-1-++[()-4=-1-++()3=+2 =.(2)原式=-(lg4+lg25)÷10+14=-2÷10-1+14=-20+14=-6.18.(10分)已知幂函数f(x)=(m∈N*).(1)确定函数的定义域,并说明定义域上的单调性.(2)若函数经过点(2,),确定m的值,并求f(2-a)>f(a-1)时a的取值范围.【解题指南】(1)判断幂指数的奇偶性,再确定定义域以及单调性. (2)求出幂指数的值,利用函数的单调性转化为不等式求解.【解析】(1)因为m∈N*,所以m2+m=m(m+1)为偶数,令m2+m=2k,k∈N*,则f(x)=,所以定义域为[0,+∞),且在[0,+∞)上单调递增.(2)因为=,所以m2+m=2得m=1或m=-2(舍去).所以f(x)=,解2-a>a-1≥0得1≤a<,所以a的取值范围为.19.(10分)已知f(x)=log a x(a>0且a≠1)的图象过点(4,2),(1)求a的值.(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域.(3)在(2)的条件下,求g(x)的单调减区间.【解析】(1)由已知f(x)=log a x(a>0且a≠1)的图象过点(4,2),则2=log a4,即a2=4,又a>0且a≠1,所以a=2.(2)g(x)=f(1-x)+f(1+x)=log2(1-x)+log2(1+x).由得-1<x<1,定义域为(-1,1).(3)g(x)=log2(1-x)+log2(1+x)=log2(1-x2),其单调减区间为[0,1).【补偿训练】(2017·大庆高一检测)已知函数f(x)=log a(x-1),g(x)=log a(3-x)(a>0且a≠1).(1)求函数h(x)=f(x)-g(x)的定义域.(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围. 【解析】(1)由得1<x<3.所以函数h(x)的定义域为(1,3).(2)不等式f(x)≥g(x),即为log a(x-1)≥log a(3-x).(*)①当0<a<1时,不等式(*)等价于解得1<x≤2.②当a>1时,不等式(*)等价于解得2≤x<3.综上,当0<a<1时,原不等式解集为(1,2],当a>1时,原不等式解集为[2,3).20.(10分)(2017·长春高一检测)已知函数f(x)=,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).(1)求h(a).(2)是否存在实数m>n>3,当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,说明理由.【解析】(1)因为x∈[-1,1],所以∈.设t=,t∈,则g(t)=t2-2at+3=(t-a)2+3-a2.当a<时,h(a)=g=-;当≤a≤3时,h(a)=g(a)=3-a2;当a>3时,h(a)=g(3)=12-6a.所以h(a)=(2)假设满足题意的m,n存在,因为m>n>3,所以h(a)=12-6a在(3,+∞)上是减函数.因为h(a)的定义域为[n,m],值域为[n2,m2],所以高中数学-打印版相减得6(m-n)=(m-n)(m+n).由m>n>3,所以m+n=6,但这与m>n>3矛盾,所以满足题意的m,n不存在.关闭Word文档返回原板块精心校对。
(直打版)新人教版高一数学必修一综合测试含答案解析(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)新人教版高一数学必修一综合测试含答案解析(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)新人教版高一数学必修一综合测试含答案解析(2)(word版可编辑修改)的全部内容。
高一数学必修一综合测试一、单项选择 (每题5分 共12小题 60分)1.函数210)2()5(--+-=x x y ( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 2.设函数y =lg(x 2-5x )的定义域为M,函数y =lg (x -5)+lg x 的定义域为N ,则 ( )A .M ∪N=RB .M=NC .M ⊇ND .M ⊆N3.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是( ) 4.函数2422-+=x x y 的单调递减区间是( ) A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-5. 函数2232y x x =--的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦ D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭6。
已知(1)f x +的定义域为[2,3]-,则(21)f x -定义域是 ( )A 。
5[0,]2B.[1,4]- C 。
[5,5]- D 。
第一章单元质量评估(二)时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知全集U =R ,集合P ={x ∈N *|x <7},Q ={x |x -3>0},那么图中阴影部分表示的集合是( )A .{1,2,3,4,5,6}B .{x |x >3}C .{4,5,6}D .{x |3<x <7}2.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或43.下表给出函数y =f (x )的部分对应值,则f (1)=( )x -1 0 1 478y2π 1 -3 1A. π C .8D .04.下列四个函数中,在(-∞,0)上是增函数的为( ) A .f (x )=x 2+1 B .f (x )=1-1x C .f (x )=x 2-5x -6D .f (x )=3-x5.函数f (x )=1+x +x 2+11-x 的定义域为( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)6.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π7.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值等于( )A.23 B .2 C .4D .68.已知函数y =k (x +2)-1的图象恒过定点A ,若点A 也在函数f (x )=3x +b的图象上,则f ⎝⎛⎭⎪⎫-3727等于( )A.89B.79C.59D.299.已知函数y =f (x )在(0,2)上为增函数,函数y =f (x +2)为偶函数,则f (1),f⎝ ⎛⎭⎪⎫52,f ⎝ ⎛⎭⎪⎫72的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72B .f (1)>f ⎝ ⎛⎭⎪⎫52>f ⎝ ⎛⎭⎪⎫72C .f ⎝ ⎛⎭⎪⎫72>f ⎝ ⎛⎭⎪⎫52>f (1)D .f ⎝ ⎛⎭⎪⎫72>f (1)>f ⎝ ⎛⎭⎪⎫5210.定义运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,则函数f (x )=x 2|x |的图象是( )11.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( ) A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)12.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( )A .0B .1或2C .1D .2二、填空题(每小题5分,共20分)13.已知f (x +2)=x 2-4x ,则f (x )=________.14.设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________.15.已知二次函数f (x )=x 2+2ax -4,当a ________时,f (x )在[1,+∞)上是增函数,当a ________时,函数f (x )的单调递增区间是[1,+∞).答案1.C P ={1,2,3,4,5,6},Q ={x |x >3},则阴影部分表示的集合是P ∩Q ={4,5,6}.2.A 当a =0时,方程ax 2+ax +1=0无解, 这时集合A 为空集,故排除C 、D.当a =4时,方程4x 2+4x +1=0只有一个解x =-12,这时集合A 只有一个元素,故选A. 3.A4.B A ,C ,D 选项中的三个函数在(-∞,0)上都是减函数,只有B 正确.5.D 要使函数有意义,则有⎩⎪⎨⎪⎧1+x ≥0,1-x >0,解得-1≤x <1,所以函数的定义域为[-1,1). 6.B 因为π是无理数,所以g (π)=0, 所以f (g (π))=f (0)=0.故选B.7.B 因为函数f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )关于x =1对称,所以区间(3-2a ,a +1)关于x =1对称,所以3-2a +a +12=1,即a =2,所以选B.8.A 由题知A (-2,-1).又由A 在f (x )的图象上得3×(-2)+b =-1,b =5,则f (x )=3x +5,则f ⎝ ⎛⎭⎪⎫-3727=89.故选A.9.A y =f (x +2)关于x =0对称,则y =f (x )关于x =2对称,因为函数f (x )在(0,2)上单调递增,所以函数f (x )在(2,+∞)上单调递减,所以f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72. 10.B 根据运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,得f (x )=x 2|x |=⎩⎪⎨⎪⎧x 2,x <-1或x >1,|x |,-1≤x ≤1,由此可得图象如图所示. 11.C ∵f (x )为偶函数,∴f (-x )=f (x ),故f (x )+f (-x )2x <0可化为f (x )x <0.又f (x )在(0,+∞)上是减函数,且f (3)=0,结合图象知,当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x <0的解集为(-3,0)∪(3,+∞).12.C 二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.13.x 2-8x +12解析:设t =x +2,则x =t -2, ∴f (t )=(t -2)2-4(t -2)=t 2-8t +12. 故f (x )=x 2-8x +12. 14.-0.5解析:由题意,得f (x )=-f (x +2)=f (x +4),则f (7.5)=f (3.5)=f (-0.5)=-f (0.5)=-0.5.15.≥-1 =-1解析:∵f (x )=x 2+2ax -4=(x +a )2-4-a 2, ∴f (x )的单调递增区间是[-a ,+∞),∴当-a ≤1时,f (x )在[1,+∞)上是增函数,即a ≥-1; 当a =-1时,f (x )的单调递增区间是[1,+∞).16.定义在R 上的偶函数f (x ),当x ∈[1,2]时,f (x )<0,且f (x )为增函数,给出下列四个结论:①f (x )在[-2,-1]上单调递增; ②当x ∈[-2,-1]时,有f (x )<0; ③f (x )在[-2,-1]上单调递减; ④|f (x )|在[-2,-1]上单调递减.其中正确的结论是________(填上所有正确的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设全集为实数集R ,集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }.(1)求A ∪B 及(∁R A )∩B ;(2)若A ∩C =A ,求a 的取值范围; (3)如果A ∩C ≠∅,求a 的取值范围. 18.(12分)已知函数f (x )=1+x -|x |4. (1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x 的解集.——————————————————————————答案16.②③解析:因为f (x )为定义在R 上的偶函数,且当x ∈[1,2]时,f (x )<0,f (x )为增函数,由偶函数图象的对称性知,f (x )在[-2,-1]上为减函数,且当x ∈[-2,-1]时,f (x )<0.17.解:(1)A ∪B ={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |2<x <3,或7≤x <10}.(2)由A ∩C =A 知A ⊆C ,借助数轴可知a 的取值范围为[7,+∞). (3)由A ∩C ≠∅可知a 的取值范围为(3,+∞). 18.解:(1)当x ≥0时,f (x )=1+x -x4=1; 当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎨⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x 的解集是{x |x >1}.19.(12分)已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0,且f (x )在(1,+∞)内单调递减,求a 的取值范围.20.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2.(1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性;(3)求函数f (x )+g (x )在(0,2]上的最小值.答案19.(1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2).故f (x )在(-∞,-2)内单调递增.(2)解:任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1].20.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2, ∴k 1=1,k 2=2,∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-⎝ ⎛⎭⎪⎫x +2x =-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知h (x )=x +2x .设x 1,x 2是(0,2]上的任意两个不相等的实数,且x 1<x 2,则h (x 1)-h (x 2)=⎝ ⎛⎭⎪⎫x 1+2x 1-⎝ ⎛⎭⎪⎫x 2+2x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫2x 1-2x 2=(x 1-x 2)⎝⎛⎭⎪⎫1-2x 1x 2=(x 1-x 2)(x 1x 2-2)x 1x 2. ∵x 1,x 2∈(0,2],且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,∴(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=22,即函数f (x )+g (x )在(0,2]上的最小值是2 2.——————————————————————————21.(12分)若定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1.(1)求证:y =f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数; (3)若f (4)=5,解不等式f (3m -2)<3.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +mx 2+nx +1.(1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a3对x ∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a 的取值范围.答案21.(1)证明:因为定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,所以令x 1=x 2=0,则f (0+0)=f (0)+f (0)-1, 即f (0)=1.令x 1=x ,x 2=-x , 则f (x -x )=f (x )+f (-x )-1, 所以[f (x )-1]+[f (-x )-1]=0, 故y =f (x )-1为奇函数.(2)证明:由(1)知y =f (x )-1为奇函数, 所以f (x )-1=-[f (-x )-1].任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0,所以f (x 2-x 1)=f (x 2)+f (-x 1)-1=f (x 2)-[f (x 1)-1]=f (x 2)-f (x 1)+1.因为当x >0时,f (x )>1,所以f (x 2-x 1)=f (x 2)-f (x 1)+1>1,即f (x 1)<f (x 2),故f (x )是R 上的增函数.(3)解:因为f (x 1+x 2)=f (x 1)+f (x 2)-1,且f (4)=5,所以f (4)=f (2)+f (2)-1=5,即f (2)=3,由不等式f (3m -2)<3,得f (3m -2)<f (2).由(2)知f (x )是R 上的增函数,所以3m -2<2,即3m -4<0,即m <43,故不等式f (3m -2)<3的解集为⎝⎛⎭⎪⎫-∞,43. 22.(1)解:因为奇函数f (x )的定义域为R ,所以f (0)=0.故有f (0)=0+m 02+n ×0+1=0,解得m =0. 所以f (x )=x x 2+nx +1.由f (-1)=-f (1), 即-1(-1)2+n ×(-1)+1=-112+n ×1+1,解得n =0.所以m =n =0. (2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1.则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1,所以-1<x 1x 2<1,故1-x 1x 2>0,又因为x 1<x 2,所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上为增函数.(3)解:由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎢⎡⎦⎥⎤-13,13上为增函数, 故最大值为f ⎝ ⎛⎭⎪⎫13=310. 由题意可得a 3≥310,解得a ≥910.故a 的取值范围为⎣⎢⎡⎭⎪⎫910,+∞.。
综合质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·大庆高一检测)设集合U=,集合M=,N=,则M ∩(ðN)等于( )UA. B.C. D.【解析】选B.因为ðN=,M=,所以M∩(UðN)=.U【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则ð(A∪B)U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以ð(A∪B)={2,4}.U2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x ≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( )A.c<b<aB.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小. 【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log 23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.(2015·鹰潭高一检测)函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3).【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.(2015·临川高一检测)已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=log m(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x). 【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.(2015·鄂州高一检测)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,, ,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·温州高一检测)函数y=a x-1+1a>0,且a≠1一定过定点. 【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.(2015·常德高一检测)如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数). 【解析】原式=÷×=××=×a×=a2.18.(12分)(2015·郑州高一检测)已知集合A=,B=.(1)分别求R (A B)∩ð,(R Bð)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩ð=或,因为R Bð=,所以(R Bð)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)(2015·海口高一检测)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)(2015·梅州高一检测)已知函数f(x)是定义在R上的偶函数,且当x ≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).【补偿训练】(2014·临沂高一检测)已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)(2015·成都高一检测)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].关闭Word文档返回原板块。
第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4.元素与集合的关系关系概念记法读法元素与集合的关系属于如果________的元素,就说a属于集合Aa∈A a属于集合A 不属于如果________中的元素,就说a不属于集合Aa∉A a不属于集合A5.常用数集及表示符号:名称自然数集正整数集整数集有理数集实数集符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是() A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有()A.2个元素B.3个元素C.4个元素D.5个元素题 号 1 2 3 4 5 6 答 案二、填空题7.由下列对象组成的集体属于集合的是______.(填序号) ①不超过π的正整数; ②本班中成绩好的同学;③高一数学课本中所有的简单题; ④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________. 9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z . 三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.1.1.1 集合的含义与表示 第1课时 集合的含义 答案知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R 作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.] 2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3, 当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.] 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0} 5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}题号12345 6答案二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{y |(y -1)2=0}C .{x =1}D .{1}13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N的关系是( ) A .x 0∈N B .x 0∉NC .x 0∈N 或x 0∉ND .不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示 答案知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z } 作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.] 5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.] 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x=1,2,4,8.此时x=5,4,2,-2,即A={5,4,2,-2}.8.②解析①中P、Q表示的是不同的两点坐标;②中P=Q;③中P表示的是点集,Q表示的是数集.9.④解析只有④中M和N的元素相等,故答案为④.10.解①∵方程x(x2+2x+1)=0的解为0和-1,∴解集为{0,-1};②{x|x=2n+1,且x<1 000,n∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A中代表的元素是x,满足条件y=x2+3中的x∈R,所以A=R;集合B中代表的元素是y,满足条件y=x2+3中y的取值范围是y≥3,所以B={y|y≥3}.集合C中代表的元素是(x,y),这是个点集,这些点在抛物线y=x2+3上,所以C={P|P 是抛物线y=x2+3上的点}.12.C[由集合的含义知{x|x=1}={y|(y-1)2=0}={1},而集合{x=1}表示由方程x=1组成的集合,故选C.]13.A[M={x|x=2k+14,k∈Z},N={x|x=k+24,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.]1.1.2集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A、B,如果集合A中________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作______(或______),读作“__________”(或“__________”).2.Venn图:用平面上______曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念定义符号表示图形表示集合相等如果__________,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素__________,称集合A是B的真子集A B(或B A)(1)定义:______________的集合叫做空集.(2)用符号表示为:____.(3)规定:空集是任何集合的______.5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么___________________________.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是()A.P=Q B.P QC.P Q D.P∩Q=∅2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是()A.3 B.6 C.7 D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M D.P=M S题号12345 6答案二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个. 1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或B A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含()等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2集合间的基本关系答案知识梳理1.任意一个 A ⊆B B ⊇A A 含于B B 包含A 2.封闭 3.A ⊆B 且B ⊆A x ∈B ,且x ∉A 4.(1)不含任何元素 (2)∅ (3)子集 5.(1)A ⊆A (2)A ⊆C 作业设计1.B [∵P ={x |y =x +1}={x |x ≥-1},Q ={y |y ≥0} ∴P Q ,∴选B.]2.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.] 3.C4.B [只有④正确.]5.B [由N ={-1,0},知N M ,故选B.]6.C [运用整数的性质方便求解.集合M 、P 表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.] 7.①②解析 ①、②显然正确;③中π与M 的关系为元素与集合的关系,不应该用“”符号;④中{π}与M 的关系是集合与集合的关系,不应该用“∈”符号. 8.a ≥2解析 在数轴上表示出两个集合,可得a ≥2. 9.6解析 (1)若A 中有且只有1个奇数, 则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅.10.解 A ={-3,2}.对于x 2+x +a =0,(1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;(2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;(3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6.11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示. 要使B ⊆A ,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3.∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a ≥-1,2a≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2. 13.5解析 若A 中有一个奇数,则A 可能为{1},{3},{1,2},{3,2}, 若A 中有2个奇数,则A ={1,3}.1.1.3 集合的基本运算 第1课时 并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.并集(1)定义:一般地,________________________的元素组成的集合,称为集合A 与B 的并集,记作________.(2)并集的符号语言表示为A ∪B =_____________________________________________ ___________________________.(3)并集的图形语言(即V enn 图)表示为下图中的阴影部分:(4)性质:A ∪B =________,A ∪A =____,A ∪∅=____,A ∪B =A ⇔________,A ____A ∪B . 2.交集(1)定义:一般地,由________________________元素组成的集合,称为集合A 与B 的交集,记作________.(2)交集的符号语言表示为A ∩B =___________________________________________ _____________________________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔________,A∩B____A ∪B,A∩B⊆A,A∩B⊆B.一、选择题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于()A.{x|x<1} B.{x|-1≤x≤2}C.{x|-1≤x≤1} D.{x|-1≤x<1}3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是() A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于()A.1 B.2C.3 D.46.集合M={1,2,3,4,5},集合N={1,3,5},则()A.N∈M B.M∪N=MC.M∩N=M D.M>N题号12345 6答案二、填空题7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.三、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.613.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分.特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B ⇔A∩B=A.这种转化在做题时体现了化归与转化的思想方法,十分有效.1.1.3集合的基本运算答案第1课时并集与交集知识梳理一、1.由所有属于集合A或属于集合B A∪B 2.{x|x∈A,或x∈B} 4.B∪A A A B⊆A ⊆二、1.属于集合A 且属于集合B 的所有 A ∩B 2.{x |x ∈A ,且x ∈B } 4.B ∩A A ∅ A ⊆B ⊆ 作业设计 1.A2.D [由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.]3.D [参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .]4.D [M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.] 5.C [依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3,故选C.] 6.B [∵N M ,∴M ∪N =M .] 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ) ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3}, 即方程x 2+px +q =0的两个实根为1,3. ∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.D [x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6,故选D.] 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集自然语言对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A相对于全集U的补集,记作________符号语言∁U A=____________图形语言3.补集与全集的性质(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁U A)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2} B.{x|-2≤x≤2}C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于()A.{2} B.{2,3}C.{3} D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是()A.A=∁U P B.A=PC.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)题号12345 6答案二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用答案知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D [在集合U 中,去掉1,5,7,剩下的元素构成∁U A .] 2.C [∵M ={x |-2≤x ≤2}, ∴∁U M ={x |x <-2或x >2}.]3.D [由B ={2,5},知∁U B ={1,3,4}. A ∩(∁U B )={1,3,5}∩{1,3,4}={1,3}.] 4.B [由A =∁U B ,得∁U A =B . 又∵B =∁U P ,∴∁U P =∁U A . 即P =A ,故选B.]5.C [依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,a ∈∁I S ,所以阴影部分所表示的集合是(M ∩P )∩∁I S ,故选C.] 6.D [由A ∪B ={1,3,4,5,6}, 得∁U (A ∪B )={2,7},故选D.] 7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3. 8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}. 9.∁U B ∁U A解析 画Venn 图,观察可知∁U B ∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于V enn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x . 根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.§1.1 习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A ={x |x +1>0},B ={x |x -3<0},则A ∩B 等于( ) A .{x |x >-1} B .{x |x <3} C .{x |-1<x <3} D .{x |1<x <3}2.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},则M ∪N 等于( ) A .{x |x <-5或x >-3} B .{x |-5<x <5}C .{x |-3<x <5}D .{x |x <-3或x >5} 3.设集合A ={x |x ≤13},a =11,那么( ) A .a A B .a ∉A C .{a }∉A D .{a }A4.设全集I ={a ,b ,c ,d ,e },集合M ={a ,b ,c },N ={b ,d ,e },那么(∁I M )∩(∁I N )等于( )A .∅B .{d }C .{b ,e }D .{a ,c }5.设A ={x |x =4k +1,k ∈Z },B ={x |x =4k -3,k ∈Z },则集合A 与B 的关系为____________.6.设A ={x ∈Z |-6≤x ≤6},B ={1,2,3},C ={3,4,5,6},求: (1)A ∪(B ∩C ); (2)A ∩(∁A (B ∪C )).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4} B.{a|3≤a≤4}C.{a|3<a<4} D.∅题号1234 5答案二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________. 9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________. 三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于V enn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1习题课答案双基演练1.C[∵A={x|x>-1},B={x|x<3},∴A∩B={x|-1<x<3},故选C.]2.A[画出数轴,将不等式-3<x≤5,x<-5,x>5在数轴上表示出来,不难看出M∪N={x|x<-5或x>-3}.]3.D4.A[∵∁I M={d,e},∁I N={a,c},∴(∁I M)∩(∁I N)={d,e}∩{a,c}=∅.]5.A=B解析4k-3=4(k-1)+1,k∈Z,可见A=B.6.解∵A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A(B∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B[Q={x|-2<x<2},可知B正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b },{a ,c },{a ,b ,c }共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,…. ∴M P .]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).] 5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎪⎨⎪⎧a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2. 7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ; 当x =2时,x -1=1∈A ,x +1=3∈A ; 当x =3时,x -1=2∈A ,x +1=4∉A ; 当x =5时,x -1=4∉A ,x +1=6∉A ; 综上可知,A 中只有一个孤立元素5. 8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5, ∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2. a =4经验证,符合题意. 9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5}, 故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N ) ={x |x <1或x ≥5}.10.解 (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.11.解 由题意,设全班同学为全集U ,画出Venn 图,A 表示答错A 的集合,B 表示答错B 的集合,C 表示答错C 的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A ∪B ∪C 中元素数目为32,从而至少错一题的共32人,因此A ,B ,C 全对的有50-32=18人.12.解 依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解 在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.§1.2 函数及其表示 1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A 、B 是非空的数集,如果按照某种确定的__________,使对于集合A 中的____________,在集合B 中都有________________和它对应,那么就称f :________为从集合A 到集合B 的一个函数,记作__________________.其中x 叫做________,x 的取值范围A 叫做函数的________,与x 的值相对应的y 值叫做________,函数值的集合{f (x )|x ∈A }叫做函数的________. (2)值域是集合B 的________. 2.区间(1)设a ,b 是两个实数,且a <b ,规定:①满足不等式__________的实数x 的集合叫做闭区间,表示为________; ②满足不等式__________的实数x 的集合叫做开区间,表示为________;③满足不等式________或________的实数x 的集合叫做半开半闭区间,分别表示为______________.(2)实数集R 可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合分别表示为________,________,________,______.一、选择题1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( ) A .10个 B .9个 C .8个 D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]题 号 1 2 3 4 5 6 答 案二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f (x ) 2 3 1x 1 2 3 g (x ) 1 3 2x 1 2 3 g [f (x )]8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2 011)f (2 010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.三、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数;(2)确定函数的定义域和值域; (3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 答案1.2.1 函数的概念知识梳理 1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集 2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2 010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1,∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f (2)f (1)=f (3)f (2)=…=f (2 011)f (2 010)=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7.10.[0,13]。
综合质量评估(时间:120分钟分值:150分)一、选择题:本题共8小题,每小题5分,共40分.在给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-1<x<2},B={x|x>1},则A∪B= ()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)解析:A∪B={x|-1<x<2}∪{x|x>1}={x|x>-1},故选C.答案:C2.若幂函数f(x)=x m在区间(0,+∞)上单调递减,则实数m的值可能为()A.1B.C.-1D.2解析:因为幂函数f(x)=x m在区间(0,+∞)上单调递减,所以m<0,由选项可知实数m的值可能为-1.故选C.答案:C3.若x=20.2,y=lg ,z=,则下列结论正确的是()A.x<y<zB.y<z<xC.z<y<xD.z<x<y解析:因为x=20.2>20=1,y=lg <lg 1=0,0<z=()<=1,所以y<z<x.故选B.答案:B4.若函数f(x)=4sin(ωx+φ)(ω>0)在同一周期内,当x=时取最大值,当x=-时取最小值,则φ的值可能为()A. B. C. D.解析:f(x)=4sin(ωx+φ)(ω>0),由题意可知=+=,即T=π.所以T==π,解得ω=2.则f(=)=4sin(2×+φ)=4,所以φ=+2kπ(k∈Z).当k=0时,φ=,此时,f(-)=-4满意题意,由此可知φ的一个可能值为,故选B.答案:B5.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为a>0,b>0,a+b≤4,所以ab≤()2≤()2=4;反之,若ab≤4,不妨设a=8,b=, 则a+b=8+>4,故由“ab≤4”不能推出“a+b≤4”,故选A.答案:A6.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()解析:在汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形态;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变,故图象的中间部分为线段;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的后边部分为凸升的形态.分析四个选项中的图象,只有A选项满意要求,故选A.答案:A7.tan 255°=()A.-2-B.-2+C.2-D.2+解析:tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)===2+.答案:D8.若函数f(x)=|x|·,x∈[-2 023,2 023]的值域是[m,n],则f(m+n)=()A.22 023B.2 0232-C.2D.0解析:f(-x)=|-x|·=|x|·=-|x|·=-f(x),即函数f(x)是奇函数,其图象关于原点对称.因为函数f(x)在区间[-2 023,2 023]上的值域是[m,n],且区间[-2 023,2 023]关于原点对称,所以m+n=0,则f(m+n)=f(0)=0,故选D.答案:D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,在区间(0,+∞)上单调递增的是()A.y=xB.y=x2C.y=D.y=解析:依据题意,依次分析选项:对于选项A,y=x,是正比例函数,在区间(0,+∞)上单调递增,符合题意;对于选项B,y=x2,是二次函数,在区间(0,+∞)上单调递增,符合题意;对于选项C,y=,是反比例函数,在区间(0,+∞)上单调递减,不符合题意;对于选项D,y=,是指数函数,在区间(0,+∞)上单调递减,不符合题意.故选AB.答案:AB10.已知a,b,c,d是实数,则下列肯定正确的有()A.a2+b2≥B.a+≥2C.若>,则a<bD.若a<b<0,c<d<0,则ac>bd解析:由于2(a2+b2)-(a+b)2=a2+b2-2ab=(a-b)2≥0,所以a2+b2≥(a+b)2,故A选项正确;B选项中,当a=-1时,明显不成立,故B项错误;C选项中,当a=1,b=-1时,明显有>,但a>b,故C项错误;D选项中,若a<b<0,c<d<0,则-a>-b>0,-c>-d>0,则依据不等式的性质可知ac>bd>0,故D项正确.故选AD.答案:AD11.已知a>0,b>0,且a+b=1,则()A.a2+b2≥B.2a-b>C.log2a+log2b≥-2D.+≤答案:ABD12.若函数f(x)是偶函数,且f(5-x)=f(5+x),若g(x)=f(x)sin πx,h(x)=f(x)cos πx,则下列说法正确的是()A.函数y=h(x)的最小正周期是10B.对随意的x∈R,都有g(x+5)=g(x-5)C.函数y=h(x)的图象关于直线x=5对称D.函数y=g(x)的图象关于点(5,0)中心对称解析:由于f(x)是偶函数,且f(5-x)=f(5+x),所以函数f(x)是周期为10的周期函数,不妨设f(x)=cos x.对于A选项,由于h(x+5)=cos(x+π)cos(πx+5π)=cos x cos πx=h(x),所以函数h(x)的最小正周期为5,故A选项说法错误;对于B选项,函数g(x)=cos x sin πx,由于10是cos x,sin πx的周期,故10是g(x)的周期,故g(x+5)=g(x-5),故B选项说法正确;对于C选项,由于h(5-x)=cos(π-x)cos(5π-πx)=cos x cos πx=h(x),结合前面分析可知h(5+x)=h(5-x),故C选项说法正确;对于D选项,g(5+x)=cos(x+π)sin(πx+5π)= cos x sin πx,g(5-x)=cos(π-x)sin(5π-πx)=-cos x sin πx=-g(5+x),故函数g(x)关于(5,0)对称,D选项说法正确.答案:BCD三、填空题:本题共4小题,每小题5分,共20分.13.(本题第一空2分,其次空3分)若二次函数f(x)=x2+mx-3的两个零点为1和n,则n=-3;若f(a)≤f(3),则a的取值范围是[-5,3].解析:依题意可知f(1)=0,即1+m-3=0,所以m=2,所以f(x)=x2+2x-3=(x-1)(x+3),所以f(x)的另一个零点为-3,即n=-3.由f(a)≤f(3),得a2+2a-3≤12,即a2+2a-15=(a+5)(a-3)≤0,解得-5≤a≤3.14.已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a=-3.解析:因为ln 2>0,所以f(ln 2)=-f(-ln 2)=e-a ln 2=(e ln 2)-a=2-a=8,所以a=-3.15.函数f(x)=sin(2x+)-3cos x的最小值为-4.解析:f(x)=sin(2x+)-3cos x=-cos 2x-3cos x=-2cos2x-3cos x+1=-2(cos x+)2+,因为-1≤cos x≤1,所以-4≤f(x)≤,即最小值为-4.16.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,若实数a满意f(2|a-1|)>f(-),则a的取值范围是.解析:因为f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,所以f(x)在区间[0,+∞)上单调递减,则由f(2|a-1|)>f(-),得f(2|a-1|)>f(),即2|a-1|<,则|a-1|<,即<a<.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)在①{x|a-1≤x≤a},②{x|a≤x≤a+2},③{x|≤x≤+3}这三个条件中任选一个,补充在下面的问题中.若问题中的a存在,求a的值;若a不存在,请说明理由.已知集合A= ,B={x|x2-4x+3≤0}.若“x∈A”是“x∈B”的充分不必要条件,求实数a的取值范围. 注:假如选择多个条件分别解答,按第一个解答计分.解:由题意,知A不为空集,B={x|x2-4x+3≤0}={x|1≤x≤3}.因为“x∈A”是“x∈B”的充分不必要条件,所以A⫋B.当选条件①时,或解得2≤a≤3.所以实数a的取值范围是[2,3].当选条件②时,或不等式组无解,所以不存在a的值满意题意.当选条件③时,或不等式组无解,所以不存在a的值满意题意.18.(12分)已知函数f(x)=x3(a·2x-2-x)是偶函数,求a的值.解:因为f(x)=x3(a·2x2-2-x),所以f(-x)=-x3(a·2-x-2x),因为f(x)为偶函数,所以f(-x)=f(x),所以x3(a·2x-2-x)=-x3(a·2-x-2x),整理得到(a-1)(2x+2-x)=0,所以a=1.19.(12分)已知a∈R,若关于x的不等式(1-a)x2-4x+6>0的解集是(-3,1).(1)解不等式2x2+(2-a)x-a>0;(2)若ax2+bx+3≥0的解集为R,求实数b的取值范围.解:(1)由题意,知1-a<0,且-3和1是关于x的方程(1-a)x2-4x+6=0的两个根,则解得a=3,则2x2+(2-a)x-a>0即2x2-x-3>0,解得x<-1或x>.故不等式2x2+(2-a)x-a>0的解集为(-∞,-1)∪(,+∞).(2)ax2+bx+3≥0即为3x2+bx+3≥0,若此不等式的解集为R,则b2-4×3×3≤0,解得-6≤b≤6.故实数b的取值范围为[-6,6].20.(12分)已知函数f(x)=A sin(ωx+φ)[ω>0,A>0,φ∈(0,)]的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知α∈(,π),且sin α=,求f().解:(1)由图象,知函数的最大值为2,则A=2.由题图可得周期T=4[-(-)]=π,由=π,得ω=2.又由题意,知2×+φ=2kπ+,k∈Z,及φ∈(0,),所以φ=.所以f(x)=2sin(2x+).(2)由α∈(,π),且sin α=,得cos α=-=-,所以f()=2sin(2·+)=2(sin αcos +cos αsin )=.21.(12分)已知函数f(x)=为偶函数.(1)求实数t的值.(2)是否存在实数b>a>0,使得当x∈[a,b]时,函数f(x)的值域为[2-,2-]?若存在,恳求出实数a,b的值;若不存在,请说明理由.解:(1)因为函数f(x)=为偶函数,所以f(-x)=f(x),所以=,所以t=1.(2)由(1)知f(x)==1-,所以f(x)在区间[a,b]上是增函数.若x∈[a,b]时,f(x)的值域为[2-,2-],则解得a=b=1.又因为b>a,所以不存在满意要求的实数a,b.22.(12分)设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=[f(x+)]2+[f(x+)]2的值域.解:(1)因为f(x+θ)=sin(x+θ)是偶函数,所以对随意实数x都有sin(x+θ)=sin(-x+θ), 即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又因为θ∈[0,2π),所以θ=或.(2)y=[f(x+)]2+[f(x+)]2=sin2(x+)+sin2(x+)=+=1-(cos 2x-sin 2x)=1-cos(2x+).因此,函数的值域是[1-,1+].。
最新人教A版高一数学必修一单元测试题全册带答案解析章末综合测评(一)集合与函数的概念(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则∁U(A∪B)等于()A.{1,4}B.{1,5}C.{2,5}D.{2,4}【解析】由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},∴∁U(A∪B)={2,4}.【答案】 D2.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2};④{0,1,2}={2,0,1},其中错误的个数是()A.1个B.2个C.3个D.4个【解析】①1∈{0,1,2},正确;②空集是任何集合的子集,正确;③因为{1}⊆{0,1,2},故不正确;④根据集合的无序性可知正确.故选A.【答案】A3.下列各图形中,是函数的图象的是()【解析】函数y=f(x)的图象与平行于y轴的直线最多只能有一个交点,故A,B,C均不正确,故选D.【答案】 D4.集合A={x|y=x-1},B={y|y=x2+2},则如图1阴影部分表示的集合为()图1A .{x |x ≥1}B .{x |x ≥2}C .{x |1≤x ≤2}D .{x |1≤x <2}【解析】 易得A =[1,+∞),B =[2,+∞),则题图中阴影部分表示的集合是∁A B =[1,2).故选D.【答案】 D5.已知函数f (2x +1)=3x +2,则f (1)的值等于( ) A .2 B .11 C .5D .-1【解析】 由2x +1=1得x =0,故f (1)=f (2×0+1)=3×0+2=2,故选A . 【答案】 A6.下列四个函数:①y =x +1;②y =x -1;③y =x 2-1; ④y =1x ,其中定义域与值域相同的是( ) A .①②③ B .①②④ C .②③D .②③④【解析】 ①y =x +1,定义域R ,值域R ;②y =x -1,定义域R ,值域R ;③y =x 2-1,定义域R ,值域[-1,+∞);④y =1x ,定义域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).∴①②④定义域与值域相同,故选B .【答案】 B7.若函数f (x )=⎩⎨⎧x +1,(x ≥0),f (x +2),(x<0),则f (-3)的值为( )A .5B .-1C .-7D .2【解析】 依题意,f (-3)=f (-3+2)=f (-1) =f (-1+2)=f (1)=1+1=2,故选D. 【答案】 D8.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)【解析】 因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.【答案】 C9.定义在R 上的奇函数f (x ),当x >0时,f (x )=3,则奇函数f (x )的值域是( ) A .(-∞,-3] B .[-3,3] C .[-3,3]D .{-3,0,3}【解析】 ∵f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ),f (0)=0,设x <0,则-x >0,f (-x )=-f (x )=3, ∴f (x )=-3,∴f (x )=⎩⎨⎧3,x >0,0,x =0,-3,x <0,∴奇函数f (x )的值域是{-3,0,3}.【答案】 D10.已知f (x )=x 5-ax 3+bx +2且f (-5)=17,则f (5)的值为( ) A .-13 B .13 C .-19D .19【解析】 ∵g (x )=x 5-ax 3+bx 是奇函数,∴g (-x )=-g (x ).∵f (-5)=17=g (-5)+2,∴g (5)=-15,∴f (5)=g (5)+2=-15+2=-13. 【答案】 A11.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4【解析】 ∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎨⎧ a 2-4a =-2,b 2-4b +1=-1,即⎩⎨⎧a 2-4a +2=0,b 2-4b +2=0,∴a ,b 为方程x 2-4x +2=0的两根, ∴a +b =4. 【答案】 D12.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)【解析】 任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上单调递减.又f (x )是偶函数,故f (x )在(-∞,0]上单调递增.且满足n ∈N *时,f (-2)=f (2),3>2>1>0,由此知,此函数具有性质:自变量的绝对值越小,函数值越大,∴f (3)<f (-2)<f (1),故选A .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. 【解析】 由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}. 【答案】 {4,9,16}14.若函数f (x )=(a -2)x 2+(a -1)x +3是偶函数,则f (x )的增区间是________. 【解析】 ∵函数f (x )=(a -2)x 2+(a -1)x +3是偶函数,∴a -1=0,∴f (x )=-x 2+3,其图象是开口方向朝下,以y 轴为对称轴的抛物线.故f (x )的增区间为(-∞,0].【答案】 (-∞,0]15.已知函数f (x )=⎩⎨⎧2x ,x>0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.【解析】 ∵f (1)=2×1=2, 若a >0,则f (a )=2a ,由2a +2=0,得a =-1舍去, 若a ≤0,则f (a )=a +1,由a +1+2=0得a =-3,符合题意. ∴a =-3. 【答案】 -316.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题:①函数f (x )=x 2(x ∈R )是单函数; ②函数f (x )=xx -1是单函数; ③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是________.(写出所有真命题的序号)【解析】 ①函数f (x )=x 2(x ∈R )不是单函数,例如f (1)=f (-1),显然不会有1和-1相等,故为假命题;②函数f (x )=x x -1是单函数,因为若x 1x 1-1=x 2x 2-1,可推出x 1x 2-x 2=x 1x 2-x 1,即x 1=x 2,故为真命题;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2)为真,可用反证法证明:假设f (x 1)=f (x 2),则按定义应有x 1=x 2,与已知中的x 1≠x 2矛盾; ④在定义域上具有单调性的函数一定是单函数为真,因为单函数的实质是一对一的映射,而单调的函数也是一对一的映射,故为真.【答案】 ②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设全集U =R ,集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求∁U (A ∩B );(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围.【解】 (1)由集合B 中的不等式2x -4≥x -2,解得x ≥2,∴B ={x |x ≥2},又A ={x |-1≤x <3},∴A ∩B ={x |2≤x <3},又全集U =R ,∴∁U (A ∩B )={x |x <2或x ≥3}. (2)由集合C 中的不等式2x +a >0,解得x >-a2,∴C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-a 2. ∵B ∪C =C ,∴B ⊆C ,∴-a2<2,解得a >-4.18.(本小题满分12分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B );(3)写出(∁U A )∪(∁U B )的所有子集.【解】 (1)由交集的概念易得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={-5,2}. (2)由并集的概念易得U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12,所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(∁U A )∪(∁U B )的所有子集即为集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12,{-5},⎩⎨⎧⎭⎬⎫-5,12. 19.(本小题满分12分)已知f (x )是R 上的奇函数,当x >0时,解析式为f (x )=2x +3x +1. (1)求f (x )在R 上的解析式;(2)用定义证明f (x )在(0,+∞)上为减函数. 【解】 (1)设x <0,则-x >0,∴f (-x )=-2x +3-x +1.又∵f (x )是R 上的奇函数,∴f (-x )=-f (x )=-2x +3-x +1,∴f (x )=-2x +3x -1.又∵奇函数在0点有意义,∴f (0)=0,∴函数的解析式为f (x )=⎩⎪⎨⎪⎧-2x +3x -1,x <0,0,x =0,2x +3x +1,x >0.(2)证明:设∀x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2x 1+3x 1+1-2x 2+3x 2+1=(2x 1+3)(x 2+1)-(2x 2+3)(x 1+1)(x 1+1)(x 2+1)=-x 1+x 2(x 1+1)(x 2+1).∵x 1,x 2∈(0,+∞),x 1<x 2,∴x 1+1>0,x 2+1>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2),∴函数f (x )在(0,+∞)上为减函数.20.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?【解】 由于月产量为x 台,则总成本为20 000+100x , 从而利润f (x )=R (x )=⎩⎪⎨⎪⎧300x -12x 2-20 000,0≤x ≤400,60 000-100x ,x >400,当0≤x ≤400时,f (x )=-12(x -300)2+25 000, 所以当x =300时,有最大值25 000; 当x >400时,f (x )=60 000-100x 是减函数, 所以f (x )=60 000-100×400<25 000. 所以当x =300时,有最大值25 000,即当月产量为300台时,公司所获利润最大,最大利润是25 000元.21.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f (f (x ))=4x -1. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈[-1,2]上的最大值与最小值.【解】 (1)由题意可设f (x )=ax +b ,(a <0),由于f (f (x ))=4x -1,则a 2x +ab +b =4x -1,故⎩⎨⎧a 2=4,ab +b =-1,解得a =-2,b =1.故f (x )=-2x +1. (2)由(1)知,函数y =f (x )+x 2-x =-2x +1+x 2-x =x 2-3x +1,故函数y =x 2-3x +1的图象开口向上,对称轴为x =32,则函数y =f (x )+x 2-x 在⎣⎢⎡⎦⎥⎤-1,32上为减函数,在⎣⎢⎡⎦⎥⎤32,2上为增函数.又由f ⎝ ⎛⎭⎪⎫32=-54,f (-1)=5,f (2)=-1,则函数y =f (x )+x 2-x 在x ∈[-1,2]上的最大值为5,最小值为-54. 22.(本小题满分12分)已知函数f (x )=x +b1+x 2为奇函数. (1)求b 的值;(2)证明:函数f (x )在区间(1,+∞)上是减函数; (3)解关于x 的不等式f (1+x 2)+f (-x 2+2x -4)>0.【解】 (1)∵函数f (x )=x +b1+x 2为定义在R 上的奇函数,∴f (0)=b =0.(2)由(1)可得f (x )=x1+x 2,下面证明函数f (x )在区间(1,+∞)上是减函数. 证明:设x 2>x 1>1,则有f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1+x 1x 22-x 2-x 2x 21(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). 再根据x 2>x 1>1,可得1+x 21>0,1+x 22>0,x 1-x 2<0,1-x 1x 2<0,∴(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)>0, 即f (x 1)>f (x 2),∴函数f (x )在区间(1,+∞)上是减函数. (3)由不等式f (1+x 2)+f (-x 2+2x -4)>0, 可得f (1+x 2)>-f (-x 2+2x -4)=f (x 2-2x +4),再根据函数f (x )在区间(1,+∞)上是减函数,可得1+x 2<x 2-2x +4,且x >1, 求得1<x <32,故不等式的解集为(1,32).章末综合测评(二) 第二章 基本初等函数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=1log 0.5(2x +1),则函数f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎦⎥⎤-12,0 【解析】 要使函数有意义,只需⎩⎨⎧2x +1>0,log 0.5(2x +1)>0,即⎩⎪⎨⎪⎧x >-12,2x +1<1,解得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0.故选C.【答案】 C2.已知函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 100的图象可表示打字任务的“学习曲线”,其中t(小时)表示达到打字水平N (字/分钟)所需的学习时间,N 表示打字速度(字/分),则按此曲线要达到90字/分钟的水平,所需的学习时间是( )A .144小时B .90小时C .60小时D .40小时【解析】 t =-144lg ⎝ ⎛⎭⎪⎫1-N 100=-144lg 110=144.【答案】 A3.下列函数中,在区间(0,1)上为增函数的是( ) A .y =2x 2-x +3 B .y =⎝ ⎛⎭⎪⎫13xC .y =x 23D .y =log 12x【解析】 ∵y =2x 2-x +3的对称轴x =14,∴在区间(0,1)上不是增函数,故A 错; 又y =⎝ ⎛⎭⎪⎫13x及y =log 12x 为减函数,故B ,D 错;y =x 23中,指数23>0,在[0,+∞)上单调递增,故C 正确.【答案】 C4.如图1为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )图1A .m <0,n >1B .m >0,n >1C .m >0,0<n <1D .m <0,0<n <1【解析】 当x =1时,y =m ,由图形易知m<0,又函数是减函数,所以0<n <1. 【答案】 D5.已知f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0 B .a >1 C .a <1D .0<a <1【解析】 ∵f (-2)>f (-3),∴f (x )=a -x =⎝ ⎛⎭⎪⎫1a x 是增函数,∴1a >1,∴0<a <1,则a 的取值范围是0<a <1,故选D.【答案】 D6.(2015·山东高考)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c<b C .b <a <cD .b <c<a【解析】 因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .【答案】 C7.已知函数f (x )=lg (1-x )的值域为(-∞,1],则函数f (x )的定义域为( ) A .[-9,+∞) B .[0,+∞) C .(-9,1)D .[-9,1)【解析】 因为函数f (x )=lg (1-x )的值域为(-∞,1],所以lg (1-x )≤1,即0<1-x ≤10,解得-9≤x <1,所以函数f (x )的定义域为[-9,1).【答案】 D8.已知函数f (x )是奇函数,当x >0时,f (x )=a x(a >0且a ≠1),且f (log 124)=-3,则a的值为( )A.3 B .3 C .9D.32【解析】 ∵f (log 124)=f ⎝ ⎛⎭⎪⎫log 214=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.【答案】 A9.已知f (x )=a x ,g(x )=log a x (a >0且a ≠1),若f (3)·g(3)<0,则f (x )与g(x )在同一坐标系里的图象是( )【解析】 ∵a >0且a ≠1,∴f (3)=a 3>0,又f (3)·g(3)<0,∴g(3)=log a 3<0,∴0<a <1,∴f (x )=a x 在R 上是减函数,g (x )=log a x 在(0,+∞)上是减函数,故选C.【答案】 C10.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定【解析】 ∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2);当0<a <1时,函数f (x )=log a |x |在(0,+∞)上是减函数,∴f (a +1)>f (2)=f (b -2).综上可知f (b -2)<f (a +1).【答案】 C11.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2 【解析】 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,138,选B .【答案】 B12.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2【解析】 令g (x )=x 2-ax +1(a >0,且a ≠1),①当a >1时,g (x )在R 上单调递增,∴Δ<0,∴1<a <2;②当0<a <1时,g (x )=x 2-ax +1没有最大值,从而函数y =log a (x 2-ax +1)没有最小值,不符合题意.综上所述:1<a <2.故选C.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知lg 2=a ,lg 3=b ,则用a ,b 表示log 125的值为________. 【解析】 ∵lg 2=a ,lg 3=b ,∴log 125=lg 5lg 12=1-lg 22lg 2+lg 3=1-a 2a +b .【答案】1-a2a +b14.方程log 2(9x -1-5)=log 2(3x -1-2)+2的解为________.【解析】 依题意log 2(9x -1-5)=log 2(4·3x -1-8),所以9x -1-5=4·3x -1-8, 令3x -1=t (t >0),则t 2-4t +3=0,解得t =1或t =3,当t =1时,3x -1=1,所以x =1,而91-1-5<0,所以x =1不合题意,舍去; 当t =3时,3x -1=3,所以x =2,92-1-5=4>0,32-1-2=1>0,所以x =2满足条件. 所以x =2是原方程的解. 【答案】 215.已知当x >0时,函数f (x )=(2a -1)x ⎝ ⎛⎭⎪⎫a >0,且a ≠12的值总大于1,则函数y =a 2x -x 2的单调增区间是________.【解析】 由题意知:2a -1>1,解得a >1,设t =2x -x 2,则函数y =a t 为增函数,∵函数t =2x -x 2的增区间为(-∞,1),∴函数y =a 2x -x 2的单调增区间是(-∞,1).【答案】 (-∞,1)(或(-∞,1]) 16.给出下列结论:①4(-2)4=±2; ②y =x 2+1,x ∈[-1,2],y 的值域是[2,5]; ③幂函数图象一定不过第四象限;④函数f (x )=a x +1-2(a >0,且a ≠1)的图象过定点(-1,-1); ⑤若ln a <1成立,则a 的取值范围是(-∞,e ).其中正确的序号是________.【解析】 ①4(-2)4=2,因此不正确;②y =x 2+1,x ∈[-1,2],y 的值域是[1,5],因此不正确;③幂函数图象一定不过第四象限,正确;④当x =-1时,f (-1)=a 0-2=-1,∴函数f (x )=a x +1-2(a >0,a ≠1)的图象过定点(-1,-1),正确;⑤若l n a <1成立,则a 的取值范围是(0,e),因此不正确.综上所述:只有③④正确.【答案】 ③④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求值: (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2;(2)log 2512·log 45-log 133-log 24+5log 52. 【解】 (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2=⎝ ⎛⎭⎪⎫9412-1-⎝ ⎛⎭⎪⎫278-23+⎝ ⎛⎭⎪⎫32-2 =32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫232=32-1-49+49=12.(2)log 2512·log 45-log 133-log 24+5log 52=-14+1-2+2=34.18.(本小题满分12分)已知函数f (x )=a 2x +2a x -1(a >1,且a 为常数)在区间[-1,1]上的最大值为14.(1)求f (x )的表达式;(2)求满足f (x )=7时,x 的值.【解】 (1)令t =a x >0.∵x ∈[-1,1],a >1,∴t ∈⎣⎢⎡⎦⎥⎤1a ,a ,f (x )=t 2+2t -1=(t +1)2-2,故当t =a 时,函数f (x )取得最大值为a 2+2a -1=14,解得a =3,∴f (x )=32x +2×3x -1. (2)由f (x )=7,可得32x +2×3x -1=7,即(3x +4)·(3x -2)=0,求得3x =2,∴x =log 32. 19.已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x .图2(1)画出函数f (x )的图象;(2)根据图象写出f (x )的单调区间,并写出函数的值域.【解】 (1)先作出当x ≥0时,f (x )=⎝ ⎛⎭⎪⎫12x 的图象,利用偶函数的图象关于y 轴对称,再作出f (x )在x ∈(-∞,0)时的图象.(2)函数f (x )的单调递增区间为(-∞,0),单调递减区间为[0,+∞),值域为(0,1]. 20.(本小题满分12分)已知函数f (x )=log a (x -1),g (x )=log a (3-x )(a >0且a ≠1). (1)求函数h (x )=f (x )-g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中x 的取值范围. 【解】 (1)由⎩⎨⎧x -1>0,3-x >0,得1<x <3.∴函数h (x )的定义域为(1,3). (2)不等式f (x )≥g (x ),即为log a (x -1)≥log a (3-x ).(*)①当0<a <1时,不等式(*)等价于⎩⎨⎧1<x <3,x -1≤3-x ,解得1<x ≤2.②当a >1时,不等式(*)等价于⎩⎨⎧1<x <3,x -1≥3-x ,解得2≤x <3.综上,当0<a <1时,原不等式解集为(1,2]; 当a >1时,原不等式解集为[2,3).21.(本小题满分12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.【解】 ∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1,(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x-1-13-x -1=0,∴a =-12. (2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴0>3x -1>-1或3x -1>0. ∴-12-13x -1>12或-12-13x -1<-12.即函数的值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y >12或y <-12. 22.(本小题满分12分)已知函数f (x )=lg ⎝⎛⎭⎪⎫1-x 1+x . (1)求证:f (x )是奇函数; (2)求证:f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ; (3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2,求f (a ),f (b )的值. 【解】 (1)证明:由函数f (x )=lg ⎝ ⎛⎭⎪⎫1-x 1+x ,可得1-x 1+x >0,即x -11+x <0,解得-1<x <1,故函数的定义域为(-1,1),关于原点对称.再根据f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),可得f (x )是奇函数.(2)证明:f (x )+f (y )=lg1-x 1+x +lg 1-y 1+y =lg (1-x )(1-y )(1+x )(1+y ), 而f ⎝ ⎛⎭⎪⎫x +y 1+xy =lg 1-x +y 1+xy 1+x +y 1+xy=lg 1+xy -x -y 1+xy +x +y =lg (1-x )(1-y )(1+x )(1+y ),∴f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy 成立. (3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2, 则由(2)可得f (a )+f (b )=1,f (a )-f (b )=2, 解得f (a )=32,f (b )=-12.章末综合测评(三) -第三章 函数的应用(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则函数f (x )的图象与x 轴在区间[a ,b ]内( )A .至多有一个交点B .必有唯一一个交点C .至少有一个交点D .没有交点【解析】 ∵f (a )f (b )<0,∴f (x )在[a ,b ]内有零点, 又f (x )在区间[a ,b ]上单调,所以这样的点只有一个,故选B . 【答案】 B2.若方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象是( )【解析】 要使方程f (x )-2=0在(-∞,0)内有解,只需y =f (x )与直线y =2在(-∞,0)上有交点,故D 正确.故选D.【答案】 D3.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )【解析】 由二分法的定义与原理知A 选项正确. 【答案】 A 4.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )A .1个B .2个C .3个D .4个【解析】 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1,∵⎩⎨⎧-x >0,x -3≠0,解得x <0,∵函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1个.故选A .【答案】 A5.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图1所示,则下列说法正确的是 ( )图1A .甲比乙先出发B .乙比甲跑的路程多C .甲、乙两人的速度相同D .甲比乙先到达终点【解析】 由题图可知,甲到达终点用时短,故选D.【答案】 D6.拟定从甲地到乙地通话m 分钟的电话费由f (m )=1.06(0.50×[m ]+1)给出,其中m >0,[m ]是大于或等于m 的最小整数(例如[2.72]=3,[3.8]=4,[3.1]=4),则从甲地到乙地通话时间为5.5分钟的电话费为多少元.( )A .3.71B .3.97C .4.24D .4.77【解析】 由[m ]是大于或等于m 的最小整数,可得[5.5]=6,所以f (5.5)=1.06×(0.50×6+1)=1.06×4=4.24.故选C .【答案】 C7.函数f (x )=3x +12x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)【解析】 由已知可知,函数f (x )=3x +12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数的零点判定定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C .【答案】 C8.函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0,的零点个数为( )A .0B .1C .2D .3【解析】 当x ≤0时,令x 2+2x -3=0,得x =-3;当x >0时,令-2+ln x =0,得x =e 2,所以函数有两个零点.故选C .【答案】 C9.函数f (x )=|x |+k 有两个零点,则( ) A .k =0 B .k >0 C .0≤k <1D .k <0【解析】 在同一平面直角坐标系中画出y 1=|x |和y 2=-k 的图象,如图所示.若f (x )有两个零点,则必有-k >0,即k <0.【答案】 D10.已知f (x )=(x -a )(x -b )-2,并且α,β是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a <α<b <βB .a <α<β<bC .α<a <b <βD .α<a <β<b【解析】 ∵α,β是函数f (x )的两个零点, ∴f (α)=f (β)=0.又f (a )=f (b )=-2<0,结合二次函数的图象(如图所示)可知a ,b 必在α,β之间.故选C .【答案】 C11.已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,若实数x 0是函数f (x )的零点,且0<x 1<x 0,则f (x 1)的值为( )A .恒为正值B .等于0C .恒为负值D .不大于0【解析】 ∵函数f (x )在(0,+∞)上为减函数,且f (x 0)=0,∴当x ∈(0,x 0)时,均有f (x )>0,而0<x 1<x 0,∴f (x 1)>0.【答案】 A12.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a 2x (a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )A.5 B .5 C .±5D .- 5【解析】 设投放x 万元经销甲商品,则经销乙商品投放(20-x )万元,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a 2·20-x ≥5.∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x <20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.如果函数f (x )=x 2+mx +m +3的一个零点为0,则另一个零点是________. 【解析】 函数f (x )=x 2+mx +m +3的一个零点为0,则f (0)=0,∴m +3=0,∴m =-3,则f (x )=x 2-3x ,于是另一个零点是3.【答案】 314.用二分法求方程ln x -2+x =0在区间[1,2]上零点的近似值,先取区间中点c =32,则下一个含根的区间是________.【解析】 令f (x )=ln x -2+x ,则f (1)=ln 1-2+1<0, f (2)=ln 2-2+2=ln 2>0,f ⎝ ⎛⎭⎪⎫32=ln 32-2+32=ln 32-12=ln 32-ln e =ln 32e =ln 94e <ln 1=0,∴f ⎝ ⎛⎭⎪⎫32·f (2)<0,∴下一个含根的区间是⎝ ⎛⎭⎪⎫32,2. 【答案】 ⎝ ⎛⎭⎪⎫32,215.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品日销售价应定为每个________元.【解析】 设每个涨价x 元,则实际销售价为10+x 元,销售的个数为100-10x , 则利润为y =(10+x )(100-10x )-8(100-10x )=-10(x -4)2+360(0≤x <10,x ∈N ).因此,当x =4,即售价定为每个14元时,利润最大.【答案】 1416.已知函数f (x )=log ax +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.【解析】 ∵2<a <3<b <4,∴f (2)=log a 2+2-b <1+2-b =3-b <0,f (3)=log a 3+3-b >1+3-b =4-b >0. 即f (2)·f (3)<0,易知f (x )在(0,+∞)上单调递增.∴函数f (x )在(0,+∞)上存在唯一的零点x 0,且x 0∈(2,3),∴n=2.【答案】 2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设函数f(x)=e x-m-x,其中m∈R,当m>1时,判断函数f(x)在区间(0,m)内是否存在零点.【解】f(x)=e x-m-x,所以f(0)=e-m-0=e-m>0,f(m)=e0-m=1-m.又m>1,所以f(m)<0,所以f(0)·f(m)<0.又函数f(x)的图象在区间[0,m]上是一条连续曲线,故函数f(x)=e x-m-x(m>1)在区间(0,m)内存在零点.18.(本小题满分12分)定义在R上的偶函数y=f(x)在(-∞,0]上递增,函数f(x)的一个零点为-12,求满足f(log14x)≥0的x的取值集合.【解】∵-12是函数的一个零点,∴f⎝⎛⎭⎪⎫-12=0.∵y=f(x)是偶函数且在(-∞,0]上递增,∴当log 14x≤0,解得x≥1,当log14x≥-12,解得x≤2,所以1≤x≤2.由对称性可知,当log 14x>0时,12≤x<1.综上所述,x的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(本小题满分12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2Q10,单位是m/s,其中Q表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?【解】(1)由题知,当燕子静止时,它的速度v=0,代入题给公式可得:0=5log2Q 10,解得Q=10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q=80代入题给公式得:v=5log28010=5log28=15(m/s).即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.20.(本小题满分12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f (x );(2)当函数f (x )的定义域为[0,1]时,求其值域. 【解】 (1)因为f (x )的两个零点分别是-3,2, 所以⎩⎨⎧f (-3)=0,f (2)=0,即⎩⎨⎧9a -3(b -8)-a -ab =0,4a +2(b -8)-a -ab =0,解得a =-3,b =5,f (x )=-3x 2-3x +18.(2)由(1)知f (x )=-3x 2-3x +18的对称轴x =-12,函数开口向下,所以f (x )在[0,1]上为减函数,f (x )的最大值f (0)=18,最小值f (1)=12,所以值域为[12,18].21.(本小题满分12分)如图2,直角梯形OABC 位于直线x =t 右侧的图形的面积为f (t ).图2(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 【解】 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2, 当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,(0≤t ≤2),10-2t ,(2<t ≤5).(2)函数f (t )图象如图所示.22.(本小题满分12分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为2.10元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元.已知甲、乙两用户该月用水量分别为5x,3x 吨.(1)求y 关于x 的函数;(2)如甲、乙两户该月共交水费40.8元,分别求出甲、乙两户该月的用水量和水费. 【解】 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨, y =(5x +3x )×2.1=16.8x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4且5x >4, y =4×2.1+3x ×2.1+3×(5x -4)=21.3x -3.6. 当乙的用水量超过4吨时,即3x >4,y =8×2.1+3(8x -8)=24x -7.2,所以y =⎩⎪⎨⎪⎧16.8x ⎝ ⎛⎭⎪⎫0≤x ≤45,21.3x -3.6⎝ ⎛⎭⎪⎫45<x ≤43,24x -7.2⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均为单调递增函数, 当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<40.8;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<40.8; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -7.2=40.8,解得x =2,所以甲用户用水量为5x =10吨,付费S 1=4×2.1+6×3=26.40(元);乙用户用水量为3x =6吨,付费S 2=4×2.1+2×3=14.40(元).模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B =( ) A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}【解析】 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C .【答案】 C2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=( ) A .0 B .1 C .2D .3【解析】 ∵f (2)=log 3(22-1)=1, ∴f (f (2))=f (1)=2e 1-1=2. 【答案】 C3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数. A .f (x )=-(x +1)2+2 B .f (x )=3|x | C .f (x )=⎝ ⎛⎭⎪⎫12|x |D .f (x )=x -2【解析】 A .f (x )=-(x +1)2+2关于x =-1对称,不是偶函数,不满足条件③. B .f (x )=3|x |在区间(0,+∞)上单调递增,不满足条件②. C .若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D .若f (x )=x -2,则f (0)无意义,不满足条件①.故选C . 【答案】 C4.与函数y =-2x 3有相同图象的一个函数是( ) A .y =-x -2xB .y =x -2xC .y =-2x 3D .y =x2-2x【解析】 函数y =-2x 3的定义域为(-∞,0],故y =-2x 3=|x |-2x =-x -2x ,故选A .【答案】 A5.函数f (x )=2x -1+log 2x 的零点所在区间是( ) A.⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C .⎝ ⎛⎭⎪⎫12,1 D .(1,2)【解析】 ∵函数f (x )=2x -1+log 2x , ∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1, ∴f ⎝ ⎛⎭⎪⎫12f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C . 【答案】 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( )A.13 B .-13 C .3D .-3【解析】 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得α=-3,所以y =x -3,由f (x )=27,得x -3=27,即x =13. 【答案】 A7.函数f (x )=2x 21-x +lg (3x +1)的定义域为( )A.⎝ ⎛⎭⎪⎫-13,1B.⎝ ⎛⎭⎪⎫-13,13 C .⎝ ⎛⎭⎪⎫-13,+∞ D.⎝ ⎛⎭⎪⎫-∞,13 【解析】 要使函数有意义,只需⎩⎨⎧1-x >0,3x +1>0,解得-13<x <1,故函数f (x )=2x 21-x +lg(3x +1)的定义域为⎝ ⎛⎭⎪⎫-13,1.【答案】 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .c <a <b B .b <a <c C .c <b <aD .a <b <c【解析】 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5.所以b <a <c .故选B . 【答案】 B9.若函数f (x )=(k -1)ax -a -x (a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )【解析】 由f (x )=(k -1)ax -a -x (a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确.【答案】 A10.已知函数f (x )=1+x 21-x 2,则有( )A .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x )B .f (x )是奇函数,且f ⎝ ⎛⎭⎪⎫1x =f (x )C .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =-f (x )D .f (x )是偶函数,且f ⎝ ⎛⎭⎪⎫1x =f (x )【解析】 ∵f (-x )=f (x ), ∴f (x )是偶函数,排除A ,B .又f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=1+x 2x 2-1=-f (x ),故选C .【答案】 C11.在y =2x ,y =log 2x ,y =x 2这三个函数中,当0<x 1<x 2<1时,使f ⎝⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2恒成立的函数的个数是( )A .0个B .1个C .2个D .3个【解析】 在0<x 1<x 2<1时, y =2x使f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,y =log 2x 使f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2恒成立,y =x 2使f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立.故选B .【答案】 B12.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解是( ) A .(-3,0)∪(1,+∞) B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-3,0)∪(1,3)【解析】 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴f (x )在(-∞,0)内也是增函数.又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0.∵(x -1)·f (x )<0,∴⎩⎨⎧ x -1<0,f (x )>0或⎩⎨⎧x -1>0,f (x )<0,解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.【解析】 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=ax -2-3必过定点(2,-2).【答案】(2,-2)14.设A∪{-1,1}={-1,1},则满足条件的集合A共有________个.【解析】∵A∪{-1,1}={-1,1},∴A⊆{-1,1},满足条件的集合A为:∅,{-1},{1},{-1,1},共4个.【答案】 415.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+3x),则f(-1)=________.【解析】由题意知f(-1)=-f(1)=-1×(1+31)=-2.【答案】-216.下列命题:①偶函数的图象一定与y轴相交;②定义在R上的奇函数f(x)必满足f(0)=0;③f(x)=(2x+1)2-2(2x-1)既不是奇函数也不是偶函数;④A=R,B=R,f:x→y=1x+1,则f为A到B的映射;⑤f(x)=1x在(-∞,0)∪(0,+∞)上是减函数.其中真命题的序号是________.(把你认为正确的命题的序号都填上)【解析】①不正确,如y=lg|x|,其在原点处无定义,其图象不可能与y轴相交;②正确,∵f(-x)=-f(x),∴f(-0)=-f(0)=f(0),∴f(0)=0;③不正确,∵f(x)=(2x+1)2-2(2x-1)=4x2+3,且f(-x)=f(x),∴f(x)为偶函数;④不正确,当x=-1时,在B中没有元素与之对应;⑤不正确,只能说f(x)=1x在(-∞,0)及(0,+∞)上是减函数.【答案】②三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)1.5-13×⎝⎛⎭⎪⎫-760+80.25×42-;(2)12lg3249-43lg 8+lg 245+10lg 3.【解】 (1)原式=×=2.(2)原式=12(lg 25-lg 72)-+12lg (72×5)+10lg 3=52lg 2-lg 7-2lg 2+lg 7+12lg 5+3=12lg 2+12lg 5+3=12(lg 2+lg 5)+3=72.18.(本小题满分12分)已知集合A ={x |(a -1)x 2+3x -2=0},B ={x |x 2-3x +2=0}. (1)若A ≠∅,求实数a 的取值范围; (2)若A ∩B =A ,求实数a 的取值范围.【解】 (1)①当a =1时,A =⎩⎨⎧⎭⎬⎫23≠∅,合题意;②当a ≠1时,由Δ=9+8(a -1)≥0,得a ≥-18且a ≠1. 综上所述,a 的范围为a ≥-18. (2)由A ∩B =A ,得A ⊆B .①当A =∅时,a <-18,显然合题意;②当A ≠∅时,得到B 中方程的解1和2为A 的元素,即A ={1,2}, 把x =1代入A 中方程,得a =0. 综上所述,a的范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a <-18,或a =0. 19.(本小题满分12分)已知函数f (x )=1-2x . (1)若g (x )=f (x )-a 为奇函数,求a 的值;(2)试判断f (x )在(0,+∞)内的单调性,并用定义证明. 【解】 (1)由已知得g (x )=1-a -2x , ∵g (x )是奇函数,∴g (-x )=-g (x ),即1-a -2-x=-⎝ ⎛⎭⎪⎫1-a -2x ,解得a =1.(2)函数f (x )在(0,+∞)内是单调增函数. 证明如下:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2x 1-⎝ ⎛⎭⎪⎫1-2x 2=2(x 1-x 2)x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0,从而2(x 1-x 2)x 1x 2<0,即f (x 1)<f (x 2).∴函数f (x )在(0,+∞)内是单调增函数.20.(本小题满分12分)已知函数f (x )=x 2-2mx +m 2+4m -2. (1)若函数f (x )在区间[0,1]上是单调递减函数,求实数m 的取值范围; (2)若函数f (x )在区间[0,1]上有最小值-3,求实数m 的值. 【解】 f (x )=(x -m )2+4m -2.(1)由f (x )在区间[0,1]上是单调递减函数得m ≥1.(2)当m ≤0时,f (x )min =f (0)=m 2+4m -2=-3,解得m =-2-3或m =-2+ 3. 当0<m <1时,f (x )min =f (m )=4m -2=-3, 解得m =-14(舍).当m ≥1时,f (x )min =f (1)=m 2+2m -1=-3,无解. 综上可知,实数m 的值是-2±3.21.(本小题满分12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1), (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.【解】 (1)要使函数有意义,则有⎩⎨⎧2x +1>0,1-2x >0,解得-12<x <12.∴函数F (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <12. (2)F (x )=f (x )-g (x )=log a (2x +1)-log a (1-2x ),F (-x )=f (-x )-g (-x )=log a (-2x +1)-log a (1+2x )=-F (x ). ∴F (x )为奇函数. (3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,有0<2x +1<1-2x , ∴-12<x <0.②当a >1时,有2x +1>1-2x >0,∴0<x <12.综上所述,当0<a <1时,有x ∈⎝ ⎛⎭⎪⎫-12,0,使得f (x )-g (x )>0; 当a >1时,有x ∈⎝ ⎛⎭⎪⎫0,12,使得f (x )-g (x )>0. 21.(本小题满分12分)甲乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲,乙两图:甲 乙图1甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大了还是缩小了?说明理由;(3)哪一年的规模(即总产量)最大?说明理由.【解】 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y 甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点,从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设第m 年的规模最大,总出产量为n ,那么n =y 甲y 乙=(0.2m +0.8)(-4m +34)=-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2.即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条.。
第一章单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句是命题的是()A.2x2+3x-1>0 B.比较两数大小C.撸起袖子加油干!D.cos45°=2 2答案 D解析A项不能判断真假,不是命题;B,C两项不是陈述句,不是命题;D 项是命题.2.下面所给三个命题中真命题的个数是()①若ac2>bc2,则a>b;②若四边形的对角互补,则该四边形是圆的内接四边形;③若二次函数y=ax2+bx+c中,b2-4ac<0,则该二次函数的图象与x轴有公共点.A.0 B.1C.2 D.3答案 C解析①该命题为真命题,由ac2>bc2,得c2>0,则有a>b.②该命题为真命题,根据圆内接四边形的定义可进行判定.③该命题为假命题,因为当b2-4ac<0时,一元二次方程ax2+bx+c=0没有实数根,因此二次函数的图象与x轴无公共点.综上所述,故选C.3.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0B.∀x∈R,|x|+x2≤0C.∃x∈R,|x|+x2<0D.∃x∈R,|x|+x2≥0答案 C解析“∀x∈R,|x|+x2≥0”的否定是“∃x∈R,|x|+x2<0”.4.已知x 1,x 2∈R ,则“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由x 1>1且x 2>1得x 1+x 2>1+1=2,x 1x 2>1×1=1,所以“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的充分条件;设x 1=3,x 2=12,则x 1+x 2=72>2且x 1x 2=32>1,但x 2<1,所以不满足必要性.故选A.5.下列命题中,真命题有( )①mx 2+2x -1=0是关于x 的一元二次方程;②抛物线y =ax 2+2x -1与x 轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.A .1个B .2个C .3个D .4个答案 A解析 对于①来说,当m =0时,mx 2+2x -1=0是一元一次方程;对于②来说,抛物线y =ax 2+2x -1对应的一元二次方程的判别式Δ=4+4a ,当a <-1时,方程无实数根,此时抛物线与x 轴无交点;③正确,A ⊆B ,B ⊆A ⇔A =B ;空集是任何集合的子集,是任何非空集合的真子集,故④错误.6.“a 2+(b -1)2=0”是“a (b -1)=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 a 2+(b -1)2=0⇒a =0且b =1,而a (b -1)=0⇒a =0或b =1,故“a 2+(b -1)2=0”是“a (b -1)=0”的充分不必要条件.7.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10 答案 D解析 当x =5时,y =1,2,3,4;当x =4时,y =1,2,3;当x =3时,y =1,2;当x =2时,y =1,共10个.故选D.8.在下列命题中,真命题的个数是( ) ①∀x ∈R ,x 2+x +3>0; ②∀x ∈Q ,13x 2+1是有理数;③关于x 的方程x 2+|x |-6=0有四个实数根; ④∃x ,y ∈Z,3x -2y =10. A .1 B .2 C .3 D .4答案 C解析 ①中,x 2+x +3=⎝ ⎛⎭⎪⎫x +122+114>0,故①是真命题;②中,∵x ∈Q ,∴13x 2+1是有理数,故②是真命题;③中,由x 2+|x |-6=0,得|x |=2,∴x =±2,方程有两个实数根,故③是假命题;④中,当x =4,y =1时,结论成立,故④是真命题.由以上可知,正确选项为9.给出下列四个命题:①设集合X ={x ②空集是任何集合的真子集;③集合A ={y |y =表示同一集合; ④集合P ={a ,其中正确的命题是A .①② B .①③ C .③④ D .④ 答案 D解析 ①中{0}与X 均表示集合,不能用∈来表示集合与集合之间的关系,①不正确;②中空集是任何非空集合的真子集,②不正确;③中A ={y |y ≥0},B ={x |x ≥1或x ≤-1},故不是同一集合,③不正确;④中根据集合中元素的无序性知④正确.故选D.10.下列命题中,是全称量词命题且是真命题的是( ) A .对任意的a ,b ∈R ,都有a 2+b 2-2a -2b +2<0 B .菱形的两条对角线相等 C .∀x ∈R ,x 2=x D .正方形是矩形 答案 D解析A中的命题是全称量词命题,但a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,故是假命题;B中的命题是全称量词命题,但是假命题;C中的命题是全称量词命题,但x2=|x|,故是假命题;D中的命题是全称量词命题且是真命题,故选D.11.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件答案 C解析若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由Venn图可知,存在A=C,同时满足A⊆C,B⊆∁U C.故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.12.已知△ABC的边长为a,b,c,定义它的等腰判别式为D=max{a-b,b-c,c-a}+min{a-b,b-c,c-a},则“D=0”是“△ABC为等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析充分性:若“D=0”,设c≥b≥a,则D=max{a-b,b-c,c-a}+min{a-b,b-c,c-a}=c-a+b-c=0或c-a+a-b=0,∴a=b或b=c,则△ABC一定为等腰三角形,所以充分性成立.必要性:若△ABC为等腰三角形,设a=b,当c≠a时,则b-c与c-a中必然有一个为最大值,另一个为最小值,则D=b-c+c-a=b-a=0;当c=a 时,D=0+0=0,所以必要性成立.故选C.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,可作为命题的是________________.答案红豆生南国解析“红豆生南国”是陈述句,意思是“红豆生长在中国南方”,这在唐代是事实,故本语句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题.14.设x∈R,则“x>1”是“x3>1”的________条件.答案充要解析因为x∈R,“x>1”⇔“x3>1”,所以“x>1”是“x3>1”的充要条件.15.命题p:∀x∈R,x2+x+1≠0,则命题綈p为________________.答案∃x∈R,x2+x+1=0解析命题p是全称量词命题,根据全称量词命题的否定是改量词,否结论,则是∃x∈R,x2+x+1=0.16.由命题“∃x∈R,x2+2x+m=0”是假命题,求得实数m的取值范围是m>a,则实数a=________.答案 1解析因为命题“∃x∈R,x2+2x+m=0”是假命题,所以其否定“∀x∈R,x2+2x+m≠0”是真命题,等价于方程x2+2x+m=0无实根,所以Δ=4-4m<0,解得m>1,又因为m的取值范围是(a,+∞),所以实数a=1.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断真假.(1)p1:∃x∈R,x2-x+1≤0;(2)p2:所有的菱形都是平行四边形;(3)p3:有的梯形是等腰梯形;(4)p4:任意x∈Z,x2的个位数字不等于3;(5)p5:有一个素数含三个正因数.解(1)綈p1:∀x∈R,x2-x+1>0;真命题.(2)綈p2:存在一个菱形,它不是平行四边形;假命题.(3)綈p3:所有的梯形都不是等腰梯形;假命题.(4)綈p4:存在x∈Z,使x2的个位数字等于3;假命题.(5)綈p 5:所有的素数都不含三个正因数;真命题.18.(本小题满分12分)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ≠∅.(1)若“命题p :∀x ∈B ,x ∈A ”是真命题,求m 的取值范围; (2)若“命题q :∃x ∈A ,x ∈B ”是真命题,求m 的取值范围.解 (1)∵A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ≠∅,“命题p :∀x ∈B ,x ∈A ”是真命题,∴B ⊆A ,B ≠∅,∴⎩⎨⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3. (2)q 为真,则A ∩B ≠∅. ∵B ≠∅,∴m ≥2,∴⎩⎨⎧-2≤m +1≤5,m ≥2,∴2≤m ≤4. 19.(本小题满分12分)已知集合A ={x |-1<x <3},B ={x |x ≤m -1或x ≥m +1}.(1)当m =0时,求A ∩B ;(2)若p :-1<x <3,q :x ≤m -1或x ≥m +1,且q 是p 的必要不充分条件,求实数m 的取值范围.解 (1)当m =0时,B ={x |x ≤-1或x ≥1}, 又A ={x |-1<x <3},所以A ∩B ={x |1≤x <3}. (2)因为p :-1<x <3,q :x ≤m -1或x ≥m +1.q 是p 的必要不充分条件,所以m -1≥3或m +1≤-1,所以m ≤-2或m ≥4. 20.(本小题满分12分)求关于x 的方程ax 2+2x +1=0的实数根中有且只有一个负实数根的充要条件.解 若方程ax 2+2x +1=0有且仅有一个负实数根,则:当a =0时,x =-12,符合题意.当a ≠0时,方程ax 2+2x +1=0有实数根,则Δ=4-4a ≥0,解得a ≤1, 当a =1时,方程有且仅有一个负实数根x =-1,当a <1且a ≠0时,若方程有且仅有一个负实数根,则1a <0,即a <0.又以上过程均可逆,所以方程ax 2+2x +1=0有且仅有一个负实数根”的充要条件为“a ≤0或a =1”.21.(本小题满分12分)设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.证明 必要性:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根ξ, 则⎩⎨⎧ξ2+2aξ+b 2=0,ξ2+2cξ-b 2=0⇒ξ=-b 2a -c =b 2c -a .∴⎝ ⎛⎭⎪⎫b 2c -a 2+2c ·b 2c -a -b 2=0⇒a 2=b 2+c 2,∴∠A =90°.充分性:若∠A =90°,则a 2=b 2+c 2,解方程x 2+2ax +b 2=0得x =-2a ±4a 2-4b 22=-a ±c ,解方程x 2+2cx -b 2=0得x =-2c ±4c 2+4b 22=-c ±a ,得x 0=-a -c 是方程的公共根.综上可知,方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.22.(本小题满分12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,其中m ∈Z ,求这两个方程的根均为整数的充要条件.解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都有实根, ∴⎩⎨⎧Δ1=16-16m ≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得-54≤m ≤1.∵两方程的根都是整数,故其根的和与积也是整数, ∴⎩⎪⎨⎪⎧4m ∈Z ,4m ∈Z ,4m 2-4m -5∈Z ,∴m 为4的约数.又-54≤m ≤1,m ≠0,m ∈Z ,∴m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根不是整数;当m =1时,两方程的根均为整数.又以上过程均可逆,∴这两个方程的根均为整数的充要条件是m =1.。
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
单元质量评估(二)(第二章) (90分钟 120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(2016·成都高一检测)若a<12,则化简√(2a −1)24的结果是 ( )A.√2a −1B.-√2a −1C.√1−2aD.-√1−2a 【解析】选C.原式=|2a-1|12=√1−2a (a <12).2.若100a =5,10b =2,则2a+b= ( )A.0B.1C.2D.3【解析】选 B.由100a=5得a=log 1005=12lg5,同理由10b =2得b=lg 2,所以2a+b=lg5+lg 2=lg 10=1.3.计算:(log 29)·(log 34)= ( )A.14B.12C.2D.4【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log 29×log 34=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.4.(2016·邢台高一检测)指数函数y=a x 的图象经过点(2,16),则a 的值是( )A.14B.12C.2D.4【解析】选D.依题意16=a 2,所以a=4或a=-4(舍去). 5.设a=lo g 123,b=(13)0.2,c=2 13,则 ( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c 【解析】选A.因为a=lo g 123<lo g 121=0,0<b=(13)0.2<(13)0=1,c=2 13>20=1,所以c>b>a.6.下列函数中,是偶函数且在区间(0,+∞)上单调递减的是 ( ) A.y=-3|x|B.y=x13C.y=log 3x 2D.y=x-x 2【解析】选A.是偶函数排除了B ,D ;在区间(0,+∞)上单调递减排除了C. 【补偿训练】给定下列函数:①y=x12;②y=lo g12(x+1);③y=|x-1|;④y=2x+1,其中在区间(0,1)上单调递减的函数的序号是 ( ) A.①② B.②③ C.③④ D.①④ 【解析】选B.①y=x12在[0,+∞)上是增函数,在(0,1)上单调递增,不合题意;②y=lo g 12(x+1)在(-1,+∞)上是减函数,在(0,1)上单调递减,符合题意; ③y=|x-1|在(-∞,1)上是减函数,在(1,+∞)上是增函数,故在(0,1)上单调递减,符合题意;④y=2x+1在R 上是增函数,在(0,1)上单调递增,不合题意;所以,在区间(0,1)上单调递减的函数的序号是②③.7.已知幂函数f(x)=x−12,若f(a+1)<f(10-2a),则a的取值范围是( )A.(3,5)B.(-1,+∞)C.(-∞,5)D.(-1,5)【解题指南】幂函数f(x)=x−12在(0,+∞)上为减函数,将f(a+1)<f(10-2a)转化为不等式组{10−2a>0,a+1>10−2a求解即可.【解析】选A.因为f(x)=x−12=√x,所以f(x)在(0,+∞)上为减函数. 又f(a+1)<f(10-2a),所以{10−2a>0,a+1>10−2a,解得3<a<5.8.设f(x)={2e x−1,x<2,log3(x2−1),x≥2,则f(f(2))的值为( )A.0B.1C.2D.3 【解析】选C.因为f(2)=log3(22-1)=log33=1,所以f(f(2))=f(1)=2e1-1=2.【延伸探究】本题条件不变,若f(a)=2,则a= .【解析】f(a)=2⇒{a<2,2e a−1=2或{a≥2,log3(a2−1)=2⇒a=1或a=√10.答案:1或√109.当x<0时,a x>1成立,其中a>0且a≠1,则不等式log a x>0的解集是( )A.{x|x>0}B.{x|x>1}C.{x|0<x<1}D.{x|0<x<a}【解析】选C.因为当x<0时,a x>1,所以0<a<1,因为log a x>0,所以0<x<1.10.(2014·山东高考)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1【解题指南】本题考查了对数函数的图象与性质及图象平移知识.【解析】选D.由图象单调递减的性质可得0<a<1,图象向左平移小于1个单位,故0<c<1,故选D.11.函数y=x|x|log2|x|的大致图象是( )【解题指南】将原函数化为分段函数的形式,结合该函数的性质,即可找出正确答案.【解析】选D.因为y=x|x|log2|x|={log2x,x>0,−log2(−x),x<0,故选D.12.已知函数f(x)={|log 3x|,0<x ≤3,−4x +13,x >3.若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是 ( ) A.(3,13) B.(3,134)C.(1,134) D.(14,13)【解题指南】结合解析式,画出函数图象,利用数形结合思想即可求出abc 的取值范围.【解析】选B.由图可见因为|log 3b|=|log 3a|,log 3b=-log 3a ,log 3b+log 3a=0,ab=1,所以abc=c ∈(3,134).【拓展延伸】巧用图象解题函数的图象与性质是一一对应的,在解函数问题时,经常用到函数的图象,这体现了一种思想方法——数形结合,“数”是函数的特征,它精确、量化、具有说服力;而“形”是函数的图象,它形象、直观,能降低思维难度,简化解题过程.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(2016·汕头高一检测)已知函数f(x)=a x-2过定点P ,且对数函数g(x)的图象过点P ,则g(x)= . 【解析】设g(x)=log b x , 因为f(x)=a x-2过点P(2,1),故g(2)=1,所以b=2,故g(x)=log 2x. 答案:log 2x14.(2015·安徽高考)计算:lg 52+2lg2-(12)−1= .【解析】原式=lg5-lg2+2lg2-2=lg5+lg2-2 =-1. 答案:-115.设log a 34<1,则实数a 的取值范围是 .【解析】当a>1时log a 34<0显然符合题意,当0<a<1时log a 34<1⇔log a 34<log a a ⇔0<a<34,综上0<a<34或a>1.答案:0<a<34或a>116.已知实数a ,b 满足等式(12)a =(13)b=m ,则下列五个关系式:①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a=b. 其中可能成立的关系式为 (用编号作答). 【解析】当m=1时,a=b=0; 当m>1时,a<b<0(如图所示);当0<m<1时,0<b<a(如图所示);综上知①②⑤可能成立. 答案:①②⑤三、解答题(本大题共4个小题,共40分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(10分)计算:(1)√2−1-(35)0+(94)−0.5+√(√2−e)44.(2)lg500+lg 85-12lg64+50(lg2+lg 5)2. 【解析】(1)原式=√2+1-1+23+e-√2=23+e.(2)原式=lg5+lg102+lg23-lg5-12lg26+50(lg10)2=lg5+2+3lg2-lg 5-3lg 2+50=52.18.(10分)(2016·苏州高一检测)已知a>0,且a ≠1,若函数f(x)=2a x -5在区间[-1,2]的最大值为10,求a 的值.【解析】当0<a<1时,f(x)在[-1,2]上是减函数,当x=-1时,函数f(x)取得最大值,则由2a -1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数f(x)取得最大值,则由2a 2-5=10,得a=√302或a=-√302(舍), 综上所述,a=215或√302.19.(10分)已知幂函数f(x)=21m mx(m ∈N *).(1)确定函数的定义域,并说明定义域上的单调性.(2)若函数经过点(2,√),确定m 的值,并求f(2-a)>f(a-1)时a 的取值范围.【解题指南】(1)判断幂指数的奇偶性,再确定定义域以及单调性. (2)求出幂指数的值,利用函数的单调性转化为不等式求解.【解析】(1)因为m ∈N *,所以m 2+m=m(m+1)为偶数,令m 2+m=2k ,k ∈N *,则f(x)=√x 2k, 所以定义域为[0,+∞),且在[0,+∞)上单调递增. (2)因为√2=21m m2,所以m 2+m=2得m=1或m=-2(舍去).所以f(x)=x12,解2-a>a-1≥0得1≤a<32, 所以a 的取值范围为[1,32).【补偿训练】已知x>1且x ≠43,f(x)=1+log x 3,g(x)=2log x 2,试比较f(x)与g(x)的大小.【解析】f(x)-g(x)=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x<43时,34x<1,所以log x 34x<0;当x>43时,34x>1, 所以log x 34x>0.即当1<x<43时,f(x)<g(x);当x>43时,f(x)>g(x).20.(10分)已知f(x)=log a x(a>0且a ≠1)的图象过点(4,2), (1)求a 的值.(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域. (3)在(2)的条件下,求g(x)的单调减区间.【解析】(1)由已知f(x)=log a x(a>0且a ≠1)的图象过点(4,2),则2=log a 4,即a 2=4,又a>0且a ≠1,所以a=2. (2)g(x)=f(1-x)+f(1+x)=log 2(1-x)+log 2(1+x).由{1−x >0,1+x >0,得-1<x<1,定义域为(-1,1). (3)g(x)=log 2(1-x)+log 2(1+x)=log 2(1-x 2), 其单调减区间为[0,1).【补偿训练】(2016·大庆高一检测)已知函数f(x)=log a (x-1),g(x)=log a (3-x)(a>0且a ≠1). (1)求函数h(x)=f(x)-g(x)的定义域.(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x 的取值范围. 【解析】(1)由{x −1>0,3−x >0,得1<x<3.所以函数h(x)的定义域为(1,3). (2)不等式f(x)≥g(x), 即为log a (x-1)≥log a (3-x).(*) ①当0<a<1时,不等式(*)等价于{1<x <3,x −1≤3−x,解得1<x ≤2.②当a>1时,不等式(*)等价于{1<x <3,x −1≥3−x,解得2≤x<3.综上,当0<a<1时,原不等式解集为(1,2], 当a>1时,原不等式解集为[2,3).关闭Word 文档返回原板块。
模块综合检测卷(二)(时间:90分钟分值:100分)一、选择题(共15小题,每小题3分,共45分)1.东晋炼丹家葛洪的《抱朴子》里记载:丹砂(HgS)烧之成水银,积变又还成了丹砂。
这句话里没有涉及的反应类型为()A。
氧化还原反应 B.化合反应C.分解反应D.置换反应答案:D2.下列仪器常用于物质分离的是( )A.①③⑤B。
②③⑤C。
②④⑤ D.①②⑥答案:B3.下列各组物质中分子数相同的是()A.2 L CO和2 L CO2B。
9 g H2O和标准状况下11.2 L CO2C。
标准状况下1 mol O2和22。
4 L H2OD。
0。
2 mol H2和4。
48 L HCl气体答案:B4.下列实验能达到目的的是()A.只滴加氨水鉴别NaCl、AlCl3、MgCl2、Na2SO4四种溶液B。
将NH4Cl溶液蒸干制备NH4Cl固体C.用萃取分液的方法除去酒精中的水D。
用可见光束照射以区别溶液和胶体答案:D5.将X气体通入BaCl2溶液,未见沉淀生成,然后通入Y气体,有沉淀生成,X、Y不可能是()选项X YA SO2H2SB Cl2CO2C NH3CO2D SO2Cl2答案:B6.下图是一检验气体性质的实验装置。
向装置中缓慢通入气体X,若关闭活塞K,则品红溶液无变化,而澄清石灰水变浑浊;若打开活塞K,则品红溶液褪色。
据此判断气体X和洗气瓶内液体Y可能是()选项A B C DX CO SO2CO2Cl2Y浓H2SO4NaHCO3饱和溶液Na2SO3溶液NaHSO3饱和溶液答案:B7.水热法制备Fe3O4纳米颗粒的总反应为3Fe2++2S2O错误!+O2+x OH-===Fe3O4+S4O错误!+2H2O。
下列说法正确的是()A.O2、S2O2-3都是氧化剂B.x=2C.每转移3 mol电子,有1.5 mol Fe2+被氧化D.氧化产物只有S4O错误!答案:C8.常温下,下列各溶液中离子一定能大量共存的是()A.无色透明的溶液中:NH错误!、Fe3+、SO错误!、Cl-B.能使紫色石蕊试液变红的溶液中:K+、Mg2+、SO错误!、SO错误!C.加入金属镁能产生H2的溶液中:Na+、Fe2+、SO错误!、NO错误!D。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(二)(第二章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.可用分数指数幂表示为( )A. B.a3C. D.都不对【解析】选C.====.故选C.2.(2015·怀柔高一检测)指数函数y=a x的图象经过点,则a的值是( )A. B. C.2 D.4【解析】选B.因为y=a x的图象经过点,所以a3=,解得a=.3.等于( )A.2B.2+C.2+D.1+【解析】选A.=2×=2.4.若100a=5,10b=2,则2a+b= ( )A.0B.1C.2D.3【解析】选B.因为100a=102a=5,10b=2,所以100a×10b=102a+b=5×2=10,即2a+b=1.【一题多解】选B.由100a=5得a=log1005,由10b=2得b=lg2,所以2a+b=2×lg5+lg2=1.5.(2015·塘沽高一检测)(log29)·(log34)= ( )A. B. C.2 D.4【解析】选D.(log29)·(log34)=·=·=4.【补偿训练】对数式lo(2-)的值是( ) A.-1 B.0C.1D.不存在【解析】选A.lo(2-)=lo=lo(2+)-1=-1.6.已知-1<a<0,则( )A.(0.2)a<<2aB.2a<<(0.2)aC.2a<(0.2)a<D.<(0.2)a<2a【解析】选 B.由-1<a<0,得0<2a<1,(0.2)a>1,>1,知A,D不正确.当a=-时,=<=0.,知C不正确.所以2a<<(0.2)a.【补偿训练】(2014·邢台高一检测)设a=lo3,b=,c=,则a,b,c的大小顺序为( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】选A.因为a=lo3<lo1=0,即a<0,0<b=<=1,即0<b<1,而c=>20=1,即c>1,所以a<b<c,选A.7.(2015·重庆高一检测)设函数y=x3与y=的图象的交点为(x0,y0),则x0所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.作出两个函数在同一坐标系内的图象如图所示,即可观察得出.8.若函数y=f的定义域是[2,4],则y= flo x的定义域是( )A. B.C.[4,16]D.[2,4]【解析】选B.由于2≤lo x≤4,即lo≤lo x≤lo,所以≤x≤,故选B.【误区警示】本题易误认为函数y= f中的变量x也应在[2,4]上从而造成错选D.9.已知函数y=f(x)的反函数f-1(x)=lo x,则方程f(x)=1的解集是( )A. B. C. D.【解析】选D.f-1(x)=lo x,则f(x)=,f(x)=1可得x=0.【一题多解】选D.f(x)=1根据互为反函数的性质得x=f-1(1)=lo1=0.10.(2015·邢台高一检测)已知f(10x)=x,则f(5)= ( )A.105B.510C.lg 10D.lg 5【解题指南】利用换元法,先求出函数的解析式,再计算f(5)的值.【解析】选D.令10x=t>0,则x=lgt,故f(t)=lgt,所以函数f(x)=lgx(x>0),故f(5)=lg5.11.(2015·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M,N,P,Q,G中,可以是“好点”的个数为( )A.0个B.1个C.2个D.3个【解析】选 C.设此函数为y=a x(a>0,a≠1),显然不过点M、P,若设对数函数为y=log b x(b>0,b≠1),显然不过N点,故选C.12.已知函数g(x)=2x-,若f(x)=则函数f(x)在定义域内( )A.有最小值,但无最大值B.有最大值,但无最小值C.既有最大值,又有最小值D.既无最大值,又无最小值【解析】选A.当x≥0时,函数f(x)=g(x)=2x-在[0,+∞)上单调递增,设x>0,则-x<0,f(x)=g(x),f(-x)=g(x),则f(-x)=f(x),故函数f(x)为偶函数,综上可知函数f(x)在x=0处取最小值f(0)=1-1=0,无最大值.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=的定义域是.【解析】因为lo(x-1)≥0,所以0<x-1≤1,所以1<x≤2.答案:(1,2]【补偿训练】函数y=的定义域为.【解析】因为log0.5(4x-3)≥0,所以0<4x-3≤1,所以<x≤1.答案:14.(2015·沈阳高一检测)已知函数f(x)=则f的值为.【解析】因为>0,所以f=log3=log33-2=-2,所以f(-2)=2-2=.答案:15.函数f(x)=log5(2x+1)的单调增区间是.【解析】函数f(x)的定义域为,设u=2x+1,f(x)=log5u(u>0)是单调增函数,因此只需求函数u=2x+1的单调增区间,而函数u=2x+1在定义域内单调递增.所以函数f(x)的单调增区间是.答案:16.(2015·通化高一检测)已知函数f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是.【解题指南】由于函数在(-∞,+∞)上是减函数,故此分段函数应在每一段上也为减函数,且当x=1时应有3a-1+4a≥0,以此确定a的值.【解析】由于函数f(x)=是(-∞,+∞)上的减函数,则有,解得≤a<.答案:【延伸探究】若本题将函数改为“f(x)=”且在(-∞,+∞)上是增函数,又如何求解a的取值范围?【解析】由于函数f(x)=是(-∞,+∞)上的增函数,则有:,解得a>1.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)2log32-log3+log38-5log325.(2)log2.56.25+lg+ln(e)+log2(log216).【解析】(1)原式=log34-log3+log38-2=log3-=log39-9=2-9=-7.(2)原式=2-2++log24=.18.(12分)(2015·咸阳高一检测)已知f(x)=log a(1-x)(a>0,且a≠1)(1)求f(x)的定义域.(2)求使f(x)>0成立的x的取值范围.【解析】(1)依题意得1-x>0,解得x<1,故所求定义域为{x|x<1}.(2)由f(x)>0得log a(1-x)>log a1,当a>1时,1-x>1即x<0,当0<a<1时,0<1-x<1即0<x<1.19.(12分)(2014·十堰高一检测)已知函数f=(m2-m-1)是幂函数,且x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.【解析】因为f(x)是幂函数,所以m2-m-1=1,解得m=-1或m=2,所以f(x)=x-3或f(x)=x3,又易知f(x)=x-3在(0,+∞)上为减函数,f(x)=x3在(0,+∞)上为增函数.所以f(x)=x3.20.(12分)(2015·临沂高一检测)已知f是偶函数,当x≥0时,f=a x,若不等式f≤4的解集为[-2,2],求a的值.【解题指南】由已知先求出x<0的解析式,根据f≤4,利用分段函数分段求解,结合其解集为[-2,2],确定出a的值.【解析】当x<0时,-x>0,f(-x)=a-x,因为f为偶函数,所以f=a-x,所以f=(a>1),所以f≤4化为或,所以0≤x≤log a4或-log a4≤x<0,由条件知log a4=2,所以a=2.21.(12分)设a>0,f(x)=+是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上是增函数.【解题指南】(1)根据题意,利用偶函数的定义对一切x∈R有f(-x)=f成立,确定出a的值.(2)利用函数单调性的定义证明.【解析】(1)依题意,对一切x∈R有f(-x)=f成立,即+=+ae x,所以=0,对一切x∈R成立,由此得到a-=0,所以a2=1,又a>0,所以a=1.(2)设0<x1<x2,f-f=-+-=(-)<0,所以f<f,所以f(x)在(0,+∞)上是增函数.22.(12分)(2015·蚌埠高一检测)已知函数f(x)=log a(x+3)-log a(3-x),a>0且a ≠1.(1)求函数f(x)的定义域.(2)判断并证明函数f(x)的奇偶性.(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【解析】(1)由题得解得-3<x<3,故函数f(x)的定义域为(-3,3).(2)函数f(x)为奇函数,由(1)知函数f(x)的定义域关于原点对称,f(-x)=log a(-x+3)-log a(3+x)=-f(x),所以函数f(x)为奇函数.(3)当a>1时,函数f(x)为增函数,从而函数f(x)在区间[0,1]上也为增函数,最大值为f(1)=log a4-log a2=log a2.关闭Word文档返回原板块。